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Abstract When attacking the German Enigma cipher machine during the 1930s,
the Polish mathematician Marian Rejewski developed a catalog of disjoint cycles
of permutations generated by Enigma indicators. By comparing patterns that
resulted from message indicators with his catalog, Rejewski was able to determine
the ground settings. Well, not quite—the mapping from the disjoint cycles to the
ground settings is not one-to-one. Rejewski’s catalog no longer exists. This article
reports on the output of a program that ‘‘recreates’’ the catalog and answers the
question ‘‘How far from being one-to-one is the mapping?’’
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1. Introduction

In 1924, in anticipation of yet another war with Germany, the Polish cipher
bureau—the Biuro Szyf�oow—conducted a cryptology course at Poznan University.
Among the students who were recruited for the course was the 23-year-old math-
ematics student Marian Rejewski (1905–1980). The goal of the course was to ‘‘help
Polish radio intelligence against its difficult German adversary [3].’’ In 1932,
Rejewski solved the German Enigma machine—the primary German encryption-
decryption device.

At its heart, Enigma is a sequence of turning rotors and a fixed reflector that
changes plaintext to ciphertext. Each Enigma cipher is a permutation of the letters
of the alphabet. Each plaintext letter is encrypted with a different cipher than the
previous one because of the motion of the rotors. The rotors turn in a regular fash-
ion: each time a letter is pressed on the keyboard the right-most rotor turns forward
one position; the middle rotor turns forward one position during one complete rev-
olution of the right rotor; and the left rotor turns forward one position during one
complete revolution of the middle rotor. The motion of the rotors is similar to the
dials of an odometer of an automobile.

Part of the message key is the order and the position of the rotors. In 1932, the
Enigma that Rejewski attacked had three rotors that were placed into three positions
in the rotor system. The three rotors can be placed into the rotor system in any of the
3! ¼ 6 possible orders. Around the circumference of each rotor are the 26 letters
of the alphabet (or sometimes 26 numbers). Each rotor can be set at any of these
26 positions. Thus, Rejewski faced 6� 263 ¼ 105;456 possible settings of the rotor
system.

An additional factor in the encryption is a plugboard. On the front of Enigma is
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a plugboard that looks like an old telephone switchboard. There are 26 sockets—one
for each letter of the keyboard. In 1932, the Enigma had six plugs that were used to
connect six pairs of letters. The effect of the plugboard is to swap six pairs of letters
and let the remaining 14 letters pass through unchanged. There are 100,391,791,500
ways to connect six pairs of letters. The remaining part of the Enigma key is the
setting of the plugboard. There are 105;456� 100;391;791;500 ways to set up
Enigma to encrypt a message. The sheer number of settings that a cryptanalyst might
have to try is what gives Enigma its strength.

The rotor system and the plugboard combine to determine the Enigma permu-
tation. Every time a letter is pressed on the keyboard, the right rotor turns. There-
fore, each plaintext letter is encrypted by a different permutation—almost. After
263 ¼ 17;576 letters are encrypted, Enigma would return to its starting position,
and the ciphertext message would begin to show depth.

To avoid depth, messages were generally quite short and the operator would
‘‘randomly’’ choose a message setting—one of the 26 possible starting positions
for each of the three rotors—for each message. The plugboard set up was determined
by a codebook. In addition, the codebook specified a ‘‘ground setting’’ for the rotor
system. The ground setting was in effect for a day. The sending operator needed to
inform the receiving operator of the three-letter message setting. The message setting
was encrypted by the ground setting and transmitted at the beginning of the message.
Because of the possibility of interference during transmission, the message setting
was sent twice. The three-letter message setting that was encrypted twice using the
ground setting appeared at the beginning of the Enigma message.

2. Rejewski’s Attack

Rejewski discovered a pattern in the twice-encrypted message setting. He exploited
this pattern to determine the ground settings of the rotor system. Rejewski labeled
the six ciphers that were used to encrypt the message setting A, B, C, D, E, and F.
Permutations A and D would both encrypt the first letter of the message setting, B
and D the second letter, and C and F the third letter. Rejewski discovered that
the disjoint cycle decompositions of the composed permutations AD, BE, and CF
(composition from left to right) could be used to determine the ground settings.

Each Enigma permutation, for example A, B, C, D, E, or F, is the product of 13
transpositions—two cycles, swaps of two letters. It is this fact that permits Enigma to
encrypt and decrypt a message using the same setting. If, for example, n changes to
K for a particular setting of Enigma, then K changes to n at the same setting.
Rejewski noted that this fact implied that the permutations, AD, BE, and CF consist
of ‘‘disjunctive cycles of the same length in even numbers’’ [Marian Rejewski, [3]
Appendix E]. Without this restriction, the theoretically possible number of disjoint
cycle structures for each of AD, BE, and CF would be the number of partitions
of 26. However, because the number of disjoint cycles of the same length is even,
the theoretically possible number of disjoint cycle structures is the number of parti-
tions of 13, namely 101. The triple of composed permutations AD, BE, and CF
could theoretically have 1013 ¼ 1;030;301 possible sets of disjoint cycles. The
Enigma rotor system could be set in 105,465 ways. Each ground setting resulted in
AD, BE, and CF that had one of 1,030,301 possible disjoint cycle structures. It is
possible that each ground setting corresponds to a unique disjoint cycles structure.
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If that were true, knowing the disjoint cycle structure would determine the ground
setting, but is it true?

If we have a sufficient number of messages (about eighty) for a given
[ground setting], then, in general, all the letters of the alphabet will occur
in all six places [of the message indicators] at the opening of the messages.
[This allows the permutations AD, BE, and CF to be determined.] In
each place they form a mutually unique transformation of the set of let-
ters into themselves, that is, they are permutations. These permutations,
designated respectively by the letters A through F, are not known to the
cryptologist, but the transitions from the first letters to the fourth, from
the second to the fifth, and from the third to the sixth likewise form per-
mutations, and these are known to the cryptologist. They are products
AD, BE, CF of the previous permutations. They may be represented as
disjunctive products of cycles and then assume a very characteristic form,
generally different for each [ground setting] . . . [Marian Rejewski, [3]
Appendix E].

In Appendix D of [3], Rejewski claimed that ‘‘what was needed was a sufficient
number of messages from the same [ground setting], about sixty, to make possible
the formation of the characteristic set of AD, BE, and CF.’’ Rejewski clearly
believed that the disjoint cycle structure could determine the ground setting; how-
ever, in another place, he implied that the mapping from ground settings to disjoint
cycles is not unique.

. . .permutations AD, BE, and CF have a characteristic form, and a set of
three permutations with the same configuration of cycles recurs
infrequently. [Marian Rejewski, [3] Appendix E].

What was needed was a catalog of the ground settings and the corresponding
disjoint cycle structures.

. . .if it were possible to design a device that gave the length and number of
cycles in the characteristic for each position of the rotors, and if next the
lengths and number of cycles were catalogued, then it would suffice to
compare AD, BE, CF for a given day with the products with the same
configuration in the catalog to at once obtain the order of the
rotors . . . [Marian Rejewski, [3] Appendix E].

The Polish codebreakers designed a device called a cyclometer [see, for example,
Appendix E] to catalog the disjoint cycle structures that correspond to the ground
settings.

[Cataloging the disjoint cycles] took a long time, over a year, since we car-
ried it out along with our normal work . . . . Once the six catalogs [one for
each rotor order] were ready, though, obtaining a daily key was usually a
matter of twenty minutes. The card told the drum positions, the box from
which the card had been taken told the drum sequence. . ..
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Unfortunately, on 2 November 1937, when the card catalog was
ready, the Germans exchanged the reversing drum from the one they
had been using, which was designated by the letter A, for another drum,
a B drum, and, consequently, we had to do the whole job over
again . . . [Marian Rejewski [3] Appendix D].

3. Recreating the Catalog

Apparently, no copies of the Polish catalog exist. Therefore, it is not known how the
Polish mathematicians ordered the characteristics—the disjoint cycle structures.

Frank Carter, a mathematician who is now a Bletchley Park guide, has pub-
lished the disjoint cycle structure for one order of the rotors and reflector B [1]. A
simulation of the cyclometer developed by Tony Sale is available on the internet
[5]. Sale’s simulation also uses reflector B.

I have written a program that simulates the process that the cyclometer went
through to create the catalog of disjoint cycles for the 105,465 possible rotor settings.
The program uses reflector A, which was used by Rejewski and the Polish code-
breakers in making the first catalog. The wiring of reflector A was determined in
2000 [4] (Tables 1 and 2).

The results are similar to Carter’s results for the one rotor order and reflector B.
The majority of the time, the disjoint cycle structure corresponds to either a unique
ground setting or to a small number of ground settings, which would have to be
checked by hand. 21,230 different disjoint cycle structures occur. Of these, 11,466
disjoint cycle structures (54.40 percent) correspond to unique ground settings.
20,433 correspond to 10 or fewer. Together, these account for 92.34 percent of the
possibilities. Rejewski was generally correct that there are very few ground settings
that correspond to a given disjoint cycle structure, but there are some bad cases.
The disjoint cycle structure (13 13)(13 13)(13 13), for example, corresponds to
1,771 possible ground settings.

Table 1. Most frequent cycle structures

Disjoint cycle structure (AD)(BE)(CF) Number of occurrences

(13 13)(13 13)(13 13) 1771
(12 12 1 1)(13 13)(13 13) 898
(13 13)(13 13)(12 12 1 1) 866
(13 13)(12 12 1 1 )(13 13) 854
(11 11 2 2)(13 13)(13 13) 509
(13 13)(12 12 1 1)(12 12 1 1) 494
(13 13)(13 13)(11 11 2 2) 480
(12 12 1 1)(13 13)(12 12 1 1) 479
(13 13)(11 11 2 2)(13 13) 469
(12 12 1 1)(12 12 1 1)(13 13) 466
(13 13)(10 10 3 3)(13 13) 370
(13 13)(13 13)(10 10 3 3) 360
(10 10 3 3)(13 13)(13 13) 358
(13 13)(13 13)(9 9 4 4) 315
(9 9 4 4)(13 13)(13 13) 307
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4. The Plugboard

What about the plugboard? Rejewski noticed that it was possible to find the ground
settings from the disjoint cycle structure of AD, BE, and CF without considering the
effect of the permutation caused by the plugboard. The theorem that he used is com-
monly learned in elementary permutation theory. Let G represent the permutation
that occurs because of the rotor system and P represent the permutation that occurs
because of the plugboard. After a letter is pressed on the Enigma keyboard, the right
rotor turns forward one place and an electrical charge passes from the key on the
keyboard to the plugboard, where it is changed by P; then, the charge passes through
the rotor system where it is changed by G; then, the charge passes backwards
through the plugboard where it is changed by P�1. The Enigma permutation (com-
posing from left to right) is PGP�1. A theorem in elementary permutation theory
says that G and PGP�1 have the same disjoint cycle structure. Therefore, Rejewski
realized that when determining the rotor setting, the effect of the plugboard could
be ignored.

Polish penetration into the secrets of the Enigma began in earnest when
Rejewski realized the application of a simple property of permutations—
namely, that if G and P are permutations, then the permutation defined
by PGP�1 has the same cycle structure as the permutation G. No doubt
practitioners of group theory should introduce this property of permuta-
tions to students as ‘‘the theorem that won World War II’’ [2].

5. Conclusion

Rejewski’s claim that ‘‘a set of three permutations [AD, BE, and CF] with the
same configuration of [disjoint] cycles recurs infrequently’’ [3] is essentially correct.

Table 2. Low frequencies

Number of disjoint
cycle structures

Number of
occurrences

11466 1
3381 2
1658 3
958 4
660 5
456 6
343 7
265 8
234 9
183 10
146 11
118 12
103 13
95 14
74 16
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For most days, given enough message indicators to determine the disjoint cycle
structure of AD, BE, and CF; the Polish codebreakers could use Rejewski’s catalog
to determine the Enigma ground setting or, at least, to reduce the number of possible
settings to a small number that could be checked. However, on some days, Rejews-
ki’s catalog could determine that the disjoint cycle structure for AD, BE, and CF
corresponded to many ground settings. It is not known how the Polish codebreakers
proceeded in those situations.
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