
Actionable Information in Vision

Stefano Soatto

Technical Report CSD090007
March 10, 2009, revised March 18, 2010

Abstract

A notion of visual information is introduced as the complexity not of the raw images, but
of the images after the effects of nuisance factors such as viewpoint and illumination are dis-
counted. It is rooted in ideas of J. J. Gibson, and stands in contrast to traditional information
as entropy or coding length of the data regardless of its use, and regardless of the nuisance fac-
tors affecting it. The non-invertibility of nuisances such as occlusion and quantization induces
an “information gap” that can only be bridged by controlling the data acquisition process.
Measuring visual information entails early vision operations, tailored to the structure of the
nuisances so as to be “lossless” with respect to visual decision and control tasks (as opposed
to data transmission and storage tasks implicit in traditional information theory). These ideas
are illustrated on visual exploration, whereby a “Shannonian Explorer” navigates unaware of
the structure of the physical space surrounding it, while a “Gibsonian Explorer” is guided by
the topology of the environment, despite measuring only images of it, without performing 3D
reconstruction. Our operational definition of visual information suggests desirable properties
that a visual representation should possess to best accomplish vision-based decision and con-
trol tasks.

1 Preamble
This paper discusses the role visual perception plays in the “signal-to-symbol barrier” problem.

The “signal-to-symbol barrier” stems from the observation that perceptual agents, from plants
to humans, perform measurements of physical processes at a level of granularity that is essentially
continuous.1 They also perform actions in the continuum of physical space. And yet, cognitive
science, primary epistemics, and in general modern philosophy, associate “intelligent behavior”

1The continuum is an abstraction, so here “continuous” is to be understood as existing at a level of granularity
significantly finer than the resolution of the measurement device or actuator. For instance, although retinal photore-
ceptors are finite in number, we do not perceive discontinuities due to retinal sampling. Even when the sensory signals
and the actions are discrete (e.g. due to digital encoders or transducers), the “analog-to-digital” conversion usually
occurs in a manner that is independent of the signal being sampled (e.g. fixed-rate sampling), or dependent only on
coarse phenomenological aspects of the signal (e.g. adaptive sampling based on frequency characteristics or sparsity
constraints).
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with some kind of internal representation consisting of discrete symbols (“concepts”, “ideas”,
“objects”, “categories”) that can be manipulated with the tools of logic or probabilistic inference.
But little is known about why such a “signal-to-symbol” conversion should occur, whether it would
yield an evolutionary advantage, or what principles would guide such a discretization process.

Traditional Information Theory, Statistical Decision Theory, and Control Theory shed little
light on this process, and indeed suggest that it may be counter-productive. If we consider biolog-
ical systems as machines that perform actions or make decisions in response to stimuli in a way
that maximizes some decision or control objective, then Rao and Blackwell ([64] page 88) indicate
that the best possible agents would avoid “breaking down the data into pieces,” i.e. data analysis2,
or for that matter any kind of intermediate decision unrelated to the final task, as would instead be
necessary to have a discrete internal representation.3

So, why would we need, or benefit from, an internal representation? Is “intelligence” not
possible in an analog setting? Or is data analysis necessary for cognition? If so, what would be
the principle that guides it?

And with respect to the academic field of Computer Vision, why have we been performing data
analysis (edge detection, feature selection, segmentation, image parsing etc.) against the basic
tenets of (traditional) Information and Decision Theory? The latter would suggest that, eventually,
a reductionist approach where images are fed raw into a black-box decision or control machine will
be most successful. Or perhaps, on the contrary, the traditional notion of Information should be
revised, and this revision will point to new principles for data analysis, and validate what Computer
Vision scientists have done for decades.

Yet another possibility is that data analysis is not guided by any principle, but an accident
due to the constraints imposed by biological hardware, as advocated by Turing in [73], where
he showed that reaction-diffusion partial differential equations (PDEs) that govern neuronal ion
concentrations, although continuous in nature, exhibit discrete solutions. So, if we want to build
machines that interact intelligently with their surroundings and are not bound by the constraints of
biological hardware, should we draw inspiration from biology, or is it better to jettison it?

The question of representation is ill-posed outside the scope of a task. A task can be as narrow
as a binary decision, such as the presence/absence of a person in a scene, or as general as “survival,”
but in the context of visual perception I distinguish four broad classes of tasks, which I call the

2Note that I refer to data analysis as the process of “breaking down the data into pieces” (cfr. gr. analyein), i.e. the
generally lossy conversion of data into discrete semantic entities. This is not the case for global representations such
as Fourier or wavelet decomposition, or principal component analysis (PCA), that are unfortunately often referred to
as “analysis” because such techniques were developed in the context of harmonic analysis, a branch of mathematics.
The Fourier transform is globally invertible, which implies that there is no loss of data, and PCA consists in linear
projections onto subspaces.

3Discretization is often advocated on complexity grounds, but complexity calls for data compression, not necessar-
ily for data analysis. Any complexity cost could be added to the decision or control functional, and the best decision
would still avoid data analysis. For instance, to simplify a segment of a radio signal one could represent it as a linear
combination of a small number of (high-dimensional) bases, so few numbers (the coefficients) are sufficient to rep-
resent it in a parsimonious manner. This is different than breaking down the signal into pieces, e.g. partitioning its
domain into subsets, as implicit in the process of encoding a visual signal through a population of neurons each with
a finite receptive field. So, is there an evolutionary advantage in data analysis, beyond it being just a way to perform
lossy data compression?
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four “R’s” of vision: Reconstruction (building models of the geometry of the scene), Rendering
(building models of the photometry of the scene), Recognition (or, more in general, vision-based
decisions such as detection, localization, categorization), and Regulation (or, more in general,
vision-based control such as tracking, manipulation etc.).

For Reconstruction and Rendering, I am not aware of any principle that suggests an advantage
in data analysis. It is not accidental that the current best approaches to reconstruct models of the
geometry and photometry of a scene from image streams recover (piecewise) continuous surfaces
and radiance functions directly from the data, as opposed to the traditional multi-step pipeline4 that
was long favored on complexity grounds [52].

In this manuscript, I explore the issue of representation for decision and control tasks. I will
try to avoid philosophical discourses and will not make an attempts to define “intelligent behavior”
or even knowledge, other than to postulate that knowledge – whatever it is – comes from data, but
it is not data. This leads to the notion of the “useful portion” of the data, which one might call
“information.” So, the first step is understanding what “information” means in the context of visual
perception. That is the subject of this manuscript.

What I will show is that visual perception plays a key role in understanding the signal-to-
symbol barrier. Specifically, the need to be able to perform decision and control tasks in a manner
that is independent of nuisance factors that affect the image formation process leads to an internal
representation that is intrinsically discrete, and yet lossless, in a sense to be made clear soon.
However, for this to happen the perceptual agent has to have control over certain aspects of the
sensing process. This ties together inextricably sensing and control, in the sense that without the
ability to control the sensing process with motion, a discrete internal representation would be a sure
loss. A peculiar illustration of this phenomenon is the case of Sea Squirts, or Tunicates, shown in
Fig. 1. These are organisms that possess a nervous system (ganglion cells) and the ability to move
(they are predators), but eventually settle on a rock, become stationary and thence swallow their
own brain.

2 Introduction
More than sixty years ago, Norbert Wiener stormed into his students’ office enunciating “entropy
is information!” before immediately storming out. Claude Shannon later made this idea the cen-
terpiece of his Mathematical Theory of Communication, formalizing and unifying the wide variety
of methods that practitioners had been using to transmit signals through channels. The influence
of Shannon’s communication theory has since spread beyond the transmission and compression
of data, and is now broadly known as Information Theory. But is the entropy of the data really
“information”? There is no doubt that the more complex the data, the more costly it is to store and
transmit. But what if we want to use the data for tasks other than storage or transmission? What
is the “information” that an image contains about the scene it portrays? What is the value of an
image if we are to recognize objects in the scene, or navigate through it? (Fig. 2).

4A sequence of “steps” including point-feature selection, wide-baseline matching, epipolar geometry estimation,
motion estimation, triangulation, epipolar rectification, dense re-matching, surface triangulation, mesh polishing, tex-
ture mapping.
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Figure 1: The Sea Squirt, or Tunicate, is an organism capable of mobility, sometimes of predatorial
nature, until it finds a suitable rock to cement itself in place. Once it becomes stationary, it digests
its own cerebral ganglion, or “eats its own brain” and develops a thick covering, a “tunic” for self
defense.

Despite its pervasive reach today, Shannon’s notion of information had early critics,5 among
who James J. Gibson, who wrote “My theory of the available information in ambient light is
radically different from [that of] Shannon. [...] My notion is that information consists of invariants
underlying change” [29].6 Already in the fifties he was convinced that data is not information,7
and the value of data should depend on what one can do with it, i.e. the task [54]. Much of the
complexity in an image is due to nuisance factors, such as illumination, viewpoint and clutter,8 that

5Even Shannon’s disciples acknowledge that “information theory is a total misnomer [...] it does not deal with
information at all, it deals with data” (R. Gallagher, personal communication).

6 It is only unfortunate that, in engineering communications, the signals are heavily structured so the nuisance,
often dubbed “noise,” is usually assumed to be additive, zero-mean, white, and Gaussian. As a consequence, the issue
of invariance was never thoroughly explored, although, interestingly, Wiener was aware of it. In ([78], p. 50) he even
introduced the first (integral) moment as an invariant statistic to a group (eq. (6.01), p. 138) and called it a gestalt!

7He was nevertheless rooted in empirical epistemology and therefore assumed that information comes from data.
8I use the word “nuisance” in the standard sense of statistical inference; this does not imply that nuisance factors

are dismissed or irrelevant. It just means that they affect the data, but not the task. Gibson wrote: “Four kinds of
invariants have been postulated: those that underlie change of illumination, those that underlie change of the point
of observation, those that underlie overlapping samples, and those that underlie a local disturbance of structure. [...]
Invariants of optical structure under changing illumination [...] are not yet known, but they almost certainly involve
ratios of intensity and color among parts of the array. [...] Invariants [...] under change of the point of observation
[...] some of the changes [...] are transformations of its nested forms, but [...] The major changes are gain and loss of
form, that is, increments and decrement of structures, as surfaces undergo occlusion.” [...] The theory of the extracting
of invariants by a visual system takes the place of theories of “constancy” in perception, that is, explanations of how
an observer might perceive the true color, size, shape, motion and direction-from-here of objects despite the wildly
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have little to do with the decision (perception) and control (action) task at hand. So it is intuitive
that the value of data should relate to its complexity only after the effects of nuisance factors has
been discounted.9 Unfortunately, any constant function is an “invariant underlying change”, so
Gibson was missing the other facet of information that relates to its “usefulness” (sufficiency)
towards the task.

The goal of this manuscript is to define an operational notion of “information” that is
relevant to visual inference tasks, as opposed to the transmission and storage of image data. Fol-
lowing Gibson’s lead, I define Actionable Information to be the complexity (coding length10) of a
maximal statistic that is invariant to the nuisances associated to a given task. According to this def-
inition, the Actionable Information in an image depends not just on the complexity of the data, but
also on the structure of the scene it portrays. I illustrate this on a simple environmental exploration
task, that is central to Gibson’s ecological approach to perception. A robot seeking to maximize
Shannon’s information (a “Shannonian Explorer”) is drifting along unaware of the structure of the
environment, while one seeking to maximize Actionable Information (a “Gibsonian Explorer”) is
driven by the topology of the surrounding space. Both measure the same data (images), but the
second is using it to accomplish spatial tasks.11 This manuscript relates to work in information the-
ory, video compression, robotics, visual recognition, as I discuss in Sect. 7. There, I also discuss
the visual representations that our operative definition implies as “lossless” relative visual decision
or control tasks.

fluctuating sensory impressions on which the perceptions are based.” ([30], p. 310).
9Appealing as the idea of characterizing “invariants under change” sounds in words, a modern Computer Vision

scientist would dismiss it at the outset, for it has since become known that such invariants do not exist. Invariants
were considered “the Holy Grail of Computer Vision” in the eighties, until [14] and [20] showed that they do not exist
neither for viewpoint, nor for illumination. Lacking mathematical and computational foundations that enable scientific
(falsifiable) discourse and engineering applications, Gibson’s ideas thus remain confined to the realm of philosophy
[39] and perception psychology. However, recent developments have shown that the situation is more complex than
commonly assumed: [14] refers to statistics of point features, not images, and [74] shows instead that non-trivial
viewpoint invariants always exist for images of Lambertian objects of general shape. Similarly, [20] consider general
illumination fields, but invariants can be constructed for simpler illumination models, such as contrast transformations
[2], even though these are valid only locally. Invariance always refers to an underlying model, that is as good as the
assumptions it is based on, and as useful as the ensuing algorithms are for the task of interest. Invariance to even
more restricted classes of transformations is the underpinning of very simple image statistics that have recently gained
significant popularity in visual recognition and categorization tasks.

10The relation to entropy [48] requires defining a distribution of coding lengths, as will be discussed later in this
manuscript.

11It could be argued that Shannon would not seek to maximize the entropy of the data, but instead the mutual
information between the scene and the data (which he called “equivocation”). Our exercise can be thought of a way
to formalize this notion, but avoiding having to place an explicit probability distribution on the set of scenes, which
is a tall order. Furthermore, while it is easy to formally define the mutual information between the scene and the
image, computing it for an erasure channel (occlusions) under compositional infinite-dimensional domain warpings
(viewpoint changes) and multiplicative infinite-dimensional disturbances (illumination) is not something easily done
using the tools developed in classical Information Theory.
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3 Preliminaries
The paper is structured in the following way.

• In the previous section, as a way of motivation, I have argued that traditional information
theory, as developed with an eye towards the problem of “reproducing” the output of a
source, is inadequate to characterize the value of an individual image for the purpose of
decision or control tasks relative to the scene that the image portrays. Images are affected by
“nuisance factors” that act on the data in a complex and highly structured fashion. Although
closer to our scope, Gibson’s notion of information as “invariants under change” falls short
because it does not consider the counterpart of invariance, which is the “discriminative”
(decision) or “reachable” (control) component of the representation.

• In Sect. 4.1, I introduce the notion of “actionable information” as the complexity of the
maximal statistic that is invariant to a given nuisance. Similarly, I define “complete infor-
mation” as the minimal statistic that is sufficient for a given task. When the nuisance is
“invertible”, the two are identical, and their difference, the “actionable information gap”
defined in Sect. 4.3, is zero.

• In the context of vision, viewpoint and illumination – away from visibility artifacts such
as occlusions and cast shadows – are invertible. However, occlusions, cast shadows and
quantization are not. Therefore, in general, the actionable information gap is non-zero.12

• The invertibility of a nuisance depends on the control authority of the sensor. While oc-
clusions and quantization are non-invertible for a passive and static observer, they become
invertible when the observer is able to control the data acquisition process (Sect. 4.3) for
instance by changing viewpoint or accommodation (Fig. 10). Similarly, cast shadows are
not invertible in grayscale images, but may become invertible when one can sample multi-
ple spectral bands. The process of “information pickup” consists in the exploration of the
environment aimed at closing the information gap (Sect. 4.4).

• While complete information, in general, cannot be measured, actionable information can
be computed. I describe a representational structure that organizes two-dimensional (re-
gion statistics), one-dimensional (boundaries) and zero-dimensional (attributed points) im-
age characteristics at all scales; its coding length measures actionable information (Sect. 5).
This is a conceptual construction. Nevertheless, a “poor man’s version” of this construction
can be easily and efficiently computed.

• Since complete information, and therefore the actionable information gap, cannot be known
in advance, perceptual exploration must proceed based on locally computable quantities.
I define the “decrease in actionable information gap” as a quantity that can be computed

12Indeed, it is infinite, for actionable information is zero (there is no occlusion-invariant in one image) and the
complete information is infinity (to compute a sufficient statistic with respect to occlusion one would have to acquire
the entire light field).
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instantaneously (in the presence of infinitesimal motion) and argue that its integral during
exploration converges to the complete information, assuming a bounded universe (Sect. 4.3).

• Finally, in Sect. 7 I discuss some consequence of our arguments, including a suggested set
of prescriptions that a visual representation should obey, and their effects on the “signal-to-
symbol barrier.”

Before articulating our arguments, we need to introduce certain definitions, for which we need
some notation.

3.1 Notation and Conventions
An image is represented as a function I : D ⊂ R2 → Rk

+; x #→ I(x) that is L2-integrable,
but otherwise not necessarily continuous, taking positive values in k bands, e.g. k = 3 for color,
and k = 1 for grayscale. A time-indexed image is indicated by I(x, t), t ∈ Z+, assuming a
discrete temporal sampling, and a sequence is denoted by {I(x, t)}T

t=1, or simply {I}. The image
relates to the scene, which is represented as a collection of piecewise continuous surfaces (“shape”)
S ⊂ R3, possibly parameterized by x, S : D → R3; x #→ S(x), and a reflectance ρ : S → Rk,
which is also parameterized, with an abuse of notation exploiting visibility constraints, as ρ(x)

.
=

ρ(S(x)). I indicate points in space with capital letters X ∈ R3, and points in the image with
x ∈ R2. I model illumination changes by contrast transformations, i.e. monotonically increasing
continuous functions h : R+ → R+. This is a rough approximation for Lambertian objects viewed
under ambient illumination, where the radiance ρ corresponds to the diffuse albedo. Changes of
viewpoint are rigid body transformations, i.e. elements of the Special Euclidean group g ∈ SE(3),
represented by a translation vector T ∈ R3 and a rotation matrix R ∈ SO(3), indicated by g =
(R, T ) [52]. As a result of a viewpoint change, points in the image domain x ∈ D are transformed
(warped) via x #→ π(g−1(π−1

S (x)))
.
= w(x), where π : R3 → P2; X #→ x̄ = λX is an ideal

perspective projection and λ−1 = [0 0 1]X ∈ R+ is the depth along the projection ray [x]
.
=

{X ∈ R3 | ∃ λ ∈ R+, x = λX}; π−1
S is the inverse projection, that is the point of first intersection

of the projection ray [x] with the scene S. I use the notation w(x; S, g) when emphasizing the
dependency of w on viewpoint and shape. Without loss of generality [68], I represent changes of
viewpoint with diffeomorphic domain deformations w : D ⊂ R2 → R2. This model is viable
only away from visibility artifacts (occlusions, cast shadows), which is discussed in Sect. 3.2. All
un-modeled phenomena (deviation from Lambertian reflection, complex illumination effects etc.)
are lumped into an additive “noise” term n : R2 → Rk. We finally have our image formation
model: {

I(x) = h(ρ(X)) + n(x)

x = π(g(X)), X ∈ S.
(1)

Summary: (Refer to Fig. 3) I call the image I , the reflectance ρ, illumination (contrast) h, warping
w, which depends on the shape S and the viewpoint g. I further call the scene ξ, the collection of
(three-dimensional, 3D) shape and reflectance ξ

.
= {ρ, S}, and the nuisance ν, the collection of

viewpoint and illumination ν
.
= {g, h}. In short-hand notation, substituting X in the first equation
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above with g−1(π−1
S (x)), I write (1) as

I(x) = h ◦ ρ ◦ w(x; S, g) + n(x)
.
= f(ρ, S; g, h, n) (2)

or, again with an abuse of notation, as

I = f(ξ; ν).

3.2 Visibility and Quantization
The model (1) is only valid away from visibility artifacts such as occlusions and cast shadows. I
will not deal with cast shadows, and assume that they are either detected from the multiple spectral
channels k ≥ 3, or that illumination is constant and therefore they cannot be told apart from
material transitions (i.e. discontinuities in the reflectance ρ). Occlusions, on the other hand, we
cannot do away with. Based on empirical studies of natural intensity and range statistics [36, 56],
I model occlusions as the “replacement” of f , in a portion of the domain13 Ω ⊂ D, by another
function β having the same statistics [56].14 Sometimes Ω is called the background even though,
in practice, it can be in front of the object of interest, or it can be part of the object of interest itself,
as in self-occlusions:

I(x) =

{
f(ρ, S; g, h, n) x ∈ D\Ω
β(x) x ∈ Ω.

(3)

Digital images are spatially quantized into a discrete lattice, with each element averaging the func-
tion I over a small region Bv(xij) ⊂ D of size v ∈ R+ centered at xij = (iv, jv), i, j ∈ Z:

I(i, j) =

∫

Bv(xij)

I(x)dx = I(xij) + n(xij) (4)

where the quantization error is lumped into the additive noise n. In what follows, depending on
the context, we may lump occlusions Ω, β, quantization and noise n among the nuisances ν.

3.3 Invariant and Sufficient Statistics
A statistic, or “feature,” is a deterministic function φ of the data {I(x), x ∈ D}, taking values
in some vector space, φ(I) ∈ RK . I indicate this in short-hand notation via φ(I). A statistic is
invariant if its value does not depend to the nuisance, i.e. for any ν, ν̄, we have φ(f(ξ, ν)) =
φ(f(ξ, ν̄)). A trivial example of invariant feature is a constant function φ(I) = c ∀ I. Among all
invariant statistics, we are most interested in the largest15, also called maximal invariant

φ̂(I).

13Note that Ω is not necessarily simply connected, and this model does not impose restrictions on how many depth
layers there can be.

14One cannot distinguish an occluding boundary from a material transition in a single pin-hole image, unless the
sensing process enables changes of viewpoint or accommodation (Fig. 10).

15In the sense of inclusion of sigma-algebras generated by the statistics.
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A statistic is sufficient for a particular task, specified by a risk functional R associated to a control
or decision policy u and loss function L, R(u|I)

.
=

∫
L(u, ū)dP (ū|I), R(u)

.
=

∫
R(u|I)dP (I), if

the risk based on a policy computed using such a statistic is the same as the risk based on the raw
data, i.e. R(u|I) = R(u|φ(I)). A trivial example of sufficient statistic is the identity φ(I) = I .
Among all sufficient statistics, of particular interest is the smallest, or minimal, one

φ∨(I).

Note that, in general, R(u|I) ≤ R(u|φ(I)) for any measurable function φ (Rao & Blackwell,
[64] page 88, a.k.a. data processing inequality), with equality defining φ as a sufficient statistic.
When a nuisance acts as a group on the data, it is always possible to construct invariant sufficient
statistics (the orbits, or the quotient of the data under the group). In that case, the policy u is called
an equivariant classifier (for decisions) or controller (for actions) ([64], Theorem 7.4). It would be
possible, as an alternative, to define sufficient statistics in terms of Fisher’s Information, although
I prefer to tie the sufficiency to a particular task.

4 Placing the Ecological Approach to Visual Perception onto
Computational Grounds

4.1 Actionable Information
I define Actionable Information to be the complexity H (coding length) of a maximal invariant,

H(I)
.
= H(φ̂(I)). (5)

When the maximal invariant is also a sufficient statistic, we have complete information

I .
= H(φ∨(I)) = H(I). (6)

In this case, the Actionable Information measures all and only the portion of the data that is relevant
to the task, and discounts the complexity in the data due to the nuisances. As is discussed in Sect.
4.3, invariant and sufficient statistics are, in general, different sets, so we have an “information
gap.” In Sect. 5 I show how to compute Actionable Information, which for unknown environments
requires spatial integration of the information gap.

In the next section I show that for some nuisances (invertible), the gap can be reduced to zero,
whereas for other nuisances (non-invertible), the gap can be infinite.

4.2 Invertible and Non-invertible Nuisances
Viewpoint g and contrast h act on the image as groups, away from occlusions and cast shadows,
and therefore can be inverted [68]. In other words, the effects of a viewpoint and contrast change,
away from visibility artifacts, can be “neutralized” in a single image, and an invariant sufficient
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statistic can, at least in principle, be computed [68]. Note that the notion of sufficient statistic in
this case is with respect to any distribution, since it is possible to reconstruct individual realization
of the scene regardless of the nuisance. Fig. 5 illustrates this, and [2] and [74] prove it for
contrast and viewpoint respectively. It may be appear puzzling that the statistics that are invariant
to contrast (the geometry of the level lines of the image [17]) are not invariant to viewpoint, and
those that are invariant to viewpoint (the intensity of the image warped onto a canonical domain
[74]) are not invariant to contrast. The conundrum was recently solved in [68] where it was shown
that the Attributed Reeb Tree (ART) of a (portion of an) image is the viewpoint-contrast invariant
sufficient statistic. The ART stores the label (maximum, minimum, saddle), relative ordering and
connectivity of extrema of the function f in (3) and is supported on a zero-measure subset of the
image domain, so it is somewhat surprising that this “thin” object is actually equivalent to the entire
image but for the effects of viewpoint and contrast changes. If these were the only nuisances, we
would be in business. Unfortunately, this is of little help, as visibility and quantization are not
groups, and once composed with changes of viewpoint and contrast, the composition cannot be
inverted. An occlusion cannot be “undone” from one image, and “occlusion-invariant statistics”
make patently no sense. Or do they? I will address this issue in Sect. 4.3, but not before I
have described how to compute viewpoint and illumination invariants that are non-committal with
respect to visibility and quantization.

When a nuisance transformation is not a group, its effects cannot be eliminated via pre-processing,
and instead must be dealt with as part of the decision or control process: The risk functional R de-
pends on the nuisance, R(u|f(ξ; ν)), which can be eliminated either by extremization, maxν R(u|f(ξ; ν))
following a maximum-likelihood (ML) aproach, or by marginalization

∫
R(u|f(ξ, ν))dP (ν) fol-

lowing a maximum a-posterior (MAP16) approach, if a probability measure on the nuisance dP (ν)
is available.17 In either case, the decision should not be based on direct comparison of two in-
variant statistics, φ(I1) = φ(I2) computed separately on the training/template data I1 and on the
testing/target data I2 in a pre-processing stage. Instead, a costly optimization (ML) or marginal-
ization (MAP) is necessarily performed at run-time. The most one can hope from pre-processing
is to pre-compute as much of the optimization or marginalization functional as possible. For the
case of occlusion and quantization, this leads to the notion of texture segmentation as follows.

4.2.1 Segmentation as Redundant Lossless Coding

An occlusion Ω ⊂ D, β : Ω → Rk is a region that exhibits the same (piece-wise spatially
stationary [56]) statistics of the unoccluded scene (3). It can be multiply-connected, generally has
piecewise smooth boundaries, and is possibly attached to the ground. Even if we could detect
discontinuities in the image, which is a tall order, we would still not know which are the occlud-

16Invariant classification is problematic in a Bayesian setting, as one has to use improper uninformative priors; the
issue is discussed at length in [62].

17Consider for example the binary decision of whether two images I1 (training, or template image) and I2 (testing, or
target image) portray the same scene ξ. If the nuisance ν involves occlusions, so that I1 = f(ξ; ν1) and I2 = f(ξ; ν2),
a decision can be performed by “searching” for all possible scenes ξ and occlusions ν1, ν2 that generate both images to
within a specified accuracy (threshold). This is equivalent to implicitly “reconstructing” the scene ξ and “registering”
the nuisances ν1, ν2.
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ing boundaries, as opposed to material transitions or cast shadows. Furthermore, we do not know
the statistics of the occluder region, as different quantization scales can cause image structures
(extrema and discontinuities) to appear and disappear. Fig. 5 illustrates this phenomenon. In the
absence of quantization and noise, one would simply detect all possible discontinuities, store the
entire set {f(ξ, ν), ∀ ν}, leaving the last decision bit (occlusion vs. material or illumination bound-
ary) to the last stage of the decision or control process, performed either by extremization (ML)
or marginalization (MAP). Occluders connecting to the ground (such as the tree in the “Flower
Garden” sequence [22]) where no occlusion boundary is present would have to be “completed”
as advocated by Gestalt psychologists [76], leading to a segmentation, or partitioning, of the im-
age domain into regions with smooth statistics. Unfortunately, quantized signals are everywhere
discontinuous, making the otherwise trivial detection of discontinuities all but impossible. One
could salvage this approach by setting up a cost functional (a statistic) ψΩ(I), that implicitly de-
fines a notion of “discrete continuity” within Ω but not across its boundary, making the problem
of segmentation self-referential (i.e. defined by its solution) and therefore unfalsifiable. But while
no single segmentation is “right” or “wrong,” the set of all possible segmentations, defined for all
possible quantization scales, may be useful. It does not reduce the complexity of the image (in
fact, it is highly redundant), but it may reduce the run-time cost of the decision or control task,
by rendering it a choice of regions and scales that match across images. In Sect. 5 I show how to
compute actionable information based on a scale-space segmentation tree.
4.2.2 Quantization and Texture

For any scale s ∈ R+, minimizing ψΩ(I|s) yields a different segmentation Ω(s)
.
= arg minΩ ψΩ(I|s).

Because image “structures” (extrema and discontinuities) can appear and disappear at the same lo-
cation at different scales,18 one would have to store the entire continuum {Ω(s)}s∈R+ . In practice,
ψΩ(·|s) will have multiple extrema (critical scales) that can be stored in lieu of the entire scale-
space. This is different than (single) scale selection, as advocated in the scale-space literature. In
between such critical scales, structures become part of aggregate statistics that is called textures.
See Fig. 5. To be more precise, a texture is a region Ω ⊂ D within which some image statistic ψ,
aggregated on a subset ω ⊂ Ω is spatially stationary. Thus a texture is defined by two (unknown)
regions, small ω and big Ω, an (unknown) statistic ψω(I)

.
= ψ({I(y), y ∈ ω}), under the following

conditions of stationarity and non-triviality:

ψω(I(x + v)) = ψω(I(x)), ∀ v | x ∈ ω ⇒ x + v ∈ Ω; Ω̄\Ω += ∅ ⇒ ψΩ̄(I) += ψΩ(I). (7)

The small region ω, that defines the intrinsic scale s = |ω|, is minimal in the sense of inclusion: If
ω̄ satisfies the stationarity condition, then ∃ v | x ∈ ω ⇒ x + v ∈ ω̄.19 Note that, by definition,
ψω(I) = ψΩ(I). A texture segmentation is thus defined, for every quantization scale s, as the so-

18Two-dimensional signals do not obey the “causality principle” of one-dimensional scale-space, whereby structure
cannot be created with increasing scale [50].

19{I(x), x ∈ ω} is sometimes called a texton [42], or texture generator. This definition applies to both “periodic”
or “stochastic” textures. Regions with homogeneous color or graylevel are a particular case whereby ω is a pixel, and
do not need separate treatment.
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lution of the following optimization with respect to the unknowns {Ωi}N
i=1, {ωi}N

i=1, {ψi}N
i=1, N(s)

min
N(s)∑

i=1

∫

Ωi

‖ψωi(I(x))− ψi‖2dx + Γ(Ωi, ωi) (8)

where Γ denotes a regularization functional.20

In Sect. 5 I show how to use a (multi-scale) texture segmentation algorithm to compute action-
able information.

As described in Sect. 4.1, in general one cannot compute statistics that are at the same time
invariant and sufficient, because occlusion and quantization nuisances are not invertible. Or are
they?
4.3 The Actionable Information Gap
As I have hinted at in Sect. 3.2, whether a nuisance is invertible depends on the image forma-
tion process: Cast shadows are detectable (hence invertible) if one has access to different spectral
bands. Similarly, occluding boundaries cannot be detected from a single image captured with a
pin-hole camera, but they can be detected if one can control accommodation or vantage point.
So, if the sensing process involves control of the sensing platform (for instance accommodation
and viewpoint), then both occlusion and quantization become invertible nuisances.21 This sim-
ple observation is the key to Gibson’s approach to ecological perception, whereby “the occluded
becomes unoccluded” in the process of “Information Pickup” [28].

To make this concrete, recall from Sect. 4.1 the definition of complete information and note
that – because of the non-invertible action of the nuisances – it must now depend22 on the scene ξ.
I indicate this with I .

= H(φ∨ξ (I)). When a sequence of images {I} capturing the entire light-field
of the scene is available, it can be used in lieu of the scene to compute the complete information as
follows:

H(φ∨ξ (I)) ≥ H(φ∨ξ (I)|I(x, 0)) ≥ H(φ∨ξ (I)|I(x, 0), I(x, 1)) ≥ . . . ≥ H(φ∨ξ (I)|{I(x, t)}∞t=0) = 0
(9)

so, if the complete light field {I} (also known as Plenoptic Function) were available, we would
have

I .
= H(φ∨({I})).

Note that, although it may seem impossible or irrelevant to attempt to capture the complexity of the
light field, there are instead computational approaches to measure it [23]. I define the Actionable

20This optimization is a tall order. A bare-bone version pre-computes the statistics ψi on a fixed domain ω, and
aggregates statistics using a mode-seeking algorithm that enables model selection with respect to scale s. The downside
is that boundaries between regions Ωi are only resolved to within the radius of ω, generating spurious “thin regions”
around texture boundaries. For the purpose of this study, this is a consequence we can live with, so long as we know
that a sound model exists, albeit computationally challenging.

21Want to remove the effect of an occlusion? Move around it. Want to resolve the fine-structure of a texture,
removing the effects of quantization? Move closer.

22Actionable information also depends on the scene ξ, but only through the image I = f(ξ, ν). Complete informa-
tion, on the other hand, depends on the scene in ways that are independent of the measured image I .
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Information Gap (AIG) as the difference between the Complete Information and the Actionable
Information

G(I)
.
= I −H(I). (10)

The process of Information Pickup, therefore, is one of reducing the AIG to zero. Note that, in
the presence of occlusion and quantization, the gap can be only be reduced by moving within the
environment. In order to move, however, the agent must be able to compute the effects of its motion
on the AIG, ideally without having to know the complete information I, even if the data {I} or
the statistics φ∨({I}) were available from memory of previous explorations. To this end, I define
an incremental occlusion Ω(t) ⊂ D between two images I(x, t), I(x, t + dt) as a region which is
visible in one image but not the other. In a causal setting, only the part of I(x, t + 1) that is not
visible at time t matters (uncovered region) whereas the part of I(x, t) that is not visible at t + 1
(occluded region) is already explained. Given the assumptions implicit in the model (1), we have23

Ω(t) = arg min
Ω,w(·,t)

∫

D\Ω
(I(x, t + dt)− I(x + w(x, t)dt, t))2dx+

+ µ1

∫

D

‖∇w‖$1dx + µ2

∫

Ω

(
1 + ‖∇I‖2

)
dx (11)

where µ1, µ2 are multipliers that weight the regularizers (priors). In [5], it is shown that this
functional can be written as the sum of three terms defined on the same domain as follows:

Ω(t) = arg min
e(·)=χΩ(·),w(·,t)

∫

D

‖∇Iw(x, t)+It(x, t)−e(x)‖2dx+µ1

∫

D

‖∇w(x, t)‖dx+µ2

∫

D

|e(x)|dx,

(12)
where e is the mollified characteristic function of Ω: e(x) = χΩ(x). This functional is convex, so
a unique, globally optimal solution exists, for both Ω(t) and w(x, t), as well as computationally
efficient algorithms to compute it [5]. The functionals above trades off the cost of explaining por-
tions of a new image I(x, t + dt) with an encoding of a previously seen image I(x, t) deformed
by w, and the cost of encoding it anew, similarly to what is done in video coding.24 Once an incre-
mental occlusion has been found, for instance using the algorithm proposed in [5], the Decrease in
Actionable Information Gap (DAIG) can be measured by the Actionable Information it unveils:

δG(I, t) = H(I(x, t)|x∈Ω(t)
) (13)

The aim of environmental exploration is to maximize the DAIG, until a stopping time T is reached
when, ideally, ∫ T

0

δG(I, t)dt = −H
(
φ∨({I}T

t=0)
)

= −H
(
{φ̂(I)}T

t=0

)
(14)

and therefore G(I) = 0. Note that if there are no occlusions (i.e. the environment is concave, e.g.
the inside of a room, and the sensor is omnidirectional), then δG(I, t) = 0 ∀ t, and so G(I) = 0

23The choice of name for the region Ω, the same used for texture-based segmentation, is not accidental.
24Note that an uncovered region where 〈∇I, w〉 = 0 ∀ x ∈ Ω is a latent occlusion, as is easily explained with a

vector field w and is therefore not “visible.” This phenomenon is known as the aperture problem.
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with just one measurement, with no need for exploration. In the most general sense, however,
when occlusions are present, we have I = ∞, and perceptual exploration does not end until we
visit the entire universe. In practice we must restrict our attention to a bounded universe, so as to
have I < ∞.

A variational technique has developed in [5] for detecting occlusions based on the solution of
a partial differential equation (PDE) that has the minimum of (11) as its fixed point. It is based on
the observation that the cost functional is convex, and therefore a unique global optimum can be
found efficiently using Nesterov’s algorithm [57], and is described in detail in [5]. A hurried man’s
solution to (11), and the ensuing computation of (13), can be found by block matching followed
by run-length encoding of the residual, as customary in MPEG. Efficient algorithms, including
hardware implementations, are readily available for this task.25 The shortcoming of this approach
is that, in general, it yields a loss of actionable information, so that G(I) > 0, whereas the optimal
solution to (11) guarantees, at least in theory, that no actionable information is lost.

4.4 Information Pickup
To study the process of “Information Pickup” by means of closing the Actionable Information
Gap, I specify a simple model of an “agent,” that is a Euclidean reference frame in physical space,
i.e. a viewpoint g(t)∈ SE(3), moving under the action of a control, which I assume can specify
the instantaneous velocity u(t) ∈ R6. This kinematic model neglects masses, inertias and other
dynamic fancy. The agent simply moves by integrating its velocity, i.e. the ordinary differential
equation ġ(t) = û(t)g(t) starting from some initial position, which for convenience I assume to be
the origin g(0) = e.26 The agent measures an image at each instant of time, I(x, t):

{
ġ(t) = û(t)g(t) g(0) = e

I(x, t) = f (ρ(x), S(x); g(t), h(t), n(x, t)) .
(15)

A myopic control would simply maximize the DAIG:

û(t) = arg max
u

δG(I, t) subject to (15) (16)

and quickly converge to local minima of the Actionable Information Gap: The agent would stop at
“interesting places” forever. To release it, one can devise a variety of search strategies, including
jump-diffusion processes [34], or introduce a “boredom function” that increases with the time
spent at any given location. Still, the agent can get trapped by its own trajectories, as soon as it
is surrounded by spots it has already visited. A simple “forgetting factor” can restore the reward
exponentially over time.

A more sophisticated controller, or explorer, would attempt to close the information gap by
planning an entire trajectory:

{û(t)}T
t=1 = arg sup

u(·)

∫ T

0

δG(I, t)dt subject to (15) (17)

25Alternate solutions, for instance using graph-cut techniques, are too slow to be realistic for applications in on-line
real-time visual exploration for the foreseeable future.

26Here û indicates the operator that transforms a linear and angular velocity vector u into a twist û ∈ se(3) [52].
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until (14) is satisfied, in addition to energy/efficiency requirements. Our goal is to study instanta-
neous control strategies (16) that converge to I in an efficient manner (a dumb observer with only
contact sensors can explore the space, eventually, as shown in Sect. 6). The process is depicted in
Fig. 4.

If our models are sensible, the explorer would attempt to go around occlusions, and resolve the
structure in textured regions. Thus, when placed in an unknown environment, its motion would
be guided by the structure of the scene, not by the structure of the image, despite only measuring
the latter. This would not be the case for an explorer who is unaware of the role and nature of the
nuisances, and instead treats as “information” the complexity of the raw data. I test this hypothesis
in the experimental section 6.

Remark 1 (The Actionable Information Paradox) Consider the task of recognizing an object
that can exhibit significant reflectance variability, such as chameleon, or a passenger vehicle on
the road. What determines the identity of the object is its three-dimensional shape, not its appear-
ance. Naturally one wants a representation of shape that is viewpoint-invariant. But viewpoint
cannot be “undone” from an image alone, so one would have to store the entire image and defer
dealing with viewpoint as part of the matching process. If, however, one moves relative to the
object of interest, then three-dimensional shape is observable, and one can infer, and store, a 3D
model of the geometry of the object, and discard photometry (reflectance and illumination), thus
effectively reducing the storage requirement below the size of a single image (assuming piecewise
smooth surfaces). This yields the apparent paradox whereby more data yield a smaller storage
requirement. It also means that, in order to “extract information” we have to “throw away some
of the data,” which has epistemological implications discussed in Sect. 7.

Remark 2 It is interesting to notice that in the traditional communication scenario the only nui-
sance under consideration is an additive disturbance. Since there is no invariant to the additive
disturbance, the invariant is trivial (it is the set of constant functions), and so are the sufficient
statistics (the statistics of the source before being corrupted by the channel). Therefore, the AIG is
the information content of the data. More in general, when the noise is assumed to be zero-mean,
the canonization procedure suggests a way to build a descriptor, which consists in simply com-
puting the average of the data (detector) and subtracting it from the data (descriptor) to arrive at
a canonized representation. This process of removing the mean (or assuming it is zero) is often
present in classical communication, but seen as an afterthought, whereas the theory of Actionable
Information affirms that this is precisely the process of building a maximal invariant.

5 Representational Structures
I now describe the computation of Actionable Information and the representation it dictates.

5.1 Computing Actionable Information
For each image, we first compute a viewpoint-contrast invariant as follows: First, we perform
(over-) segmentation at all possible scales: Starting from a 5-dimensional vector of color channels
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and positions, I use Quick Shift [75] to construct in one shot the tree of all possible segmentations
(Fig. 6 top). I then consider the finest partition (a.k.a. “superpixels”) to be the elementary unit, and
construct the adjacency graph, then aggregate nodes based on the histogram of vector-quantized
intensity levels and gradient directions in a region ω of 8 × 8 pixels and arrive at the texture
adjacency graph (TAG) (Fig. 7 top-right). Two-dimensional regions with homogeneous texture (or
color) are represented as nodes in the TAG. I then represent one-dimensional boundaries between
texture regions as edges in the TAG, or equivalently pairs of nodes (Fig. 6 top-right and Fig. 7
bottom-left). Ridges sometimes appear as boundaries between textured regions, or as elongated
superpixels. Finally, I represent zero-dimensional structures, such as junctions or blobs (Fig. 6
bottom), as faces of the TAG, or equivalently pairs of edges (Fig. 7 bottom). This structure is
the Representational Graph, R, whose run-length encoding measures Actionable Information. In
particular, H(I) is computed by summing, over the number of nodes N(s) of the representational
graph over all stored scales s, the coding length of the texture histograms associated to each node,
but not the shape or size of the regions ωi; the strength associated to each edge, corresponding
to the probability of detection of an edge and ridge detector and the proximity to a superpixel
boundary, but not the shape or length of the boundary, using our implementation of [50] (Fig.
6 top-right); the presence of an attributed point region associated to a face and its descriptor,
but not the position of the point. I use a SIFT detector for Difference-of-Gaussian blobs from
VLfeat (http://www.vlfeat.org), and Harris-Affine from [55] (Fig. 6 bottom-right and bottom-left
respectively). Although in theory we should also store, for each of these regions, the ART [68],
in practice, in the experiments reported in Sect. 6, I forgo this step. Computing Actionable
Information is time-consuming in our current rendition, requiring approximately 30 seconds per
each 640× 480 image. The DAIG, however, is fast.

5.2 Computing the Actionable Information Gap
I compute the DAIG (13) by solving, at each time instant, (11) starting from a generic initialization
as in [19], and using the best estimate at time t as initialization for the optimization at time t + dt.
On the occluded region Ω(t), I compute the actionable information as described above. Since
Ω(t) is usually very small (unless the robot moves very fast), this can be done in a fraction of a
second after the initial convergence. For a real-time implementation, one can consider a coarse
approximation of the DAIG, as simply the run-length encoding of the residual after block-wise
motion compensation, as discussed in Sect. 4.3.

In order to compute the AIG, the complete information is necessary. This is, in general, not
available unless one has had the opportunity to inspect the environment beforehand, and has, for
instance, the entire light-field stored in memory. The process of Information Pickup hinges on the
hypothesis that, by integrating the DAIG, one would eventually converge to complete information,
hence rendering the AIG equal to zero. In the next section I validate this assumption empirically.

6 Empirical Consequences of the Definitions
In this section I test our hypothesis that an agent guided by Gibson would seek to “go around
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occlusions” and “resolve textures,” whereas one guided by Shannon would be unaware of the
topological structure of the environment, despite using the same data.

In the first indoor experiment (Fig. 8), a simulated robot is given limited control authority
u = [uX , uY , 0, 0, 0, 0]T to translate on a plane inside a (real) room, while capturing (real)
color images with fixed heading and a field-of-view of 90o. The robot is capable of computing
both Entropy and the DAIG at the current position as well as at immediately neighboring ones.
Under these conditions, the agent reduces to a point (the vantage point) g = (Id, T ) where T =
[TX , Ty, 0]T . I indicate the vantage point with X = [TX , TY ]T , consistent with the nomenclature
introduced in Sect. 3, and the control with V = [uX , uY ]T .

In the second outdoor experiment (Fig. 11), the robot is Google’s StretView car,27 over which
we have no independent control authority. Instead, I assume that it has an intelligent (Gibsonian)
driver aboard, who has selected a path close to the optimal one. The robot measures omnidi-
rectional panoramas at each instant of time, so the data is symmetric with respect to forward or
backward traversal. In this case, we cannot test independent control strategies. Nevertheless, we
can still test the hypothesis that traditional information, computed throughout the sequence, bears
no relation to the structure of the environment, unlike actionable information, and in particular
the DAIG. For the purpose of validation, I have used standard tools from multiple-view geome-
try [52] to reconstruct the trajectory of the vehicle and its relation with the 3D structure of the
environment28 (Fig. 12).

6.1 Exploration via Information Pickup
The “ground truth” Entropy Map (Fig. 8 top) and Complete Information Map (Fig. 8 middle)
are computed from (real) images collected with a fixed-heading camera with 90o field-of-view
regularly sampled on a 20cm grid and up-sampled/interpolated to a 40× 110 mesh (sample views
are shown in Fig. 8 overlaid on the map of the room). Complete Information is computed as a
sufficient statistic of the light field, that is as the actionable information of each image computed
at each position in space. The traversable space here is restricted to the inside of the room, so
the explorer is not allowed to go outside; however, openings due to doors and window extend the
universe to the adjacent rooms and the vegetation outside the window.

The first agent considered is a Brownian Explorer, that follows a random walk governed by
the stochastic differential equation (SDE)

{
dX(t) = V (t)dt; X(0) ∼ U(S ⊂ R2); V (0) = 0

dV (t) = dW (t) a Wiener Process w/ cov. σ2
(18)

to be integrated in the Îto sense.29 In practice, we can make do with the discrete-time stochastic
27Data courtesy of Google, INC.
28A poor man’s version of this experiment would use Google’s pseudo-ground truth for the trajectory, and trust

Google Earth to portray images suggestive of the three-dimensional structure of the environment.
29See [45] (p. 6) for a definition and characterization of a Wiener process, and [43] (Chapt. 2 and 5, in particular

eq. (2.1) and the rest of Ch. 5.2) for the meaning of the SDE.
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process generated by
{

X(t + dt) = X(t) + V (t)dt; X(0) ∼ U(S ⊂ R2)

V (t + dt) = V (t) + W (t)dt; W (t)
iid∼ N (0, σ2I)

(19)

with V (0) = 0. The trajectory charted by the Brownian Explorer (e.g. the Roomba vacuum
cleaner) is shown in Fig. 9 (top).30 Clearly, one can do better with vision. For the Shannonian
Explorer I consider directly the discrete-time model, with a temporal evolution of the entropy
H(I(x, t)|g(t) = X) of the image I captured at time t in position X , which I indicate in short form
with H(X, t)

.
= [H(X, 0)−B(X, t)]+ where [·]+ is a mollified rectifier to enable the computation

of the gradient: {
X(t + dt) = X(t) +∇H(X(t), t)dt

B(X, t + dt) = αB(X, t) + βN (X|X(t), σ2)dt
(20)

where N (x|m, σ2) is a Gaussian kernel with mean m and isotropic variance σ2I; the coefficients
β > 0 and 0 < α ≤ 1 trade off boredom and forgetfulness respectively.
The Gibsonian Explorer seeks to maximize Actionable Information H(I(x, t)|g(t) = X)

.
=

G(X, t), or reducing the Actionable Information Gap, by trading off boredom and forgetfulness in
G(X, t)

.
= [G(X, 0)− B(X, t)]+

{
X(t + dt) = X(t) +∇G(X, t)dt

B(X, t + dt) = as in (20).
(21)

Representative sample trajectories of the Shannonian and Gibsonian explorations are shown in Fig.
9 (left and right column respectively). The Shannonian Explorer loves wallpaper, complex texture
and generally operates regardless of the 3D structure of the scene. The Gibsonian Explorer is
claustrophobic: It prefers apertures and attempts to go through windows and doors; the simulation
does not allow that, hence it bounces off like a fly on glass. Both explorers briefly dwell in regions
that yield complex images before moving on. The exploration stops when enough area has been
covered that the boredom factor renders the reward function flat. Note that the Gibsonian explorer
is not given the complete information, and can therefore only plan its action based on the DAIG.
The goal of this experiment is to show that local control strategies, based on image computations,
yield space exploration that is compatible with the complete information, that is considered ground
truth. In addition to the forgetting factor and the driving noise process, randomness can be inserted
in the planned path by performing saccades, that change visibility when the camera has a finite
field-of-view. In the experiment in Fig. 9 the camera had a fixed heading, so this phenomenon
was not explored. In Fig. 10 I experimented with the dilemma between complexity due to near-
field texture versus far-away structure, two situations indistinguishable from an image alone. In
the ecological approach to perception, however, accommodation is actively controlled, so one can
discriminate between complexity due to nearby texture (near-field focus), or to far-away structure
(far-field focus).

30The behavior of our naı̈f Brownian explorer around the boundaries (Fig. 9) is dictated by a simplified reflection
processes: We just invert the component of velocity that causes the crossing of the boundary. A proper simulation
would instead use shadow paths following the Reflection Principle as described in [43] (Sect. 2.6.A, p. 79).
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6.2 Exploration via Minimization of the DAIG
Our working hypothesis is that the Actionable Information Gap computed along a spatial trajectory
(whether actively controlled or not) is related to the structure of the scene, and in particular to its
topology (openings and occlusions). Since there is no analogous notion in classical Information
Theory, I will compare the Actionable Information Gap to the same Entropy gradient considered
in the previous experiment. It is unsurprising, and patent in Fig. 11, that neither Entropy nor
its gradient bear any relation to the structure of the scene. In Fig. 12, I show the top view of
a 250 frame-long detail with the trajectory and point-wise structure computed from point corre-
spondences using standard tools from multiple-view geometry. For comparison, I also show the
pseudo-ground truth provided with the dataset (yellow push-pins). The color-coded trajectory on
the bottom shows the entropy gradient, with enhanced color-coding (red is high, blue is low). On
the top I show the same for the Actionable Information Gap. It shows peaks at turns and inter-
sections, when large swaths of the scene suddenly become visible. Note that the peaks are both
before and after the intersection, as the omni-directional viewing geometry makes the sequence
symmetric with respect to forward and backward directions. For the same reason, there is a con-
stant “creation/distruction of data” in the direction of motion due to quantization. The “ground
truth” coordinates are rather imprecise, as they would have the vehicle crossing lanes into oppos-
ing traffic and into buildings. Trees, and vegetation in general, attract both the Shannonian and the
Gibsonian explorers, as they are photometrically complex, but also geometrically complex because
of the fine-scale occlusion structure, visible in the last part of the sequence (right-hand side of the
plot; images are shown in Fig. 11). Similar considerations hold for highly specular objects such
as cars and glass windows. Although this experiment does not entail active exploration, but only
passive motion, it shows that the DIAG, computed from pairs of adjacent images, strongly relates
to the structure of the scene, and in particular to its topology.

7 Summary and Discussion
I have presented a characterization of visual information for the purpose of decision and control
tasks. It stands in opposition to the traditional notion of information as entropy or coding length
of the data, which is tailored to the tasks of storage and transmission. Actionable Information is
defined as the complexity of the maximal statistic that is invariant to the nuisances. Specifically, I
have considered viewpoint and illumination variations, which have been recently shown to admit
invariant sufficient statistics. In addition, I have considered occlusion and quantization artifacts,
that cannot be inverted, and therefore induce an “information gap” that can be filled by controlling
the data acquisition process.

While in traditional Information Theory “all data matters,” in the context of Actionable In-
formation at least a portion of the data is irrelevant, and the process of “extracting information
from data” requires a control action. This tie between sensing and control is very prominent in
Actionable Information.

I have illustrated these ideas on a simulated exploration task, guided by visual measurements.
Whereas a Shannonian Explorer is guided by the complexity of the data, a Gibsonian Explorer is
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guided by the topology of the physical space surrounding it. In both cases, the data consists of
images, and no 3D reconstruction, stereo or structure-from-motion is necessary.

This work relates to visual navigation and robotic localization and planning [70, 8, 37]. In
particular, [77, 11, 67] propose “information-based” strategies, although by “information” they
mean localization and mapping uncertainty based on range data. Range data are not subject to
illumination and viewpoint nuisances, which are suppressed by the active sensing, i.e. by flooding
the space with a known probing signal (e.g. laser light or radio waves) and measuring the return.
There is a significant literature on vision-based navigation [12, 80, 58, 60, 69, 65, 27, 24, 63, 41],
and our experimental section could be characterized simply as occlusion-driven navigation [46, 47,
7]. In most of the literature, stereo or motion are exploited to provide a three-dimensional map of
the environment, which is then handed off to a path planner, separating the photometric from the
geometric and topological aspect of the problem. Not only is this separation unnecessary, it is also
ill-advised, as the regions that are most informative are precisely those where stereo provides no
disparity. Our navigation experiments also relate to Saliency and Visual Attention [38], although
there the focus is on navigating the image, whereas I are interested in navigating the scene, based
on image data. In a nutshell, robotic navigation literature is “all scene and no image,” the visual
attention literature is “all image, and no scene.” I bridge the gap by proposing an approach that
allows to go “from image to scene, and vice-versa” in the process of Information Pickup. The
relationship between visual incentives and spatial exploration has been a subject of interest in
psychology for a while [15].

This is not a paper on visual recognition, although it does propose a representation (the Repre-
sentational Graph) that integrates structures of various dimensions into a unified representation that
can, in principle, be exploited for recognition. In this sense, it presents an alternative to [35, 72],
that could also be used to compute Actionable Information. However, the rendition of the “primal
sketch” [53] in [35] does not guarantee that the construction is “lossless” with respect to any par-
ticular task, because there is no underlying task guiding the construction. Our work also relates
to the vast literature on segmentation, particularly texture-structure transitions [79]. Alternative
approaches to this task could be specified in terms of sparse coding [59] and non-local filtering
[13]. I stress the fact that, while no single segmentation is “right” or “wrong,” the collection of all
possible segmentations, with respect to all possible statistics pooled at all possible scales, is “use-
ful” in the sense of providing pre-computation of the optimization or marginalization functional
implicit in any recognition task. This paper also relates to the literature of ocular motion, and
in particular saccadic motion. The human eye has non-uniform resolution, which affects motion
strategies in ways that are not tailored to engineering systems with uniform resolution. One could
design systems with non-uniform resolution, but mimicking the human visual system is not our
goal.

Our work also relates to other attempts to formalize “information” including the so-called
Epitome [40], that could be used as an alternative to our Representational Structure if one could
compute it fast enough. Furthermore, the Epitome does not capture compactness and locality, that
are importantly related to the structure of the scene (occlusions) and its affordances (relationship
to the viewer). For instance, if one has same texture patch in different locations in space, these
are lumped together, regardless of compactness. Another alternative is the concept of Information
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Bottleneck, [71], and our approach can be understood as a special case tailored to the statistics
and invariance classes of interest, that are task-specific, sensor-specific, and control authority-
specific. These ideas can be seen as seeds of a theory of “Controlled Sensing” that generalizes
Active Vision to different modalities whereby the purpose of the control is to counteract the effect
of nuisances. This is different than Active Sensing, that usually entails broadcasting a known or
structured probing signal into the environment. Our work also relates to attempts to define a notion
of information in statistics [51, 9], economics [54, 4] and in other areas of image analysis [44]
and signal processing [32]. Our particular approach to defining the underlying representational
structure relates to the work of Guillemin and Golubitsky [31]. Our work also relates to video
coding/compression: As I have pointed out, poor man’s versions of some of our constructions could
be computed using standard operations from the video coding standards. However, I advocated
structures that are adapted to the image data (superpixels, TAG, representational graph) rather than
on fixed blocks. We can do this because, to achieve invariance to viewpoint, we have no need to
encode deformation of these regions, just their correspondence.

With respect to Information Theory, relating our definitions of information in terms of coding
length to the various notion of entropy customary in the trade would require establishing the re-
lation between a distribution of coding length of invariant and sufficient statistics and the set of
images that it represents. I hypothesize that one could quantify the average coding length (Ac-
tionable Information) against the probability distribution of allowable control actions to arrive at a
lower bound on the Actionable Information Gap,

∫
(I −H(φ∧(I)|u)) dP (u). (22)

Consider two extreme cases: The Gibsonian explorer that has full control authority, so dP (u) is
uniform, and G → 0. Note that, at least in theory, occlusions, quantization and noise are invertible,
for their effect can be reduced by moving around obstacles, moving closer to textured surfaces,
and by measuring repeated images at a stand-still respectively. The explorer in Google’s car, on
the other hand, has no control authority whatsoever, so dP (u) is a measure concentrated on the
path that the Google car is actually following. Therefore, G > 0. More in general, there will be
a trade-off between control authority (the entropy of the measure dP (u)) and task-performance
(G for exploration, recognition, or any other nuisance-invariant task), that could eventually ex-
tend traditional rate/distortion theory into a control-authority/task-performance theory for machine
perception.

Last, but not least, our work relates to Active Vision [1, 10, 6], and to the “value of information”
[54, 26, 33, 21, 18]. The specific illustration of the experiment to the sub-literature on next-best-
view selection [61, 7]. Although this area was popular in the eighties and nineties, it has so far not
yielded usable notions of information that can be transposed to other visual inference problems,
such as recognition and 3D reconstruction.

Similarly to previously cited work [77, 11], [25] propose using the decrease of uncertainty as
a criterion to select camera parameters, and [3] uses information-theoretic notions to evaluate the
“informative content” of laser range measurements depending on their viewpoint.

Clearly, one can raise a number of objections to the concepts defined here, both on mathemati-
cal and on philosophical grounds. For start, if we define occlusion as a nuisance, then a sufficient
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statistic can never be known until we explore the entire world and beyond, for we cannot know what
is “on the other side of the hill31”. However, the sufficient statistics are defined by the task, and
if the task is navigation, then a sufficient statistic is aggregated until all openings in a space have
been explored. If the task is recognition of a particular object or class, partial occlusions can be
resolved, and total occlusions (i.e. the absence of the object of interest in the visual field) requires
active search to resolve, and will not end until the object is found. Also, the invariant sufficient
statistic described in [68] assume that the image is a Morse function. While Morse functions are
dense in C2, which is dense in L2, and therefore they can approximate any square-integrable func-
tion arbitrarily well, co-dimension one extrema (edges, ridges, valleys) are qualitatively different
than elongated blobs. Nevertheless, one could extend the analysis to (multi-scale) edge and ridge
detectors, for instance following the guidelines of [49, 16], and still have a thin set that encodes all
the actionable information. This extension is the subject of future work.

The operational definition of information introduced, and the mechanisms by which it is com-
puted, suggest some sort of “manifesto of visual representation” for the purpose of viewpoint- and
illumination-independent tasks (Sect. 5).

1. (Hippocratic oath:) First, do no harm: I have shown that this is possible, by storing statistics
that are invariant with respect to viewpoint and contrast, for all possible partitions at all
possible scales of an image. Thus Rao & Blackwell’s theorem does not stand in the way of
developing efficient representation of visual scenes.

2. (Occlusions:) No single segmentation is right or wrong. The set of all possible segmentations
may be useful. If it were not for occlusions, there would be no need to introduce a notion of
segmentation in visual inference.

3. (Quantization:) Textures/structures are present at multiple scales at the same location. The
causality principle of scalar-valued signal scale-space does not apply to images. A “texture”
is defined by two regions, ω, Ω, and a statistic on ω, ψω that is stationary for all ω ⊂ Ω. With-
out quantization there would be no need to introduce a notion of (stochastic, or ensemble)
texture in visual inference.

4. (Illumination is hard:) General illumination models are intractable for the purpose of analy-
sis. One can use multiple spectral bands and local contrast changes limited to each segment
and scale. Assume illumination is constant at the time-scale of the exploration, lest δG(I, t)
cannot be computed.

5. (The ART of Vision:) The representational structure R should be designed to be stable with
respect to un-modeled phenomena n, in the sense that small changes in n yield small changes
in R, or

‖∂R
∂n
‖ = κ (23)

31Occlusions have long fascinated humans both for practical reasons (e.g. the Duke of Wellington’s quote “All
the business of war, and indeed all the business of life, is to endeavor to find out what you don’t know by what you
do; that’s what I called ’guessing what was on the other side of the hill’.”) and for aesthetic ones (e.g. Leopardi’s
“L’Infinito”).
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where 0 ≤ κ ≤ ε < ∞ is the (bounded-input, bounded-output, or BIBO) gain and ε is a
small constant. This is trivial for additive noise models I = h ◦ ρ ◦ w + n, but in general
I = f(ρ, S; g, h, n) exhibits more complex dependencies, and can be studied in the context
of a particular application or model.

Whether the representational structure R implied by the computation of Actionable Information
will be useful for visual recognition will depend on the availability of efficient (hyper-)graph
matching algorithms that can handle topological changes (missing nodes, links or faces).

Coming back to the preamble to this article, the results presented have implications on the
“signal-to-symbol barrier” issue.

The first result presented in this paper that is epistemologically relevant, that follows directly
from [68], is that, for the case of viewpoint and illumination, (a) it is possible to devise and compute
invariant statistics, (b) that such invariant statistics are sufficient (i.e. they are equivalent to the
image up to changes of viewpoint and illumination/contrast), and (c) such statistics are discrete.32

This means that, while there is in principle no benefit in storing a discrete representation, there is
no loss either. In other words, the sign in Rao and Blackwell’s condition R(u|I) ≤ R(u|φ(I)) is
actually “=” as in the definition of a sufficient statistic. The indirect benefit is that the nuisances are
directly removed in the representation, rather than having to be marginalized (MAP) or extremized
(ML) as part of the decision process.33 But while this result calls for discrete representations, it
does not necessarily call for data analysis. In fact, even in the ART [68], there is no notion of
locality, or the need to partition the image domain in the representation.

The second epistemological implication of this manuscript is that it is the combination of the
ecological statistics (occlusion of line-of-sight yielding highly kurtotic gradient distributions in
the image) and the ability to move (to invert the occlusion and quantization processes) that calls
for a representation that partitions the image domain into (multiple, possibly overlapping) local
regions. Plants do not move,34 and therefore they would have no benefit in developing an internal
representation. Although they acquire plenty of sensory data (temperature, pressure, radiometry),
make plenty of decisions (sprout, flower, drop leaves), and perform plenty of actions (grow, bend,
turn towards the sun), they have not developed a central nervous system.

Note that, while I have argued that in the case of invertible nuisance there is no loss in con-
structing a decision function that is invariant, in general there is no gain either, unless one factors
time-complexity into the picture. Consider the two alternative mechanisms to eliminate the nui-
sances in a decision problem. The first is marginalization. If our task defines a loss function λ, and

32Other researchers in the past had this intuition, for instance David Marr wrote “Our view is that vision goes
symbolic almost immediately, at the level of zero crossings, [and this is] probably accomplished without loss of in-
formation”. While this statement is patently incorrect, zero crossings aside, if one adopts the classical definition of
information, it is actually true in the case of actionable information, and the proof of it resides in [68]. Alan Turing
had also explored the “signal-to-symbol” issue in his seminal paper [73] that popularized reaction-diffusion partial
differential equations. But artificial systems are not necessarily governed by reaction-diffusion dynamics, so the sym-
bolization process is not an accident due to biological hardware constraints, but it is instead imposed by the nature of
nuisances affecting the visual data formation process.

33If one sees a cat in the woods and needs to decide whether it is his dinner or vice-versa, he better avoid
marginalizing-out all possible viewpoints and illuminations.

34Plants do move, of course, but not in the time scale of evolutionarily relevant processes that occur in the environ-
ment. A plant does not run away from a fire.
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therefore a conditional risk (Bayes discriminant) R(αi|x) =
∑

j∈{0,1} λ(αi, ωj)P (ωj|x), and our
nuisance acts on the data y in a distributed fashion, so that ν ⊥ ω | x, then in general the expected
risk R(α)

.
=

∫
R(α|x)dP (x) satisfies R(α ◦ φ) ≥ R(α), with the equal sign defining a sufficient

statistic for that task. Then the likelihood can be written as p(y|x, ω) =
∫

k(y − x ◦ ν)dP (ν|ω),
where k(y − x ◦ ν)

.
= p(y|x, ν), and the discriminant can be written as a function of the data y,

instead of the “hidden” data x, as the ratio

ψmar =

∫
k(y − x ◦ ν)dP (ν|ω0)dPX(x|ω0)∫
k(y − x ◦ ν)dP (ν|ω1)dPX(x|ω1)

. (24)

When the prior dP (ν) is improper, we can compute the discriminant by registration, or maximum-
likelihood, by solving an optimization problem

ψreg = min
ν0,ν1

∫
k(y − x ◦ ν0)dPX(x|ω0)∫
k(y − x ◦ ν1)dPX(x|ω1)

. (25)

These discriminants do not require that the nuisance be invertible. They do, however, require that a
prior is available (for marginalization) and that a complex averaging procedure (marginalization) or
optimization (registration) be performed at decision time. If one encounters an animal in the woods
and needs to decide whether it is his dinner or vice-versa, clearly marginalizing with respect to all
possible nuisances (position, orientation, pose, illumination, occlusion etc.) is a losing proposition.
When available, a canonization discriminant can be computed instantaneously via

φcan =
pX(y ◦ ν−1(y)|ω0)

pX(y ◦ ν−1(y)|ω1)
(26)

and yields an equi-variant estimator. Therefore, at equal performance (conditional risk) one would
prefer to make a decision based on a maximal invariant. Indeed, one may be willing to trade off
discriminative power (hence conditional risk) for the benefit of time-complexity. Naturally, those
nuisances that are not invertible given the control authority of the sensors must be eliminated at run-
time by marginalization of registration. One example of these nuisances are intra-class variation
for the problem of recognizing object categories.

A corollary of what is shown in this paper is that if we were not capable of mobility, if our sen-
sory modalities were not subject to occlusion phenomena, and if we did not have time constraints,
there would be no benefit in developing an internal representation that is essentially discrete, and
there would be no benefit in data analysis. Also, while marginalization and registration can always
be performed, canonization – that is decision based on an invariant feature – can only be performed
without a loss if the nuisances are invertible. The lesson from Gibson is that all nuisances are in-
vertible if we have control authority over the sensing process. This is the fundamental link that
ties together sensing and control: Without control, no (time- and risk-optimal) sensing can be per-
formed in the presence of line-of-sight and quantization phenomena, and clearly without sensing
no (feedback) control could be performed.
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Figure 2: What can you see in the left image that is not in the right? The left image “contains
more information” if we measure information as entropy or coding length (bottom-left). Indeed,
one pays more to transmit or store the image on the left. However, our goal is to use these images
for a decision or control task that involves properties of the scene. We therefore need a novel notion
of information that is not at odds with these tasks.
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Figure 3:
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Figure 4: For a given task, represented by a risk functional R, and for a given nuisance ν, one can
in general compute invariant statistics. Their value is determined by the information gap: When it
reaches zero, the invariant is also sufficient for the task. When it is larger, control authority can be
exercised to minimize it; thence the invariant/insensitive feature is also sufficient (dashed line).
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Figure 5: The same point on an image can be represented, depending on scale, as “structure” (ex-
trema and discontinuities, such as edges and ridges), then “texture” (spatially stationary, or cyclo-
stationary, statistics), then again structure (green), and again texture (red) etc. All interpretations
must be retained in the representation, rather than selecting one particular scale. One-dimensional
signals obey a “causality principle” whereby structure can only be lost, but not created, with in-
creasing scale [50]. This is not the case with two-dimensional images.
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Figure 6: Representational structures: Superpixel tree (top), dimension-two structures
(color/texture regions), dimension-one structures (edges, ridges), dimension-zero structures (Har-
ris junctions, Difference-of-Gaussian blobs). Structures are computed at all scales, and a repre-
sentative subset of (multiple) scales are selected based on the local extrema of their respective
detector operators (scale is color-coded in the top figure, red=coarse, blue=fine). Only a fraction
of the structures detected are visualized, for clarity purposes. All structures are supported on the
Representational Graph, described in the next figure.
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Figure 7: Representational Graph (detail, top-left) Texture Adjacency Graph (TAG, top-right);
nodes encode (two-dimensional) region statistics (vector-quantized filter-response histograms, or
the ART of chromaticity within the region); pairs of nodes, represented by graph edges, encode
the likelihood computed by a multi-scale (one-dimensional) edge/ridge detector between two re-
gions; pairs of edges and their closure (graph faces) represent (zero-dimensional) attributed points
(junctions, blobs). For visualization purposes, the nodes are located at the centroid of the regions,
and as a result the attributed point corresponding to a face may actually lie outside the face as
visualized in the figure. This bears no consequence, as geometric information such as the location
of point features is discounted in a viewpoint-invariant statistic.
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Figure 8: Entropy vs. Actionable Information (first and second from the top) displayed as a
function of position for a mobile agent with constant heading and 90o field-of-view (bright = high;
dark = low). Entropy relates to the structure of the image, without regard to the three-dimensional
structure of the environment: It is high in the presence of complex textures (wallpaper and wood
wainscoting) in the near field as well as complex scenes in the distance. Actionable Information,
on the other hand, discounts periodic and stochastic textures, and prefers apertures (doors and
windows), as well as specular highlights. Note the region on the right-hand side shows high levels
of Actionable Information, proportional to the percentage of the field of view that intercepts the
door aperture. Four representative images have been selected, corresponding to a field of view
indicated by a colored cone (yellow, green, orange, and blue). Their coding residual is shown
below. Note that, except for specular reflections, the complex wallpaper and wood grain does not
trigger a high residual, but the opening behind the windows (yellow and blue viewing cone) does.
The representational structures computed for every image collected (an approximation of the light
field) constitutes the Complete Information, that is not available to the explorer beforehand.
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Figure 9: Brownian (top), Shannonian (left) and Gibsonian (right) Information Pickup Rep-
resentative samples of exploration runs are shown. The Shannonian Explorer (left column) is
attracted by wallpaper (top edge of each plot) and the foliage outside the window (bottom-left cor-
ner of each plot). The Gibsonian Explorer (right column), aims for the window (bottom-left corner
of the room) or the door (top-right corner of the room) like a trapped fly, and is similarly repelled
by the control law that prohibits escape.
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Figure 10: Effects of Accommodation: The same scene (top, detail at the bottom) viewed from
similar vantage points while focusing in the near (left) and far field (right). Entropy is virtually
identical (right is 4% lower, 7.3414nats vs. 7.0451nats), but the complexity on the left is due to
the foreground texture, whereas on the right it is due to the structure of the background. Cod-
ing length is different, which reflects the self-similarity of the foreground texture (right is 47%
higher, 94, 375Bytes vs. 138, 638Bytes). Actionable Information captures this fact as well (right
is 52% higher, 10, 939bits vs 16, 608bits.) If accommodation is actively controlled, one can easily
distiguish nearby texture from far away structure from the feedback signal of the accommodation
control.
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Figure 11: Google StreetView Dataset Linear panorama, 2, 560× 905 pixels RGB. Entropy (left)
and Entropy gradient along the path is shown color-coded at the bottom throughout the 12,000
frame-long sequence. Neither bear any relation to the geometry of the scene.
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Figure 12: Navigation via Minimization of the Actionable Information Gap Actionable Infor-
mation gap (top) vs. Data Entropy gradient (bottom) color-coded (blue=small, red=large) for a
250-frame long detail of the Google Street View dataset, overlaid with the top-view of the point-
wise 3D reconstruction computed using standard multiple-view geometry. For reference, the top-
view from Google Earth is shown, together with push-pins corresponding to “ground truth” co-
ordinates. The Entropy gradient (bottom) shows no relation with the 3D structure of the scene.
Actionable Information (top), on the other hand, has peaks at turns and intersections, when large
portions of the scene become visible (getting into the intersection) and thence disappear (getting
out of the intersection).
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