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Cerebral complexity preceded enlarged brain size
and reduced olfactory bulbs in Old World monkeys
Lauren A. Gonzales1, Brenda R. Benefit2, Monte L. McCrossin2 & Fred Spoor3,4

Analysis of the only complete early cercopithecoid (Old World monkey) endocast currently

known, that of 15-million-year (Myr)-old Victoriapithecus, reveals an unexpectedly small

endocranial volume (ECV) relative to body size and a large olfactory bulb volume relative to

ECV, similar to extant lemurs and Oligocene anthropoids. However, the Victoriapithecus

brain has principal and arcuate sulci of the frontal lobe not seen in the stem catarrhine

Aegyptopithecus, as well as a distinctive cercopithecoid pattern of gyrification, indicating

that cerebral complexity preceded encephalization in cercopithecoids. Since larger ECVs,

expanded frontal lobes, and reduced olfactory bulbs are already present in the 17- to

18-Myr-old ape Proconsul these features evolved independently in hominoids (apes) and

cercopithecoids and much earlier in the former. Moreover, the order of encephalization and

brain reorganization was apparently different in hominoids and cercopithecoids, showing that

brain size and cerebral organization evolve independently.
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T
he relationship between the external morphology,
cytoarchitecture and function of the brain is better
understood for macaques than for other non-human

primates because of their extensive use in neuroscience
research1–4. However, it is not known when and in what order
cercopithecoids evolved their distinctive pattern of cerebral sulci,
brain size, relative size of major brain structures such as the
olfactory bulbs, and inferred sensory and behavioural adaptations.
Until now, the absence of complete hominoid and cercopithecoid
cranial fossils from between 32 and 7 Myr ago necessitated a
reliance on phylogenetic comparative studies of living primates,
fossils outside this time period or incomplete fossils to
reconstruct such events5,6. Such evidence indicated that the last
common ancestor of cercopithecoids and hominoids had a small
olfactory bulb and enhanced visual system, reflecting a change
from reliance on olfactory to visual reproductive signalling7–9. In
the absence of fossil evidence, disagreements persist as to whether
increased brain size precedes, follows or evolves independently
from increased gyrification and brain reorganization10–14.

The well-preserved 15-Myr-old adult male cranium KNM-MB
29100 of Victoriapithecus from Maboko Island, Kenya currently
includes the only intact neurocranium of a Miocene catarrhine
before 6 Myr15. Victoriapithecus represents a cercopithecoid clade
that postdates the earliest fossil hominoid (Rukwapithecus) and
cercopithecoid (Nsungwepithecus) by 10 million years (Myr);
however, retention of a crista obliqua on the upper molars
indicates that it is more primitive than the last common ancestor
of extant Colobinae and Cercopithecinae16,17. Using high-
resolution computed tomography (CT) we digitally extracted
and reconstructed the endocast of KNM-MB 29100 to assess its
bearing on the evolutionary relationship between brain size and
complexity in the cercopithecoid lineage, and catarrhines in
general.

Results
Endocranial volume. The endocast of KNM-MB 29100 is well
preserved and shows remarkably clear impressions of the cerebral
sulci and gyri (Fig. 1; Supplementary Movie 1). After correcting
for some distortions, an endocranial volume (ECV) of 35.6 cm3

was obtained (Supplementary Fig. 1), substantially less than the
54 cm3 previously inferred15. Body mass estimates on the basis of
the cranial dimensions of KNM-MB 29100 converge between

6 and 7 kg (ref. 18), although its upper molar dimensions
are among the largest sampled for the species and indicate the
individual was closer to 10.5 kg (ref. 18). In comparison, the
largest postcranial estimates of body mass for Victoriapithecus do
not extend higher than 5.0–5.5 kg (refs 19,20). In this study we
use a conservative body mass range of 5–7 kg for KNM-MB
29100 as a compromise between these estimates. Relative to this
body mass range, the newly measured Victoriapithecus ECV
places the large male below the range of all known extant and
fossil crown catarrhines (Supplementary Table 1, Fig. 2a)21–38.
Victoriapithecus falls just below the best-fit regression line for
extant strepsirrhines when assuming a postcrania-based body
mass of 5 kg (Fig. 2b), and further below that line (overlapping
Indri) when using a body mass of 6–7 kg for KNM-MB 29100
(ref. 21). ECVs for the Oligocene stem catarrhine Aegyptopithecus
and stem anthropoid Simonsius (¼Parapithecus) fall somewhat
further below the strepsirrhine regression than Victoriapithecus,
indicating that 15 Myr ago the latter had only a slightly
larger relative brain size than 32-Myr-old Oligocene stem
catarrhines22,23.

Among cercopithecoids Miopithecus talapoin has an ECV
similar to Victoriapithecus, but an average body mass of
1.5–1.9 kg (ref. 21). Cercopithecoids with slightly lower body
masses than predicted for KNM-MB 29100, between 4 and 5 kg,
have ECVs roughly twice that of Victoriapithecus ranging from 51
to 82 cm3 (average 65.6, n¼ 6 species) if female and 53–71 cm3

(average 63, n¼ 11 species) if male21. Of these species, colobine
monkeys have the smallest ECVs relative to body mass, a
phenomenon related to their folivorous diet21,37. Since dental
morphology and microwear indicate that Victoriapithecus was
clearly frugivorous, diet did not contribute to its extremely small
brain size16.

Compared with Victoriapithecus, the estimated ECV for the
8- to 9-Myr-old colobine Mesopithecus is substantially larger,
falling within the extant catarrhine cluster but just below the
modern colobine regression line relative to its inferred body
mass5,18 (Fig. 2a,b). Directly measured ECVs for four species of
the Plio-Pleistocene cercopithecine Theropithecus are similarly
larger relative to body mass than Victoriapithecus but are all
smaller than living T. gelada, and plot towards the edge of the
catarrhine cluster where species with the smallest ECVs per body
mass are found35,37(Fig. 2a). The limited fossil cercopithecoid
data indicate that ECV had increased in late-Miocene and
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Figure 1 | Endocast of V. macinessi (KNM-MB 29100). (a) Three-quarter view, shown inside the cranium rendered transparent; (b) lateral;

(c) posterior; (d) superior and (e) inferior (basal) views. Scale bar, 1 cm.
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Plio-Pleistocene Old World monkeys relative to the very small
volume found in middle Miocene Victoriapithecus. While ECV
increases evolved independently in colobine and cercopithecine
subfamilies, neither lineage had reached modern ECV level until
the Holocene.

Existing evidence indicates that Miocene apes (excluding
Afropithecus) were substantially more encephalized than
contemporary cercopithecoids, although assessing exactly how
different their ECVs were will require an improved fossil record.

ECV estimates for incomplete skulls of 17- to 18-Myr-old
Proconsul24–27,10-Myr-old Dryopithecus25,26,28 and 8-Myr-old
Oreopithecus25,26,29–33, obtained from regressions of extant
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Figure 2 | Analysis of the brain and olfactory bulb size. (a) Bivariate

double logarthmic plot of ECV in cm3 against body mass in g for extant

strepsirrhines and catarrhines from Isler21, with data superimposed for

Victoriapithecus (V), Oligocene Simonsius (S)22 and Aegyptopithecus (A)23;

Miocene hominoids Proconsul (P)24–27, Turkanapithecus (T)25,26,

Dryopithecus (D)25,26,28, Oreopithecus (O)25,26,29–33; the Miocene colobine

Mesopithecus (M)5,18; Plio-Pleistocene cercopithecines T. darti (t1)18,35,

T. brumpti (t3)35,36; and T. oswaldi (t2)18,35,37,38; and extant T. gelada18,35.

Maximum convex polygons are fit to species means. (b) Ordinary least

squares regressions for strepsirrhines, colobines, cercopithecines and

hominoids using the data in a. (c) Double logarithmic plot of olfactory bulb

volume against brain volume for extant primates43,45 and Victoriapithecus.

Brain volume data for V, S22 and A23 are represented by ECV in cm3.

Olfactory bulb volume for fossil specimens is represented by olfactory fossa

volume in cm3 with maximum convex polygons fit to species means.
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Figure 3 | Interior nasal anatomy and vomeronasal complex in primates.

Atrioturbinal ridges extend outwards on the premaxilla in (a) Ateles and

(b) Aegpyptopithecus (arrows) but are absent in (c) Macaca and

(d) Victoriapithecus, whose nasal ridges descend inferiorly and terminate

within the nasal cavity. The vomeronasal groove (VNG) is a U- or J-shaped

depression (arrows) along the bony maxillary in palate47 in (e) Potto,

(f) Alouatta and (g) the stem catarrhine Aegyptopithecus but is absent in

(h) Victoriapithecus.
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anthropoid cranial dimensions against ECV, all fall either within
the range of great apes, hylobatids or cercopithecoids (lower end)
when considered relative to estimated body mass5,22–24 (Fig. 2a).
However, since similar methods15 overestimated the ECV of
Victoriapithecus by 34% compared with the direct measurements
obtained here, these apparently large hominoid ECV estimates
could be an artefact of methodology. The earliest conclusive
evidence that hominoids reached ECV levels of extant apes comes
from the late-Miocene Sahelanthropus cranium, for which ECV
falls within the range of chimpanzees relative to its estimated
body mass39–41.

Olfaction. Victoriapithecus differs from modern anthropoids in
having much larger olfactory bulbs that project anteriorly as in
strepsirrhines and Aegyptopithecus23,42 (Supplementary Fig. 2).
Relative to ECV, the olfactory fossa volume is large (0.22 cm3),
falling within the lower range of strepsirrhines and upper-most
range of anthropoids, similar to Aegyptopithecus and Simonsius
(Fig. 2c)22,23,43. Therefore, olfactory bulb reduction must have
occurred in cercopithecoids after 15 Myr, although it is already
reduced in the 17- to 18-Myr-old hominoid Proconsul44.
Measurement of a large olfactory bulb relative to the brain size
in Aegyptopithecus had previously demonstrated that olfactory
bulb reduction occurred independently in platyrrhine and
catarrhine primates23,43,45,46. The Victoriapithecus evidence
further reveals that olfactory reduction was not present in the
last common ancestor of hominoids and cercopithecoids, but
instead evolved independently in these two clades and at least 2
Myr later in cercopithecoids than hominoids.

Although the olfactory bulbs of Victoriapithecus are larger
compared with those of crown catarrhines, and more similar in
size to Aegyptopithecus, its olfactory system may have differed
significantly from the latter. Mammalian olfaction consists of two
distinct parts, the main olfactory bulb, which is typically used to
detect volatile odorant molecules, and the vomeronasal organ
(VNO) used to detect odorant molecules of high molecular
weight such as water-soluble pheromones47. Two bony structures
associated with a functioning VNO in extant strepsirrhines,
tarsiers and platyrrhines, an atrioturbinal ridge in the nasal
complex and a vomeronasal groove along the maxillary palate, are
present in Aegyptopithecus but absent in Victoriapithecus and
living crown catarrhines47–51 (Fig. 3a–d). Miocene hominoids
Afropithecus and Proconsul similarly lack VNO-related structures;
however, the presence of an atrioturbinal ridge in two small-
bodied early Miocene non-cercopithecoid catarrhines
Limnopithecus and Kalepithecus indicates that some catarrhine
lineages retained VNO function during the Miocene48. In
contrast to Aegyptopithecus and these small-bodied catarrhines
Victoriapithecus, Afropithecus and Proconsul would have relied
only on their main olfactory bulbs rather than VNO for the
detection of socially relevant olfactory stimuli, possibly including
pheromones (Fig. 3e–h)52–55.

Cerebral organization. Notwithstanding its small ECV and
large olfactory bulbs, the cerebral cortex of Victoriapithecus is
reorganized relative to Oligocene anthropoids and exhibits the
modern cercopithecoid pattern of sulci and gyri. In superior view,
the sulci of all cercopithecoids, including Victoriapithecus, are
arranged in a highly distinctive frog-shaped pattern (Fig. 4). The
arms of the frog are formed by the principal and arcuate sulci that
demarcate the prefrontal cortex; the central sulcus (primarily an
anthropoid trait) borders the frontal cortex posteriorly forming
the top of the frog’s thigh; the intraparietal sulcus separates the
back of the frog’s thigh from the calf; the superior temporal sulcus
forms the frog’s shin; and the lunate sulcus forms the bottom of

its foot and borders the occipital lobe anteriorly (Fig. 5). No other
primate has this cercopithecoid sulcal pattern with the exception
of the platyrrhine Cebus in which it convergently evolved5,6,56,57

(Fig. 6). Unlike variation seen in platyrrhine sulcal patterns, the
frog-shaped pattern is highly conserved across cercopithecoids,
although some differences exist between the two subfamilies56,57.

In contrast to Victoriapithecus, Aegyptopithecus has smooth
and featureless frontal lobes lacking both principal (¼ rectus) and
arcuate sulci5,23,42 as in strepsirrhines and platyrrhines excluding
Cebus. Aegyptopithecus also has smooth occipital and temporal
lobes lacking inferior occipital sulci, dimpling of the temporal
lobes and anterior and posterior middle temporal sulci, all of
which occur in Victoriapithecus. Principal sulci are shared by all
crown catarrhines and must have been retained from an ancestral
condition more recent than Aegyptopithecus. The presence of
arcuate sulci in Victoriapithecus, all other cercopithecoids, the
10-Myr-old hominoid Dryopithecus25, extant great apes and
humans indicates they may have been present in the eucatarrhine
common ancestor. The unique and complex pattern of sulci
occurring in the prefrontal region of hylobatids and the early
Miocene Proconsul5,58 could therefore be interpreted as derived,
although their lack of an arcuate sulcus has previously been
interpreted as primitive5,25,56,58. Alternatively, the arcuate
sulcus might have evolved independently and convergently in
hominoids and cercopithecoids, as it did in Cebus. In macaques,
areas around the arcuate sulcus are involved in visual working
memory, hand–eye coordination and mirror neurons activated by
observing the movements of others59. Neurons in the macaque
inferior temporal lobe are involved in visual pattern recognition
including the processing of colours as well as place, face
and object recognition59,60. In particular, the posterior middle
temporal sulci, found in Victoriapithecus but not in
Aegyptopithecus, concerns an area where sharply tuned colour-
selective neurons are concentrated in macaque brains60.
Therefore, the presence of additional temporal lobe sulci in
Victoriapithecus compared with Oligocene anthropoids suggests
that it had already evolved a more complex visual system than
Aegyptopithecus in spite of their similarly small ECVs.

Differences between Victoriapithecus and extant cercopithecoid
cerebral cortices are indicated by the more anterior position of
various sulcal landmarks relative to endocast length and height in
the former (Supplementary Table 2). Victoriapithecus shares with
Aegyptopithecus the lack of an obvious precentral superior sulcus,
and frontal lobes that are more V-shaped anteriorly, shorter
anteroposteriorly and lower relative to length than in extant
cercopithecoids. Among the Miocene apes, the frontal lobes
of Proconsul (17–18 Myr), Turkanapithecus (17 Myr) and
Dryopithecus (10 Myr) are substantially broader and less
constricted anteriorly than both Aegyptopithecus and Victoria-
pithecus. Only Afropithecus (17 Myr) has a small V-shaped
frontal cortex among Miocene hominoids.

The Victoriapithecus motor cortex (the frog’s thigh) appears to
have been narrower and the superior temporal gyrus shorter than
in extant cercopithecoids as indicated by the more anterior
position of the confluence of lateral and superior temporal sulci.
In addition, the inferior temporal lobe is large and uniquely has a
large posterior inferior temporal region that is continuous with
the occipital lobe, creating a distinct thickening in the occipital
lobe between the short lunate and upwardly curving inferior
occipital sulcus that is much less anteriorly positioned than in any
extant cercopithecoid we observed.

Of the two extant cercopithecoid subfamilies, the
Victoriapithecus cerebral cortex is more similar to those of
cercopithecines than colobines. Only extant colobines and the
late-Miocene colobine Mesopithecus have intraparietal sulci that
diverge laterally at their posterior ends as the superior parietal
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lobule (SPL) expands and impinges on a shorter but more
gyrified occipital lobe56,57. Victoriapithecus shares with extant
cercopithecines and the late-Miocene colobine Libypithecus
intraparietal sulci that are straight and converge posteriorly

as they approach the lunate sulcus, posterior ends of the
superior parietal gyrus that are V-shaped and a more anteriorly
positioned lunate sulcus5 (Fig. 7). Because Aegyptopithecus
and Victoriapithecus share relatively large occipital lobes and
unexpanded SPLs with cercopithecines (Supplementary Table 2),
it is likely that the colobine condition is derived56. Lateral and
superior temporal sulci converge in Victoriapithecus as in most
cercopithecines, and some colobines including Libypithecus and
Semnopithecus, but remain separate in most colobines, and some
fossil cercopithecines including Paradolichopithecus arvernensis5

and T. oswaldi56,57,61. The only trait Victoriapithecus shares
uniquely with colobines is asymmetry of the prefrontal cortex
resulting from a superiorly directed extension from the principal
sulcus occurring only on the right side in the Miocene monkey56.

Discussion
The combination in Victoriapithecus of modern cercopithecoid
cerebral complexity and gyrification with a strepsirrhine-like
small ECV and large olfactory bulbs is unexpected in an Old
World monkey that postdates the hominoid/cercopithecoid
divergence by 10–15 Myr (Fig. 8). This is especially true because
encephalization has been linked with increased gyrification in
anthropoid evolution, and in particular in the genus Homo10,11,62.
However, recent evidence that brain size and gyrification are
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Figure 4 | Superior views of extant cercopithecoid brains compared with Victoriapithecus endocast. All display the distinctive pattern we describe as

‘frog-like’ (centre image). Orange box marks the colobine species. Brains not scaled to actual size. Brain images from the Primate Brain Bank, Netherlands

Institute for Neuroscience, the Netherlands, except Procolobus badius which was provided by K. Zilles.
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Figure 5 | Sulci on the superior aspect of the Victoriapithecus endocast.

(a) CT-based reconstruction and (b) line drawing highlighting the basic

sulcal configuration representative of all cercopithecoids.
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Figure 6 | Comparison of sulcal patterns in primates. Superior views of strepsirrhines (Eulemur, Otolemur and Loris), Tarsius, and platyrrhines

(Callithrix, Saimiri, Alouatta, Ateles and Cebus) compared with the cercopithecoid Macaca. Among extant primates, only Cebus converges on the

cercopithecoid sulcal pattern. Brain images provided by K. Zilles except for Cebus and Macaca which are from the Primate Brain Bank, Netherlands Institute

for Neuroscience, the Netherlands.
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Figure 7 | Differences between extant colobine and cercopithecine superior parietal lobes. Superior views of the brains of Colobus guereza (left) and

Macaca fascicularis (right) show that owing to posterior expansion of the SPL in colobines, the intraparietal sulcal appears to be arched in lateral view,

whereas in the cercopithecine the intraparietal sulcus is straight. Aegyptopithecus42 and the fossil colobine Libypithecus5 appear to have straight intraparietal

sulci, whereas Mesopithecus5 has an arched intraparietal sulcas and some expansion of SPL. Both Mesopithecus and Libypithecus have anteroposteriorly short

occipital lobes, unlike Victoriapithecus and Aegyptopithecus. Extant cercopithecoid brain images were provided by the Primate Brain Bank, Netherlands

Institute for Neuroscience, the Netherlands.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8580

6 NATURE COMMUNICATIONS | 6:7580 | DOI: 10.1038/ncomms8580 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


controlled by different genes in catarrhine primates suggests
that encephalization and cerebral complexity could evolve
independently14, and that either one could precede the other.
The discovery that complex gyrification evolved before increased
brain size in cercopithecoids underlines the finding that the
notably small but highly gyrified brain of the tool-making
hominin H. floresiensis63 is perhaps not as remarkable as it
may seem. Diversity in the patterning of encephalization
and gyrification is also seen in the evolutionary history of
terrestrial and aquatic cetartiodactyls with encephalization
preceding gyrification in cetaceans, but gyrification preceding
encephalization in terrestrial artiodactyls64,65.

Following the evolution of the distinctive frog-like pattern of
cercopithecoid sulci in Victoriapithecus by the middle Miocene, it
was retained in both colobine and cercopithecine subfamilies
resulting in far less intergeneric sulcal variation in extant Old
World monkeys than is seen in hominoids, platyrrhines and
strepsirrhines56. We are uncertain why this pattern was so
successful that it remained static for the past 15 Myr, but it
convergently evolved in Cebus monkeys that are among the most
intelligent of platyrrhines66. Sulcal differences between colobines
and cercopithecines are restricted to greater asymmetry of
prefrontal sulci and SPL expansion with related changes in the
intraparietal sulcus in colobines. We hypothesize that SPL
expansion in colobines may be an adaptation for folivory since
in macaques V6 and PE regions in that area appear to be devoted
to proprioception and the reaching and grasping of objects such
as occurs for prolonged periods during the harvesting of
leaves67,68. Similar expansion of the SPL is seen in extant
hylobatids, which are known to include large amounts of leaves
in their diets55,69, but does not occur in highly frugivorous
Aegyptopithecus, Victoriapithecus or extant cercopithecine
monkeys42,56.

Convergent evolution appears to have been a hallmark of
catarrhine brain evolution, with reduction in olfactory bulb
volume, widening and expansion of the frontal lobe and increased
ECV having evolved independently in hominoids and cerco-
pithecoids as well as in colobines and cercopithecines. In

addition, the absence of the arcuate sulcus in Proconsul and
hylobatids indicates that this sulcus may not have been present in
the last common ancestor of hominoids and cercopithecoids, in
which case it convergently evolved in cercopithecoids and
hominids. Fossil evidence has already shown that the prefrontal
cruciate sulcus evolved independently in five major carnivore
clades, indicating that convergent evolution of prefrontal sulci
such as the arcuate sulcus is possible70. Alternatively, absence of
the sulcus in Proconsul and hylobatids may represent a
convergent loss or a shared derived condition.

The timing of olfactory bulb reduction and increased ECV
appears to have been very different in cercopithecoids than
hominoids. Existing evidence indicates that reduction of the
olfactory bulb and evolution of modern catarrhine ECV
levels had evolved by 17–18 Myr ago in Proconsul24–27,44.
In contrast, olfactory bulb size and ECV in 15-million-year-old
cercopithecoids had changed only slightly relative to 32-million-
year-old Oligocene anthropoids. Late-Miocene and Plio-Pleistocene
monkeys approach modern cercopithecoid ECV levels; however,
Old World monkey brains did not fully reach their extant
size until the Holocene5,21,35,37, with increased ECV evolving
independently in colobines and cercopithecines. A pattern of
ECV increase similar to that of cercopithecoids occurred in
terrestrial artiodactyls, for which ECV relative to body size
changed little between the Oligocene and Miocene, but increased
dramatically during the Holocene and did so independently in
several different lineages65.

In conclusion, differences in the brain and cognitive evolution
between hominoids and cercopithecoids can now be traced back
to the early Miocene (17–18 Myr). With cercopithecoids showing
cerebral and visual system complexity preceding encephalization
and olfactory bulb reduction, and hominoids exhibiting frontal
lobe expansion and encephalization before gyrification, it appears
that some morphological and functional similarities between
extant macaque and hominoid brains may have evolved
convergently. The combination of a modern cercopithecoid sulcal
pattern with strepsirrhine ECV and olfactory bulb size in
Victoriapithecus refutes hypotheses that increased brain size is
the major factor causing the development of cerebral complexity
in anthropoids. Instead, evidence from the brain of Victoria-
pithecus shows that cerebral complexity and brain size, and
changes in visual and olfactory systems, are influenced by
different sets of selective pressures and therefore evolve
independently.

Methods
CT scan information and visualization. KNM-MB 29100 was CT scanned
with the BIR ACTIS 225/300 of the Max Planck Institute for Evolutionary
Anthropology, Leipzig, at the time installed at the National Museums of Kenya in
Nairobi. The isotropic voxel size is 0.044 mm. Avizo 7.1 and 8.0 (Visualization
Sciences Group) and Geomagic Studio 2013 (Geomagic Inc.) were used for
visualization, segmentation, reconstruction and quantification.

Correction for cranial distortion. To calculate the ECV of KNM-MB 29100, the
preserved endocast was corrected for distortion in three areas (Supplementary
Fig. 1). The endocranial surface associated with the inferiorly depressed frontal
squama was realigned with that of the parietals, filling smaller areas bilaterally
by surface interpolation. The central part of both orbital roofs is fragmented and
pushed superiorly. The associated surfaces were removed from the endocast and
filled by interpolation based on the surrounding, well-preserved areas. Lastly,
a small distorted area of the endocast associated with the left temporal lobe was
interpolated. The ECV of the reconstructed endocast is 35.6 cm3. Since parts of the
right frontoparietal area are not as well preserved as the left side, we also calculated
ECV values for two endocast reconstructions based on the left half combined with
its mirror image. One version uses an overall best-fit midsagittal plane, whereas the
other applies the additional constraint that the original foramen magnum size is
maintained. The associated ECVs, 35.5 and 36.2 cm3, respectively, bracket the value
obtained for the full endocast.
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