
You Are What You Consume:
A Bayesian Method for Personalized Recommendations

Konstantinos Babas
Electronic and Computer

Engineering
Technical University of Crete

Chania, Greece
kbabas@isc.tuc.gr

Georgios Chalkiadakis
Electronic and Computer

Engineering
Technical University of Crete

Chania, Greece
gchalkiadakis@isc.tuc.gr

Evangelos Tripolitakis
Electronic and Computer

Engineering
Technical University of Crete

Chania, Greece
vtripolitakis@isc.tuc.gr

ABSTRACT
In this paper, we propose a novel Bayesian approach for personal-
ized recommendations. In our approach, we model both user pref-
erences and items under recommendation as multivariate Gaus-
sian distributions; and make use of Normal-Inverse Wishart pri-
ors to model the recommendation agent beliefs about user types.
We employ a lightweight agent-user interaction process, during
which the user is presented with and asked to rate a small num-
ber of items. We then interpret these ratings in an innovative way,
using them to guide a Bayesian updating process that helps us
both capture a user’s current mood, and maintain her overall user
type. We produced several variants of our approach, and applied
them in the movie recommendations domain, evaluating them on
data from the MovieLens dataset. Our algorithms are shown to be
competitive against a state-of-the-art method, which nevertheless
requires a minimum set of ratings from various users to provide
recommendations—unlike our entirely personalized approach.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Information Filtering

Keywords
Bayesian methods; personalized recommendations

1. INTRODUCTION AND RELATED WORK
Making decisions on what movie to see, what kind of music to lis-
ten to, or what book to read can be a hard problem when one is
presented with a multitude of choices. Research in recommenda-
tion systems attempts to understand a user’s needs, preferences and
mood, and help her make a decision. Typically, however, most rec-
ommendation methods require pre-training on data gathered from
many users, who are classified according to their inferred similar-
ity in preferences. Moreover, many approaches require much user
involvement in a potentially cumbersome, lengthy interaction with
the system. This can impose serious limitations to the usability of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
RecSys ’13, October 12 - 16 2013, Hong Kong, China
Copyright 2013 ACM 978-1-4503-2409-0/13/09 ... $15.00.
http://dx.doi.org/10.1145/2507157.2507158.

a recommendation system, especially when a user wishes to make
a fast decision that is also dependent on her current mood.

In more detail, most established recommendation systems ex-
ploit user ratings over a large number of items via the use of col-
laborative filtering (CF), content-based methods, or a combination
thereof. Content-based methods usually make recommendations by
analyzing the content of textual information about an item. On the
other hand, collaborative filtering is based on the assumption that,
if two users rate n items similarly, they will probably rate other
items similarly as well. So, collaborative filtering techniques use
ratings from a specific user on some items (e.g., movies), and com-
bine them with ratings of other users on a set of items in order to
infer about the ratings of that user on unrated items.

Some examples of CF and content-based systems are those of [2,
18, 9, 25]. Many such systems find application in the movie recom-
mendations domain. For instance, Content-Boosted Collaborating
Filtering [18] uses a content-based predictor, enhanced with CF, to
provide personalized movie recommendations; Debnath et al. [9]
use a collaborative social network graph to assign weights on at-
tributes of content-based recommendations, depending on their per-
ceived importance; while Barbieri et al. [2] intertwine Bayesian
methods with CF, in order to group users into “communities” based
on their rating patterns. Another interesting application of CF meth-
ods is introduced in [25], which presents an interactive story gener-
ation system that employs probabilistic principle component anal-
ysis and non-negative matrix factorization, in order to compose a
personalized story according to user storytelling preferences.

Now, utility theory-inspired preference elicitation (PE) techniques
have also been tried out in various recommendation domains (see,
e.g., [6, 23]). PE tries to collect user preferences in order to
construct the user’s utility function. To do so, most Preference
Elicitation techniques set queries to the user asking her to eval-
uate, order, or constrain potential system outcomes; while others
attempt to translate a user’s interaction with the system to prefer-
ences. There also exist systems which use semantics and social
choice or voting theory for making recommendations [24, 19, 12,
17]. For instance, Szomszor et al. [24] use movies folksonomy to
enrich the current knowledge with descriptions of movies and in-
terests of users; while [12] presents a website which uses trust in
social networks for making movie recommendations. The website
generates predictive personalized ratings based on a trust inference
algorithm, which employs “trusted users” ratings in order to calcu-
late the rating of a user for that movie. Others employ WWW ques-
tionnaires and Bayesian networks to model the collected data [22].

The work most relevant to ours is perhaps that of [16] and [26],
which model users and items using a common representation. Both
approaches use vectors for modelling purposes. In some detail,
Langseth and Nielsen [16] propose a CF technique which uses a

Bayesian network to support the inference procedure. They model
items using feature vectors, and users using vectors which describe
user’s liking for each item feature. These vectors are incorporated
in the Bayesian network in order to predict user’s ratings about
unrated items using her previous ratings on other items. On the
other hand, Zhang and Koren [26] introduce a Bayesian hierarchi-
cal model for content-based recommendations. They model each
user as a k-dimensional vector sampled randomly from a Gaussian
distribution, and items as k-dimensional feature vectors. They then
incorporate data from all users in the hierarchical model in order to
predict a label-rating of an item for a specific user.

The recommendation technique we present in this paper differs
to all aforementioned approaches in many ways. First of all, we
neither set questions to the user, nor use textual information re-
garding an item so as to elicit user preferences. Moreover, we do
not rely on any kind of user classification or other users’ inferred
preferences, but attempt to fine-tune recommendations over time
for each specific individual. That is, we progressively build a user
type for each individual, which gradually converges to the real one.
In contrast to most social networks, social choice-inspired, and CF
approaches, we do not attempt to estimate user ratings; but just rec-
ommend the item which matches the user preferences more closely.

Approach Overview and Contributions.
Indeed, in this paper we design and evaluate a Bayesian recom-

mendation agent, based on a simple, fast, and easy-to-use elicita-
tion and modelling process; and apply it in the movie recommen-
dations domain. By means of this process, our agent is able to rec-
ommend a user items (e.g., movies) that best fit both her long-time
preferences and current mood. To achieve its objective, the agent
maintains item types (summarizing item characteristics); and user
types (corresponding to modeled user preferences). Crucially, these
are both represented as multivariate Gaussian distributions over
ranges of values (ratings), describing the degree to which an item is
composed of certain attributes (e.g., movie genres); and the degree
to which a user likes the particular attributes, respectively. This al-
lows for the establishment of a correspondence between user and
item types: intuitively, a user model is viewed by the agent as being
an amalgamation of items this user likes. We term this the “you
are what you consume” idea. The employment of Normal-Inverse
Wishart (NIW) conjugate priors to model agent beliefs about types
guarantees that these beliefs can be readily updated.

Now, to learn about a specific user’s current mood, we first only
ask her to rate a small number of demonstrative items (“demos” for
short; e.g., movie trailers), also represented by multivariate Gaus-
sians (just like other items), and which are selected based on the
current agent beliefs about user type. Each rating is treated as a
unit, that is, we do not ask the user to rate different item attributes.
We then employ these ratings in an innovative way, interpreting
them as an indication of the number of samples to take from the
corresponding demo type; i.e., to indicate a demo’s “weight”, or,
to put otherwise, the “degree of correspondence” that the specific
demo has with user preferences and current mood. This is rea-
sonable, as a user’s rating of, e.g., trailers, intuitively reflects her
current mood—which is, nevertheless, not independent of her long-
term tastes. The agent takes this into account: each demo presented
was already selected according to perceived user type—thus, long-
term user preferences are incorporated in the choice of demos.

The samples thus collected are then utilized by a Bayesian up-
dating process that infers a temporary demo-based user type, given
demo ratings. Having the demo-based type, we can then search for
the best possible match (employing a KL-divergence metric) with
an item to actually recommend—and which is not necessarily one

of the demos shown earlier. The selected item is then presented to
the user, who rates it, leading to an update of her overall user type.

The overall recommendation process effectively corresponds to
a Bayesian exploration approach in this domain—since, when se-
lecting demos or items to present to the user, our method optimises
with respect to Bayes-updated beliefs, rather than taking explicit
“exploration” actions. Moreover, intuitively our method allows for
a better user experience, and implicitly helps the user “discover”
more about her own real preferences, as it does not rigidly disal-
low suggestion possibilities or prune vast parts of the search space
(as methods relying on explicit user statements about their prefer-
ences or ratings probably would), but only makes suggestions given
its probabilistic beliefs regarding user preferences. For interest,
we devised and tested certain additional variants of our approach,
which employ alternative (Bayesian and non-Bayesian) exploration
methods when selecting a demo or item to present to the user. One
of these variants most probably constitutes the first adaptation of
the well-known Value of Perfect Information Bayesian exploration
heuristic [8, 7] in the recommendations domain.

Though to some extent conceptually straightforward, to the best
of our knowledge an approach such as ours has not been used be-
fore in the literature. It is a simple yet generic approach that com-
bines elements from various techniques. The idea of modelling the
types of both the user and the object under recommendation by a
probability distribution of the same form is a novel one. Repre-
senting users and items as complete probability distributions over
a collection of features, instead of as, e.g., vectors of point-values
corresponding to specific features’ weights, enables the implicit in-
ference of latent features, or hidden and otherwise unrepresentable
feature mixtures, combinations, and interconnections. Moreover,
our translation of “demo” ratings into weights for guiding the sam-
pling process used during Bayesian updating is innovative, and al-
lows us to build a temporary user type that captures both current
user mood and long-time preferences simultaneously.

We evaluated our approach in the movie recommendations do-
main. As a note, the use of Multivariate Gaussians and Normal-
Inverse Wishart distributions to model types and corresponding be-
liefs in this particular domain is novel, as is the use of “trailer”
ratings for inference purposes. Our experimental results are highly
encouraging, demonstrating as they do that the agent quickly learns
to recommend movies that receive high user ratings. In particular,
our agent manages to exhibit performance that is comparable to that
of a popular, state-of-the-art, collaborative filtering-based method
for movie recommendations. Importantly, it does so without the
need of looking at pre-gathered/pre-processed data involving the
current user or her peers. As such, the ever-present “cold start”
problem, a constant challenge to CF methods due to ratings scarcity
(see, e.g., [3] for a discussion), does not apply to our personalized
method—since it does not employ any ratings of other users what-
soever, and does not aggregate past ratings to predict future ones.

2. BACKGROUND: BAYESIAN UPDATING
A key component of our agent is performing probabilistic inference
regarding the types of the system’s users, by means of Bayesian
updating. In many cases, there exists the need of estimating the
parameters of an unknown probability distribution—a model; and
Bayesian updating can be employed to this end. Key to a compu-
tationally feasible application of Bayesian updating, is the use of
Bayes rule, in conjunction with proper conjugate priors describing
our beliefs about the model [10].

In some detail, in the face of new data (observations) regarding
the unknown model, Bayes rule takes into account a prior distribu-
tion (reflecting our belief on the values of the model’s parameters),

a likelihood function, and a marginal probability, in order to derive
a posterior. The likelihood function brings together the prior and
the observations and follows the form of the model. The posterior
represents an updated belief about the prior, taking into account the
new data. One can then use these posterior beliefs to derive new
estimates of the parameters of the unknown distribution.

Both prior and posterior distributions must be of the same family–
i.e., they must have the same algebraic form. If that is the case, they
are termed conjugate distributions. Additionally, the family of the
likelihood function gives rise to the choice of the prior’s family.
If the prior is appropriately selected to be conjugate for the likeli-
hood, then the posterior will be of the same family as the prior [11].
Conjugacy offers a closed form for the posterior, allowing for the
easy update of the prior—via straightforward manipulations of the
prior’s hyperparameters in the face of new evidence.

In our case, the data provided to the agent is in the form of a mul-
tivariate Gaussian, corresponding to demo or item types. We also
need to maintain the demo-based user type or the overall user type,
which will also be multivariate Gaussians. Since we are not aware
of the underlying type parameters—determining its mean and co-
variance matrix—we can model the conjugate prior as a Normal-
Inverse Wishart distribution (NIW) [20, 1]. We can then readily
update the prior hyperparameters using samples drawn from the
data1 to get the posterior ones:

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
x (1)

κn = κ0 + n (2)

νn = ν0 + n (3)

Λn = Λ0 + S +
κ0n

κ0 + n
(x− µ0)(x− µ0)T (4)

S =

n∑
i=1

(xi − x)(xi − x)T (5)

where x is the sample mean, n is the number of the samples and xi
are the samples from the data. Also, µ0, κ0, ν0,Λ0 are the known
hyperparameters of the prior NIW distribution. Specifically, ν0 rep-
resents its degrees of freedom, while µ0 (the mean vector) and Λ0

(the precision matrix) are the hyperparameters that specify the mul-
tivariate Gaussian component of the prior; and S is a scatter matrix,
a statistic characterizing the model’s covariance matrix and intu-
itively providing a measure of the samples’ dispersion. Finally, the
model’s parameters, mean (µ) and covariance matrix (Σ), can be
calculated (“integrated-out”) given the updated beliefs, using an In-
verse Wishart and a Gaussian as follows.

Σ ∼ IW (Λn, νn) (6)

µ | Σ ∼ N(µn,Σ/κn) (7)

3. RECOMMENDATION PROCESS
We have already described the main intuitions and key ideas of

our approach in Section 1 above. Here, we provide a more detailed
picture of our system’s architecture and overall recommendation
process, also summarized in Figure 1(a).

When a user enters the system, she is shown and asked to rate
a number of 5 demos.2 The agent decides which demos to show
1In our case, we will be utilizing user ratings to determine the num-
ber of samples to draw from different data distributions.
2The number of projected trailers (demos) used in our experiments
is “5”, as a tradeoff between receiving enough information for ac-
curate inference of user preferences, and avoiding user distraction
and frustration [14, 15]. Of course, when testing the agent with
actual human subjects in real time, the number of trailers shown
and their length will definitely have to be adjusted according to the

based on its knowledge about the user—i.e., the stored user type.
Thus, it presents demos that most closely match her preferences,
as these have been embodied in the user type so far. In the case
of a new user, the agent again shows 5 demos, but now those have
few common features, since they are—out of necessity—selected
randomly (as the long-term user type is first constructed after the
user rates some item). Then, the user provides a rating for each
demo, and a Bayesian updating process is used to create the demo-
based user type from rated demo items.

Bayesian updating actually takes place two times during the rec-
ommendation process, firstly to infer a temporary, demo-based user
type; and, secondly, to update the overall user type. The process
takes into account user ratings regarding demos or items shown to
the user, and, given the ratings, samples the respective demo or item
types the appropriate number of times; and uses these samples to
come up with an (updated) system-inferred type regarding the user.
This can be done given the fact that the user type (“demo-based” or
not) is of the same form as the items’ type, and via the proper use
of conjugate NIW priors. The intuition is that, in the absence of
explicit data regarding the user type (which is the model whose pa-
rameters we need to infer), we utilize user ratings as an implicit way
to indicate the extent to which a user “associates” herself with the
demo or item she is shown. Thus, we can then sample the model
this item (e.g., a trailer or a movie) originates from a number of
times (proportional to the degree of the user’s liking of that item),
and treat these samples as new evidence for the Bayesian updating
process. It is important to note that, to ensure the efficiency of the
update, the number of samples must be high enough. To achieve
this, we multiply the rating with 100, thus guaranteeing that hun-
dreds of samples are used during an update.3

In more detail, the user observes and rates the first demo item
(e.g., watches and rates the first trailer). Then, the system takes
rating×100 samples from the demo type distribution of that demo
item, and updates the posterior’s hyperparameters based on those
samples and the hyperparameters of the demo-based user type prior
(which has to be an uninformative one [20]). Subsequently, the user
watches and rates the second demo and the system samples that
demo type and updates the hyperparameters, in the same way as
for the first one—but now the posterior of the first step has become
the informative prior of the second step. After all such steps, the
hyperparameters of the NIW distribution can be used to estimate
the parameters (µ,Σ) of the multivariate Gaussian, which models
the demo-based user type. Figure 1(b) summarizes this process.

Now, when the system has the final estimate of the demo-based
user type, it has to recommend a specific item to the user. To do so,
it must search the database to find the item matching that demo-
based user type best. To this end, it uses the Kullback-Leibler
(KL) Divergence criterion. The KL-divergence between a Gaus-
sian t (modelling, e.g., a demo-based user type), and a Gaussian i
(corresponding to some item), of dimension d each, is given by:

KL(t ‖ i) =
1

2
log | S−1

t Si | +
1

2
tr((S−1

t Si)
−1)

−
d

2
+

1

2
(mt −mi)

TS−1
i (mt −mi) (8)

users’ reaction and perceived frustration levels. However, our main
objective here is to evaluate the potential of our novel Bayesian
user modelling method. Thus, while adjusting for specific real-time
usage concerns in a given domain is important, current parameter
choices are adequate for confirming the soundness of this approach.
3Taking a rating×100 number of samples ensures that each given
demo or item type is represented accurately enough to be combined
with prior information regarding the user (who is also represented
as a Gaussian) to estimate a user type via Bayesian updating. This
is not an attempt to “estimate” a demo or item type via sampling.

(a) (b) (c)

Figure 1: (a) The overall recommendation process. (b) Deriving the demo-based user type. (c) Deriving the user type.

where St, mt, Si and mi are the distributions’ parameters, and
tr(·) is the trace of the corresponding matrix [21]. The lower the
KL-divergence between two Gaussian types, the greater their prox-
imity. This is the item (e.g., the movie) recommended to the user.
Notice that this might not be one of the demos shown to the user be-
fore recommendation. This effectively corresponds to a Bayesian
rather than a heuristic exploration approach in this domain: the
system employs its probabilistic beliefs regarding (long-term) user
type and (short-term) temporary user type to come up with a rec-
ommendation; and makes recommendations based on beliefs given
sampled evidence, rather than, e.g., greedily matching a demo.

Subsequently, the user puts a rating on the item (after, e.g., watch-
ing the movie). Then, the system performs another Bayesian up-
date, resulting to a new user type estimate. The Bayesian updat-
ing of the user type is similar to the demo-based one; but now the
rating×100 samples collected are drawn from the distribution cor-
responding to the item the user was finally recommended and rated
only (Figure 1(c)). Note that user type and corresponding beliefs
are stored for future use, unlike the demo-based user type which
lasts only for the current session. Thus, in the case of a future
system use by a known user, the hyperparameters of the posterior
from which the previous user type was inferred, will be the hy-
perparameters of the (informative) prior for deriving the next user
type. Moreover, as stated, the updated and stored user type serves
as a prior to guide the system to select demos. This is also done via
using the KL-divergence minimization criterion.

3.1 Alternative action selection methods
The “basic” Bayesian method described above behaves “greed-

ily” wrt. beliefs when selecting a demo or item: it just picks the one
with minimum KL-divergence from the Bayes-updated user type.
We also devised alternative action exploration techniques, to assess
whether these would lead to improved recommendation decisions.

3.1.1 VPI-based selection of demos or items
The first of these techniques attempts to account for the expected

value of perfect information (VPI) [7] characterizing the various
“agent actions”—i.e., in this domain, potential recommendation
choices. The rationale behind this technique is that a choice has
a value not only because of its immediate benefit to the user, but
also because of the information it relays with respect to user prefer-
ences. Intuitively, if a recommendation and observed user reaction
leads to a reassessment of what the user really prefers, then this
recommendation action carries a high information value. Thus,

the VPI exploration technique, adapted for the recommendation
domain, attempts to “simulate” various alternative user type re-
actions to future recommendations; calculates the value of infor-
mation gained from these reactions when compared to the thus far
modeled user type’s expected behaviour; and averages out these re-
sults to come up with an information gain estimate that is used to
“boost the desirability” of the recommendations to be made.

In more detail, let us suppose that the reward that some user
derives from a specific item is reward = f(KLdivergence) =
M − bKLdivergence/Mc, where M is the maximum rating the
user can give to a movie (e.g., M = 10). We define as i1 the item
with the highest reward r1 for the user (given the model built for her
so far), and as i2 the second best with reward r2. Consider now an
item i selected for recommendation to a user type j (possibly dif-
ferent to the type modeled for the user so far), and assume that this
in fact represents the “actual” type for the user—therefore, present-
ing this user type j with an item will lead to “perfect information”
regarding the value of this item to the user. (Of course, this is just
an assumption the method makes, but allows it to compute a value
of information estimate, via “sampling” user types and averaging
out their behaviour.) Assume that this recommendation results to a
user reward of ri for item i. We distinguish the following two cases
(in all other cases, the gain due to perfect information is 0):

1. if i coincides with the item considered best for the user so
far (i = i1), then the gain from presenting the user with
this item is either: (a) gainj

i = 0, for ri > r1 (since we
derived no new information from presenting the user with
this item: the “perfect” information we got by fixing the user
type to the assumed “actual” user type j coincides with what
we had already estimated—i.e., that i1 is the “best” item for
the user); or (b) gainj

i = r2 − ri, for ri < r2 (since we
“learned” that the item i is actually worth less to the user
than the item considered so far to be only second-best).

2. if i does not coincide with i1, then the gain from presenting j
with i is (a) gainj

i = 0, for ri < r1 (since we only observed
i to be sub-optimal, as expected); or (b) gainj

i = ri−r1, for
ri > r1 (since we now “learned” that i was actually better
than the item considered best so far).

Given this, our VPI exploration method works as follows: We es-
timate the modeled-so-far user type4 by “integrating out” our NIW
4This can be a long-term or a short-term user type, depending on
whether we are attempting to select demos or actual items.

prior, as described in Section 2 (Eqs 6 & 7). Subsequently, for this
integrated-out user type, we discover the i1 item with the highest
reward, and the second-best item i2. We then sample from our NIW
prior a number of s Gaussians, which represent “alternative” user
types. (In our experiments, we set s=10.) After that, we calcu-
late for each j user type (corresponding to one of the s sampled
Gaussians), the rewards from presenting it with every i item, and
compute the corresponding gainj

i values, as outlined above.
The next step is the calculation of the average gain, gaini, for

presenting an item i to our user; this is computed by averaging out,
over all s samples (i.e., over all user types j sampled), the gainj

i

gains estimated for this item. Finally, the VPI method selects (and
presents) the item I that maximizes the sum of the integrated-out
user type’s reward and the corresponding gain from selecting I:

I = arg max
i
{Vi = rewardi + gaini} (9)

3.1.2 Boltzmann selection
We also tried the well-known Boltzmann exploration [5] method

to select the appropriate demo or item. At each time step t, it as-
signs a selection probability to all available i actions:

Pr(i) =
eUi/T

Σn
j=1e

Ui/T
(10)

where T = c · αt, with c a constant and α < 1 . An action i is
chosen with probability proportional to its utility Ui; and with T
decreasing over time, exploration is progressively reduced.

We tried Boltzmann selection with two different utility functions
in our experiments. The first of these methods, simply called Boltz-
mann, employs a U function equal to the KL-divergence between
the user type and the items. The second one uses as U the metric
of the VPI method described above, i.e., sets Ui = Vi, where Vi is
the quantity in Eq. 9. We call this method Boltzmann-VPI.

4. APPLICATION TO THE MOVIES DOMAIN
We chose to apply our method to movie recommendations, an

important domain that has inspired much research in recommenda-
tion systems. Here, items correspond to movies; demos correspond
to movie trailers; and we use the term trailer-based user type to
refer to a demo-based user type.

Each movie type is modeled as a multivariate Gaussian, with
each of its variables corresponding to a movie genre. The probabili-
ties are distributed over ratings, which are provided in some scale of
choice (e.g., 1−10 or 1−5). To create these multivariate Gaussians,
we were inspired from the MovieLens (http://www.grouplens.org)
datasets, which are actually used in our experiments below. These
datasets comprise of ratings provided by thousands of users on
thousands of movies. In the MovieLens dataset containing 1 mil-
lion ratings, movies are characterized by 18 specific genres. We
therefore define movie types to be k-dimensional Gaussians, with
k = 18 in our experiments involving real MovieLens ratings.

Let us now describe the exact form (and attribute values) of such
a Gaussian representing a movie or a trailer. The mean is essentially
determined by the overall rating of that movie, so it is a 1× k vec-
tor which, on each dimension, contains values equal to that movie’s
rating—under the assumption that the movie rating corresponds to
every genre available. Of course, one cannot be certain about the
rating of a genre not associated with the movie, but this is taken care
of by the way we construct the covariance matrix. Specifically, a
movie’s k × k covariance matrix is constructed as a diagonal co-
variance matrix [4], assuming that the movie genres are indepen-
dent of each other. Each element on the diagonal is associated to
a genre, and the element’s value depends on whether the movie is

characterized by that genre or not. We assume that the uncertainty
about the rating of the actual genres of the movie is small, and thus
set the values of the corresponding elements to σ2 = 1. In contrast,
uncertainty about those genres not associated to the movie is natu-
rally high, and thus we assign a σ2=20 (an empirically chosen value
that is high enough so as to not “disturb” the distribution) to those
diagonal elements. As an example, consider the movie ’Movie’
with an overall rating of 7, whose genres are action, sci-fi, thriller.
Its type is the following. The mean vector’s entries all carry a value
of 7; while its covariance matrix is a diagonal one, with diagonal
entries corresponding to the action, sci-fi and thriller variables hav-
ing a value of 1, and all other (diagonal) entries having the value of
20. The Gaussians for the user and trailer-based user types have
the same form as that of movies (i.e., k-dimensional Gaussians).

In addition, the agent needs to store and update beliefs about
user’s types (trailer-based and overall). As mentioned, these be-
liefs take the form of Normal-Inverse Wishart priors, which can be
easily manipulated to infer the corresponding types as k-dimensional
Gaussians, and match them to movies as required by the system.

5. EXPERIMENTS
We ran several sets of experiments to validate our algorithm, which
we call BayesYouLikeIt, and its variants, with very encouraging re-
sults. In all experiments, the hyperparameters of an uninformative
NIW prior take the following values: κ0 = 0, ν0 = −1, | Λ0 |= 0.
Thus, the updated hyperparameters of the NIW posterior after ob-
serving n samples become: µn = x, κn = n, νn = n − 1,Λn =
S =

∑n
i=1(xi − x)(xi − x)T .

Now, to test the scalability of our technique, we initially ran ex-
periments with simulated users on databases with 10,000, 20,000,
and 40,000 randomly generated movies. Simulated movies’ repre-
sentation and ratings were based on those of the popular IMDB
website (http://www.imdb.com). Specifically, we defined movie
types to be 16-dimensional Gaussians, corresponding to the 16 most
common genres available in IMDB. Also, we generated 50 simu-
lated users that interact with the system. Each simulated user is
characterized by its real user type, a 16-dimensional Gaussian dis-
tribution with a random mean in the range of [1 − 10] on each
dimension, corresponding to IMDB ratings, and a covariance ma-
trix which is spherical, assuming that the real user type is confident
regarding the degree to which it likes each genre [4].

To avoid the exhaustive search for trailers and movies within
these large databases, we apply clustering methods on the set of
stored movies. This reduces the number of comparisons between a
user type and stored movie types. In our experiments, the movies
were clustered in clusters with 1,000 movies each, on average (e.g.,
20,000 movies clustered into 20 clusters), based on their similar-
ity using the Kullback-Leibler hard k-means, a variation of the
Bregman hard k-means clustering [21].5 We also had to create a
rating function, to be used by the simulated users to assign rat-
ings. The function exploits the KL divergence between the real
user type and each trailer type or movie type of movies in our
system—the less the divergence, the higher the rating: rating =
f(KLdivergence)=10−bKLdivergence/10c (where 0 < KL
divergence < 100).

In Figure 2, we can see that BayesYouLikeIt recommends movies
that constantly receive high (> 8/10) ratings, when tested on the
20,000 simulated movies database. The experimental results for
the 10,000 and 40,000 movie databases are of the same quality. We

5Note that after a few hundreds of recommendations leading to
movies being removed from their clusters, the need for recluster-
ing arises. This is not a problem, as it can be executed off-line.

Figure 2: Comparison of average per iteration ratings from 50
simulated users on 200 movies for 10 runs, and average range
of corresponding trailer ratings, with and without mood alter-
ations simulation.

also observe that, in an average iteration, the user is shown trailers
whose ratings range is about 3 degrees wide; and whose average
maximum rating is almost always higher than the (average) rating
received for the movie shown during that iteration. This is because
Bayesian exploration: (1) does not necessarily return a movie that
matches the best trailer shown in an iteration; while, at any given it-
eration, there are still on average many “good” movies whose trailer
the method can show; and (2) enables the system to actually project
trailers of movies already shown at any iteration, and thus trail-
ers of “preferred” movies might be shown to a user again—since
these are just used to detect the current mood of the user. At no
point is a movie already shown to the user actually recommended
again; however, BayesYouLikeIt might re-use trailers derived from
the “believed” user type to infer the temporary user type (though in
practice this will occur only rarely in a large database).

We also evaluated the ability of our agent to capture temporary
changes of a user’s mood. We simulate such mood changes by
periodically changing the mean values of the “real user type”’s
multivariate Gaussian distribution (which represent the preferences
of the assumed “real” user). Specifically, after every 10 recom-
mendations, we randomly change the mean of each variable of the
corresponding Gaussian (via sampling a normal distribution over
the range of [1− 10]). The “mood changes” last only for 5 recom-
mendations, and then the real user type returns to its original form.
Figure 2 confirms that our method is able to successfully capture
the user’s mood, since it constantly recommends movies that are
subsequently rated highly. Indeed, our method’s performance ap-
pears to be robust, and is not negatively affected by mood changes.

Following that, we ran experiments to test our agent on data com-
ing from real users, that reflect actual human preferences and be-
haviour. This kind of data also offer an ideal testbed for comparison
with other well known techniques. We used the MovieLens dataset
with 1 million ratings from 6,040 users on 3,952 movies. Thus,
there is no longer a need to generate simulated users and ratings:
we can now have a user’s rating on a movie (or trailer) by just re-
ferring to the real-world dataset.6 No clustering was used in these
experiments. The movies inside the system’s database are modeled

6We remark that since we care about best “online” user experience
and do not predict ratings, the use of comparison metrics like Root
Mean Square Error (RMSE) is not very meaningful here. Instead,
we compare the methods wrt. average per recommendation ratings.

Figure 3: Typical run ratings of a single, real user on 50 movies,
and range of corresponding trailer ratings.

as in Section 4, with a movie’s mean being the average rating it has
in the MovieLens dataset. Ratings are integers in [1− 5].

We executed different sets of experiments with 200 recommen-
dations each, using all aforementioned variants for trailer/movie
selection. For each such experiment, we employed 5 sets of 100
users each, consisting of real users with 200 or more ratings in the
MovieLens dataset. In some detail, we took the histogram of the
number of ratings per user in the MovieLens dataset, and sampled
100 different users for each experimental user set in accordance to
that distribution. This ensures there is no bias in the ratings used as
input in the experiments. Also, each experiment involving a spe-
cific user set was executed for 10 independent runs. We then se-
quentially produced 200 recommendations to each individual user;
and calculated the average per iteration (true) ratings assigned by
the real users, across all user sets and experimental runs.

Now, as explained in Section 3, BayesYouLikeIt progressively
builds the user type, and recommends the movie that best matches
the trailer-based user type at each iteration—or the one selected
according to some variant exploration criterion. Indeed, in addi-
tion to the “basic” BayesYouLikeIt (BYLI) algorithm, we ran ex-
periments exploiting the VPI and Boltzmann exploration methods
described in Section 3.1. We used these criteria in two different
ways. First, we employed them only during the trailer selection
phase of the algorithm; and second, during both the trailers and the
movie selection phases. Boltzmann exploration parameters were
set to: c = 1, α = 0.5 and t ≤ 3, with t0 = 0 and ti+1 = ti + 1.

We compare our algorithm with an established recommender en-
gine, built on the Apache Mahout machine learning library, adapted
to yield the Myrrix software.7 The algorithm used by the engine is
the large, sparse matrix factorization (LSMF) method [13, 27], im-
plemented using a modified version of the alternating least squares
(ALS) algorithm. LSMF requires a number of ratings to be entered
in the system, so that matrix factorization can be performed.

Figure 3 helps us gain further insights in BayesYouLikeIt be-
haviour when recommending movies to a single (real) user. We
can see in the figure that, while learning, BayesYouLikeIt might oc-
casionally recommend a movie which the user ranks lower than the
trailers projected to her during that iteration; however, some times
the algorithm might also recommend a movie that the user prefers
to all trailers shown to her during that iteration. Over time, BayesY-
ouLikeIt returns movies that receive consistently good ratings.

7http://mahout.apache.org; http://www.myrrix.com/design

Figure 4: Average per iteration ratings, average range of corre-
sponding trailer ratings and movie ratings average mean abso-
lute deviation for BYLI - Boltzmann-VPI on trailers & movies.

Methods Average ratings
LSMF - pretrained 3.6848
LSMF - untrained 3.6540
BayesYouLikeIt (BYLI) 3.6112
BYLI - VPI on trailers 3.5968
BYLI - VPI on trailers & movies 3.5911
BYLI - Boltzmann-VPI on trailers 3.5968
BYLI - Boltzmann-VPI on trailers & movies 3.5911
BYLI - Boltzmann on trailers 3.5920
BYLI - Boltzmann on trailers & movies 3.5592

Table 1: Comparison of average ratings of all methods (across
all user sets, iterations and experimental runs).

This fact is confirmed by the average per iteration ratings re-
sults of Figs. 4 and 5. Fig. 4 shows that BayesYouLikeIt manages to
recommend movies that are on average highly rated by the users.8

Moreover, average ratings deviation can be observed to decrease
over time, demonstrating an ability to “learn” and progressively be-
come more confident on its assessment of users’ preferences. We
note that the over time decrease in ratings average absolute devia-
tion is a bit sharper for the variants using VPI (or Boltzmann-VPI)
on both trailers and movies. This figure also shows the (average)
maximum and minimum trailer ratings received by users (per itera-
tion). Maximum trailer ratings are consistently higher than ratings
received for movies recommended, for the same reasons as in the
experiments with simulated users above.

In Fig. 5(a), we observe that the VPI and Boltzmann exploration
methods (and their combinations) are successfully intertwined with
our “basic” Bayesian algorithm, since all BYLI variants return rec-
ommendations that receive consistently high ratings from the users.
Average ratings across all iterations, depicted in Table 1, confirm
that all BYLI variants perform very similarly, with the “pure” BYLI
method achieving a slightly better average score than the rest. How-
ever, BYLI - VPI on trailers provides an advantage when it comes
to sequential behavior (notice that on average it provides better rec-
ommendations at the initial steps). When Boltzmann is combined
with VPI, VPI is the defining component, and thus Boltzmann-VPI
and VPI exhibit identical behavior.

Fig. 5(b) then compares our method to LSMF. Note that LSMF
was tested under two assumptions in these experiments. First, on

8Fig. 4 depicts the BYLI-Boltzmann-VPI on trailers and movies
variant; results are similar for other BayesYouLikeIt variants.

the assumption that it is completely unaware of any user prefer-
ences at system start (this is marked as “LSMF-untrained” in the
figures); and on the assumption that the system is pre-trained on
ratings data from all other (i.e., the 6, 040 − 100 = 5, 940 non-
picked) users in the database (“LSMF-pretrained”). These results
clearly demonstrate that (a) the average user ratings value of Bayes-
YouLikeIt-recommendations is about 3.5 − 3.7 (out of 5); and (b)
although our method does not depend on other users’ ratings in
order to recommend movies to a user, ratings received are almost
indistinguishable in average quality to those received when using
the LSMF technique. Moreover, we can observe that, LSMF being
a CF method, it has to first collect a small number of ratings from
users in order to be able to return good recommendations, and thus
cannot respond to a user request in a meaningful manner during the
very first iteration. This is clearly visible in Fig. 5(c). In contrast,
our personalised method can immediately suggest a good movie to
a user. After the very first iterations, LSMF is able to exploit knowl-
edge of ”similar” users ratings and performs strongly—but as the
number of ”preferred” movies drops (since our dataset contains a
“closed set” of movies), its performance drops (Fig. 5(b)). BayesY-
ouLikeIt does not start as strong, but due to progressively converg-
ing to real user types, its performance is quite stable throughout all
recommendations. As a final remark, running on MATLAB on a
2.20 GHz / 4 GB RAM PC, it takes a BayesYouLikeIt agent only
about 0.3 sec on average to recommend a movie to a user.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a novel approach for making entirely
personalized recommendations, and applied it in the movie recom-
mendations domain. Our approach uses Bayesian updating to infer
a user model, which is a distribution of the same form with the mod-
els of the items under recommendation. This is, we believe, key to
enabling the implicit inference of an individual’s latent or other-
wise unrepresentable, complicated preferences; and enables us to
devise and employ a kind of Bayesian exploration in this domain.
We presented and tested several variants of our method, and eval-
uated their performance, with very promising results. In a sense,
what we exploit in this work is the fact that modern-world data sets
contain much “annotated” information regarding the nature of con-
tained data (e.g., in the form of “genre”-specifying labels). This
information allows us to properly define the dimensions of mul-
tivariate Gaussians representing users (according to our “you are
what you consume” idea), without relying on the tastes of others—
and without attempting to explicitly predict user ratings.

We remark that our method is generic, and not ”fine-tuned” for
movie recommendations. Nonetheless, our personalized method’s
performance almost matches that of a state-of-the-art movie recom-
mendations method, which is able to exploit preference data origi-
nating from thousands of users. As our method proves to be com-
petitive against algorithms that do have this “advantage”, it is most
probably especially well-suited for environments where user pref-
erences data is scarse. In sparse datasets, our approach is expected
to perform better than methods which require other users’ ratings.
Therefore, it could be used as a “bootstrapping” tool, generating
recommendations until more data is available; moreover, it can be
readily employed as a “training” component used during a more
sophisticated system’s initial operation period.

Regarding future work, we plan to conduct a user satisfaction
survey, based on a number of users testing our system. We also
intend to run experiments on larger movie datasets, and perform
a more thorough evaluation of the BayesYouLikeIt variants. It is
also worth testing our approach in other domains—e.g., use it for
recommending scientific papers; studying nutritional habits; or em-

(a) (b) (c)

Figure 5: (a) Behaviour of BayesYouLikeIt and its variants. (b) Comparison between LSMF and BYLI. (c) Methods behaviour during
the first 10 recommendations. All subfigures depict average per iteration ratings across all user sets and experimental runs.

ploy it in story-telling environments. Finally, we aim to incorporate
multiagent systems techniques in our model, allowing us to exploit
user-specific information coming from other types of online agents.

7. REFERENCES
[1] T. Anderson. An introduction to multivariate statistical analysis.

John Wiley and Sons, 2003.
[2] N. Barbieri, G. Costa, G. Manco, and R. Ortale. Modeling Item

Selection and Relevance for Accurate Recommendations: a Bayesian
Approach. In Proceedings of the 5th ACM Conference on
Recommender systems, RecSys ’11, 2011.

[3] S. Berkovsky, T. Kuflik, and F. Ricci. Distributed Collaborative
Filtering with Domain Specialization. In Proceedings of the 1st ACM
Conference on Recommender systems, RecSys ’07, 2007.

[4] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,
Corr. 2nd printing edition, October 2007.

[5] D. Carmel and S. Markovitch. Exploration strategies for model-based
learning in multiagent systems. Autonomous Agents and Multi-agent
Systems, 2(2):141–172, 1999.

[6] U. Chajewska, D. Koller, and R. Parr. Making rational decisions
using adaptive utility elicitation. In Proceedings of AAAI-2000, 2000.

[7] G. Chalkiadakis and C. Boutilier. Coordination in multiagent
reinforcement learning: a bayesian approach. In Proceedings of the
2nd International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’03, 2003.

[8] R. Dearden, N. Friedman, and D. Andre. Model based Bayesian
Exploration. In Proceedings of Fifteenth Conference on Uncertainty
in Artificial Intelligence, pages 150–159, 1999.

[9] S. Debnath, N. Ganguly, and P. Mitra. Feature Weighting in Content
Based Recommendation System Using Social Network Analysis.
WWW 2008, April 2008.

[10] M. DeGroot and J. Schervish. Probability and Statistics. 2002.
[11] D. Fink. A Compendium of Conjugate Priors. Technical report, 1997.
[12] J. Golbeck. Generating Predictive Movie Recommendations from

Trust in Social Networks. In iTrust-2006, pages 93–104, 2006.
[13] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit

feedback datasets. In Proceedings of the 2008 IEEE International
Conference on Data Mining, ICDM ’08, pages 263–272,
Washington, DC, USA, 2008. IEEE Computer Society.

[14] K. E. Kendall and J. E. Kendall. Systems Analysis and Design. 2011.
[15] G. Kurtenbach, A. Sellen, and W. Buxton. Some Articulatory and

Cognitive Aspects of “Marking Menus”: An Empirical Study.
Journal of Human-Computer Interaction, July 1991.

[16] H. Langseth and T. D. Nielsen. A latent model for collaborative
filtering. Int. J. Approx. Reasoning, 53(4):447–466, June 2012.

[17] A. Liu, Y. Zhang, and J. Li. Personalized Movie Recommendation. In
Proc. of the 17th Intern. Conf. on Multimedia 2009, October 2009.

[18] P. Melville, R. J. Mooney, and R. Nagarajan. Content-Boosted
Collaborative Filtering for Improved Recommendations. In
Proceedings of AAAI-2002, pages 187–192, July 2002.

[19] R. Mukherjee, P. S. Dutta, and S. Sen. MOVIES2GO - A new
approach to online movie recommendation. In the IJCAI Workshop
on Intelligent Techniques for Web Personalization, 2001.

[20] K. P. Murphy. Conjugate bayesian analysis of the gaussian
distribution. Technical report, University of British Columbia, 2007.

[21] F. Nielsen and R. Nock. Clustering Multivariate Normal
Distributions. ETVC 2008, LNCS 5416, pages 164–174, 2009.

[22] C. Ono, M. Kurokawa, Y. Motomura, and H. Asoh. A Context-Aware
Movie Preference Model Using a Bayesian Network for
Recommendation and Promotion. UM 2007, LNAI 4511, 2007.

[23] S. Shearin and H. Lieberman. Intelligent Profiling by Example. In
Proc. of the 2001 ACM Conference on Intelligent User Interfaces
(IUI-2001), Santa Fe, NM, January 2001.

[24] M. Szomszor, C. Cattuto, H. Alani, K. O’Hara, A. Baldassarri,
V. Loreto, and V. D. Servedio. Folksonomies, the semantic web, and
movie recommendation. In 4th European Semantic Web Conf., 2007.

[25] H. Yu and M. O. Riedl. A Sequential Recommendation Approach for
Interactive Personalized Story Generation. In Proceedings of AAMAS
2012, pages 71–78, 2012.

[26] Y. Zhang and J. Koren. Efficient bayesian hierarchical user modeling
for recommendation system. In Proceedings of the 30th Annual
intern. ACM SIGIR Conf. on Research and Development in
Information Retrieval, pages 47–54. ACM, 2007.

[27] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel
collaborative filtering for the netflix prize. In Proc. 4th Int. Conf. on
Algor. Aspects in Information and Management, LNCS 5034, pages
337–348. Springer, 2008.

