Problem: Let $A B C$ be a triangle, let a line l through its circumcenter O, let a point P lie on the circumcircle of $\triangle A B C$. Let $A P, B P, C P$ meet l at A_{P}, B_{P}, C_{P}, respectively. Denote A_{0}, B_{0}, C_{0} projections of A_{P}, B_{P}, C_{P} to $B C, C A, A B$, respectively. Then A_{0}, B_{0}, C_{0} are collinear and the line $\overline{A_{0} B_{0} C_{0}}$ bisects the line segment joining the orthocenter of $\triangle B A C$ and P.

Proof:

Lemma 1 (well-known): The two circles with diameter $A C_{P}, C A_{P}$ intersects at two points X, Y, one of them (say X) lies on (O), the second, (say Y), lies on the nine-point circle of $\triangle P A C$.

Proof:
Let $C O$ cut (O) again at $K ; K A_{P}$ cut (O) at $X ; X C_{P}$ cut (O) again at L, then by Pascal in hexagon $L A P C K X$ we get A, O, L collinear. Hence X lies on the circle with diameter $C A_{P}$ as well as the circle with diameter $A C_{P}$. Let the circle with diameter $A C_{P}$ cut $P C$ at A_{1}, the circle with diameter $C A_{P}$ cut $P A$ at C_{1}, then $A A_{1}, C C_{1}$ are two altitudes of $\triangle P A C$. If they intersect at H_{1} then H_{1} obviously lies on the radical axis of the two spoken circles, thus H_{1} lies on $X Y$. Notice that $\angle C_{1} Y A_{1}=\angle C_{1} Y X+\angle X Y A_{1}=\angle C_{1} C X+\angle X A H_{1}=360^{\circ}-$ $\angle A X C-\angle A H_{1} C=\left(180^{\circ}-\angle A X C\right)+\left(180^{\circ}-\angle A H_{1} C\right)=\angle A P C+\angle A P C=$ $2 \angle A P C$. This means that if I is the midpoint of $P H_{1}$ then $C_{1} I Y A_{1}$ cyclic, or Y lies on the nine-point circle of $\triangle P A C$.

Lemma 2: $A_{0} C_{0}$ passes through Y.
Proof: Notice that $\angle X Y C_{0}=\angle X A C_{0}=\angle X C A_{0}=\angle X Y A_{0}$. This implies that A_{0}, C_{0}, Y are collinear.

Let $A Q, C T$ the altitudes of $\triangle A B X$ with H the orthocenter. Easy to get A, H_{1}, C, H cyclic and the circle they lie on is the mirror of the circle O over $A C$. If R is the midpoint of $A C$ and M midpoint of $P H$ then there is no problem to see that R, M are the two common points of the nine-point circle of $\triangle P A C$ and the nine-point circle of $\triangle B A C$. By another words, M is the midpoint of $P H$. So if S is the midpoint of $P C$ then $M S \| C_{0} C_{P}$.

Now we are going to show that M lies on the line $Y C_{0} A_{0}$. Notice that $\angle X Y M=\angle X Y A_{1}-\angle M Y A_{1}=\angle X A A_{1}\left(180^{\circ}-\angle M S A_{1}\right)=\angle X A A_{1}\left(180^{\circ}-\right.$ $\left.\angle C_{0} C_{P} A_{1}\right)=\angle X A A_{1}-\angle C_{0} A A_{1}=\angle X Y C_{0}$. This means that Y, M, C_{0} are collinear or M lies on the line $Y C_{0} A_{0}$ as desired.

Next, let the circle with diameter $C B_{P}$ cuts the circle with diameter $B C_{P}$ intersect at W, Y. By lemma $1 Z$ lies on (O) and W lies on the nine-point circle of $\triangle P B C$. There is no problem to see that the nine-point circle of $\triangle P A C$
goes through S, M. By lemma 2 we have C_{0}, B_{0}, W collinear. As $\angle W M S=$ $\angle W C S=\angle W C_{0} C_{P}$, but as $M S \| C_{0} C_{P}$, then W, M, C_{0} are collinear. Hence all the points $A_{0}, C_{0}, M, Y, B_{0}, W$ lie on a line d, this line bisects the line segment joining P and the orthocenter of $\Delta B A C$ (that is $P H$).

Of course then the line l goes through P, then $X, C_{P}, A_{P} \equiv P ; P_{1} \equiv Y, d$ is the Simson line of $\triangle A B C$.

