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[1] Statistical analysis is carried out for satellite-based global daily tropospheric and
stratospheric temperature anomaly and solar irradiance data sets. Behavior of the series
appears to be nonstationary with stationary daily increments. Estimating long-range
dependence between the increments reveals a remarkable difference between the two
temperature series. Global average tropospheric temperature anomaly behaves similarly to
the solar irradiance anomaly. Their daily increments show antipersistency for scales longer
than 2 months. The property points at a cumulative negative feedback in the Earth climate

system governing the tropospheric variability during the last 22 years. The result
emphasizes a dominating role of the solar irradiance variability in variations of the
tropospheric temperature and gives no support to the theory of anthropogenic climate
change. The global average stratospheric temperature anomaly proceeds like a 1-dim
random walk at least up to 11 years, allowing good presentation by means of the
autoregressive integrated moving average (ARIMA) models for monthly series.
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1. Introduction

[2] Increase of knowledge about the variability of the
Earth climate system is extremely important. Temperature is
the main climate characteristic and an easily measurable
physical quantity. It has been measured more than three
centuries in some stations. The station data enable us to
analyze the local climate variability. In order to estimate
possible changes during last century, the global average
temperature data sets have been collected using available
surface air measurements. Collections by University of East
Anglia Climate Research Unit (UEA CRU) [Jones et al.,
1999] and NASA GISS [Hansen et al., 1999] are available
online and widely used for climate research. Analysis of the
ground-based temperature generally shows a remarkable
global warming during recent decades [[PCC, 1996; Jones
et al., 1999]. But the ground-based data sets also contain a
hardly removable uncertainty. Continuous temperature field
over the Earth is very variable and the amount of stations
was small hundred years ago in comparison of that today.
UEA CRU online (www.cru.uea.ac.uk:80/cru/data) data set
shows that only 18% of the Earth’s surface was covered by
stations in 1860 and the 40% level was not overtopped by
the end of the nineteenth century. The situation compels to
conclude that the obtained temperature values are of differ-
ent accuracy. Several problems are connected to large-scale

Copyright 2002 by the American Geophysical Union.
0148-0227/02/2001JD002024$09.00

Kérner, O., On nonstationarity and antipersistency in global temperature series, J. Geophys. Res., 107(0), XXXX, doi:10.1029/

averaging of meteorological fields on the basis of discrete
measurements. Temperature field has no smooth form but
rather random and intermittent structure. There are lots of
methods to estimate statistical structure in order to get
optimal averaging schemes from discrete measurements
[see Kagan et al., 1997]. However, in the case where half
of the area has no measurements at all during many years,
they are rather useless. None of the methods can repro-
duce the actual average. The situation effectively reduces
reliability of the ground-based global temperature series. It
is reasonable to also analyze other and independent data
sets.

[3] Temperature measurements using meteorological sat-
ellites opened a way to get methodically homogeneous and
globally covered atmospheric temperature estimates. The
data sets based on measurements by Microwave Sounding
Unit (MSU) onboard polar-orbiting Tiros-N series satellites
[Spencer et al., 1990] of the stratospheric and tropospheric
temperature are available since January 1979 on daily and
monthly basis.

[4] Simultaneously, the solar irradiance measurements
have been carried out using different radiometers and
satellites. The results are collected, adjusted, cross-cali-
brated [Frohlich and Lean, 1998a; Frohlich and Lean,
1998b], and available online. Earlier attempts to find a
direct statistical relationship between the solar activity and
air temperature were unsuccessful [Monin and Vulis, 1971].
However, Friis-Christensen and Lassen [1991] recently
found that the variation of the solar cycle length closely
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matches the long-term variation of the Northern Hemisphere
land air temperature during the past 130 years. Modern
precise series enable us to study the temporal variability of
both the irradiance and temperature anomalies in more
detail due to better temporal resolution.

[5] The aim of the present study is to analyze statistically
the irradiance and temperature anomaly series in order to
look into their variability and determine the properties
important for climate research. Are the series stationary or
nonstationary, persistent or antipersistent? What type of
empirical models might be useful to represent them? Esti-
mation of frequency distribution, correlation, spectral den-
sity, and R/S analysis are used to seek for the answers.

[6] In the appendix, modeling issues of the monthly mean
temperature series are considered. The family of autore-
gressive integrated moving average (ARIMA) models is
used to represent the monthly anomalies with a remarkably
successful outcome in terms of residual variance. These
models are shortly characterized by three numbers (p, d, q)
where p denotes the order of autoregressive operator AR(p),
q the order of moving average MA(q) part, and d shows the
order of initial differencing [Box and Jenkins, 1976].

1.1. Stationarity Issues

[7] Quantitative characterization of random processes is
inseparably connected to the terms stationarity and non-
stationarity. According to mathematical definition [e.g.,
Mandelbrot, 1982], a process x(f) is (strongly) stationary
if the distribution of x(¢) is independent of ¢, the joint
distribution of x(¢#; + 7) and x(f, + 7) is independent of T,
and similarly, for all £, the joint distributions of x(z; + 7), .. .,
x(t; + 7). The definition, involving all joint distributions,
produces a too strong criterion and therefore, rules out most
of the practical tasks for finite data sets. Thus, a more
popular definition calls a process x(f) (broadly) stationary if
its mean value is constant and its autocovariance function is
invariant under translation.

[8] Mathematical definitions are unique for all scales.
Geophysical series are generally more complicate. The
situation where both stationary and nonstationary behavior
in a single data set occurs, but necessarily within different
scaling ranges, small-scale nonstationarity and large-scale
stationarity is inherent for several geophysical time series
[Davis et al., 1996a].

[0] In the present study, stationarity conditions for scale
invariant time series are necessary, because satellite based
temperature anomaly series are Brownian motion-like [e.g.,
Kdrner, 1996], and the latter is a well-known scale invariant
model. Spectral density p(f) for a scale invariant process
holds power-law behavior in considerable frequency scale
1/L, < f < 1/Ly [Mandelbrot, 1982; Davis et al., 1996a;
Davis et al., 1996b],

p(f) o f70. (1)

The value of 3 contains information about the degree of
stationarity.

[10] Stationarity certainly holds for scaling processes with
3 =0 (white noise). Using Wiener-Khinchine theorem about
Fourier transform duality the spectral criterion for statio-
narity 3 < 1 can be established [Davis et al., 1996a]. From
that it follows that scaling processes with 1 < (3 < 3 are
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nonstationary with stationary increments. In the present
study these conditions are used to classify the global daily
temperature and solar irradiance series. Whereas a 22-year
record is quite short in comparison with an ordinary under-
standing about climate scale, the results have less climatic
importance per se and more methodical character in order to
better understanding about the variability structure in the
Earth climate system.

1.2. Persistency or Antipersistency in a Data Set

[11] Important climatological information can be obtained
separating scale invariant temperature series according to
the growing rate of the rescaled range of their trajectories.
Hurst [1951] initiated the rescaled range studies for natural
time series and started to characterize its growing rate by the
exponent H, 0 < H < 1.

[12] His work stimulated Mandelbrot and Van Ness
[1968] to introduce more general process than Brownian
motion. They defined a process called fractional Brownian
motion (fBm), By (f), —oo <t < oo with parameter H (0 < H
<1) such that By(t,) — By(t;) has zero mean and variance
|t, — t; [*. In the case of H = 0.5 the process coincides with
the ordinary Brownian motion.

[13] FBm has an important property, significant long-
range correlation between its nonoverlapping increments.
The correlation turns out to be positive if H > 0.5 and
negative if H < 0.5 for all lags up to infinity. If H > 0.5 the
increments tend to have the same sign, so that By (f) tends to
increase in the future if it has had an increasing tendency in
the past. The feature is called persistency. Physically, a
persistent system is going to increase a deviation showing a
positive feedback dominating in the system governing the
series. If H < 0.5, the increments By (t,) — By (t)) and By (t3)
— By(t,) during the nonoverlapping time intervals #; < £, <
t3 (t, — 1 =tz — 1) tend to be of opposite sign, so that By (¢)
has a tendency to decrease in future if it has had an
increasing tendency in the past and vice versa. The feature
is called antipersistency. The antipersistency expresses a
tendency of the values of increments to compensate for each
over to prevent for the trajectory from blowing up too fast.
Such a system tends to eliminate deviations showing a
negative feedback in aggregate. An antipersistent time
series visit, on average, the mean value more often than
an ordinary Bm. Mandelbrot and Wallis [1969] showed that
the perfect compensation occurs in pure sine wave leading
to H— 0 if T — oo. Actually, the limit (if T — oo0) may or
may not exist, but nevertheless, the sample based value of
exists, indicating independence of increments or departure
towards persistency or antipersistency during the sampling
time.

[14] Thus, the value of H (less or more than 0.5) deter-
mines the long-range behavior of the time series. Estimation
of H becomes the first task. This important parameter has
many names in the scientific literature: the Hurst exponent,
the self-similarity, or the intensity of long-range dependence
parameter. In section 4 the actual estimation of H for the
temperature and irradiance series is carried out and results
presented.

[15] Note that the terms persistency and antipersistency
are originally determined for (stationary) increments of a
(nonstationary) series (see Mandelbrot [1982], p. 251 for
details). There holds the direct analogy with the ordinary
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Brownian motion which is defined via its (independent and
identically distributed) increments. If the increments are
nonstationary, the obtained H value has no meaning in
relation to its defined sense. Overlooking this condition
may lead to misinterpretation of the terms, as one can see in
work by Koscielny-Bunde et al. [1998].

2. Data

[16] Global temperatures have been monitored by satellite
since 1979 [Spencer et al., 1990] with the Microwave
Sounding Units (MSU) flying on the National Oceanic
and Atmospheric Administration’s (NOAA) TIROS-N ser-
ies of polar-orbiting weather satellites. Data of the thermal
emissions of radiation by molecular oxygen at four frequen-
cies near 60 GHz from nine separate satellites have been
combined to provide a global record of temperature fluctu-
ations in the lower troposphere (the lowest 8 km of the
atmosphere) and the lower stratosphere (covering an altitude
range of about 15—19 km). [Spencer and Christy, 1992a;
Spencer and Christy, 1992b] have shown that the MSU
calibrations have been very stable, with a precision of
monthly satellite measurements of 0.02°C for the global
mean.

[17] Revisions to previous version of these data sets have
been recently applied to account for the effects of orbit
decay (loss of satellite altitude) and orbit drift (east-west
movement) [Christy et al., 2000]. Orbit decay introduces an
artificial cooling in lower tropospheric temperature data set,
while the effects of orbit drift introduce artificial warming.
The change in global trends due to these operations for
1979-1998 for lower tropospheric temperature was an
increase from +0.03 to +0.06 K per decade.

[18] A comprehensive comparison is made by Hurrell et
al. [2000] between two tropospheric temperature data sets
over the period 1979—1998: the most recent and substan-
tially revised MSU channel 2 data retrievals, and a gridded
radiosonde analysis provided by the Hadley Center of the
U.K. Meteorological Office. The latter is vertically weighted
to approximate the deep layer temperatures measured by the
satellite data. At individual grid points, there is good overall
agreement among monthly anomalies, especially over the
Northern Hemisphere continents where the climate signal is
large, although monthly root-mean-square (rms) differences
typically exceed 0.6°C. Over the tropics, correlations are
lower and rms differences can be as large as the standard
deviations of monthly anomalies. Differences in the grid
point variances are significant at many locations, which
presumably reflects sources of noise in one or both measure-
ment systems. For collocated global average monthly
anomalies, correlations are 0.9 with rms differences 0.10°C
for both lower tropospheric and midtropospheric anomalies
[Hurrell et al., 2000].

[19] The global daily and monthly averaged temperature
anomalies for the entire period of record (since January
1979) are available online (www.ghcc.msfc.nasa.gov/). Two
daily records, T,, the average temperature anomaly for
lower troposphere (6—8 km deep), and Ty, the average
stratospheric temperature anomaly series for the time inter-
val from January 1979 to August 2001, are analyzed in the
present study. Missing data (total amount is 76 days during
the period from 1979 to 1991, with the longest interval of
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Table 1. Estimated First Moments for the Series T and I and Their
Increments dT and dI

Data Type Unit n, days  Sample Mean Standard Deviation
T, °C 8279 0.01339 0.50441
dTy, °C 8278 —0.00012 0.01858
T, °C 8309 —0.00703 0.21631
dT,. °C 8308 0.00000 0.03752
I Wm> 7988 1366.223 0.59741
dI Wm > 7987 0.00026 0.18215

15 days) are interpolated linearly. The operation decreases
variance for the studied series, but enfolding less than 1% of
the whole data set, the resulting bias is negligible.

[20] A composite record of the sun’s total irradiance (I in
Wm %) compiled from measurements made by five inde-
pendent space-based radiometers since 1978 and adjusted
for drifts in the radiometric data by Frohlich and Lean
[1998a] is available online. The composite record exhibits a
prominent 11-year cycle with similar levels during 1986 and
1996, the two most recent minimum epochs of solar activity.
Fréhlich and Lean [1998b] emphasize that no irradiance
increase from 1986 to 1996 solar minima. Nor does the
irradiance record support a recent upward irradiance trend
inferred from solar cycle length. The data set contains daily
irradiance values from 1978 to 2000. Missing daily values
are interpolated for spectral density calculations and R/S
analysis.

3. Statistical Characteristics for Daily Series
3.1. First Moments

[21] Standard formulae to calculate sample mean, var-
iance, correlation function [e.g., Box and Jenkins, 1976] are
used in the present section. Estimates of sample mean and
variance for the temperature and irradiance daily anomaly
series (T, and I, respectively) and their daily increments
(dT, and dI), together with values of sample size n, are
shown in Table 1. Sample mean values for the temperature
anomalies are nonzero because the anomalies are originally
calculated in respect to the 20-year interval, but we are
using the maximum available record (more than 22 years).
The stratosphere tends to cool and the solar irradiance to
increase during that period. Note also a remarkably small
variance for the daily increment series in comparison with
that for the anomaly series.

[22] Autocorrelations r(k) for lags k=0, 1, ..., 100 days,
calculated for two temperature anomaly series X; and their
daily increments x; = X; — X;_1, i = 1,...,n are shown in
Figure 1.

[23] Autocorrelations for the daily stratospheric temper-
ature anomalies decay extremely slowly. Autocorrelations
for two other series show a bit faster decay during the first
lags up to 10 days. Then a similarly slow decay goes on.
Daily increments are much less correlated. Only a few first
values appear to be remarkably nonzero. Behavior of the
autocorrelations for I and dI are very similar to those for T,
and dT,, respectively (not shown).

3.2. Distribution of Daily Anomaly and Increment

[24] Frequency distributions for three studied series are
shown in Figures 2a—2c.
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Figure 1. Sample autocorrelations for the global tempera-

ture anomalies (T,) and their daily increments (dT,).

[25] As a rule, the daily anomalies have asymmetric and
often multimodal probability distribution density with large
variance. On the other hand, estimated sample densities for
the increments are unimodal, nearly symmetric, and have
about a magnitude less variance in comparison with the
anomalies. Some asymmetry is observed in distribution of
the irradiance increments. Testing estimates for asymmetry
and excess shows that the increment distributions are differ-
ent from the normal distribution at 95% significance (not
shown) in two cases. The same result was obtained using
Kolmogorov-Smirnov (K-S) test between hypothetical nor-
mal distributions with the estimated sample mean and
variance (see Table 1) and the empirical frequency distri-
bution. Actual maximum differences for dT,. and dI are
0.020 and 0.099, respectively, but the 95% critical value
equals to 0.015. The distributions are characterized by a
high peak at the mean and fatter tails than normal distribu-
tion having the same variance. The current dT,, sample
appears to be approximately normal (i.e N(0, 0.019)) at the
95% level.

3.3. Running Standard Deviations

[26] Temporal variability of variance is an important topic
for determining the time series modeling opportunities.
Running standard deviation estimates are calculated for
six variables (for anomalies and their increments) and the
most interesting features are shown in Figures 3a and 3b.
Figure 3a shows dependence of the standard deviations for
temperature and irradiance anomalies as functions of record
length. The log/log scale figure indicates that standard
deviations for the anomalies are increasing together with
the increasing record length T with different speed.

[27] Figure 3b shows standard deviation time series
estimated for 268 nonoverlaping 30-day-long intervals.
Only four lines are shown. Variability of the estimates for
dT,. and dTj; is very weak and thus not shown. The results
do not contradict possibility that both temperature anomaly
series have stationary increments. 30-day standard deviation
records for T, and T, vary slowly with approximately
similar amplitude and opposite phase.

[28] Variability in the irradiance record is more compli-
cated. Both irradiance anomaly and its daily increment
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represent series with time varying variances. The variance
is increasing during the period of increased solar activity
and vice versa. Standard deviation records for anomaly and
its increment change nicely in the same phase. The both
standard deviations have quite similar values during the
periods of low solar activity and differ remarkably other-
wise. Figure 3b also reveals that the transition period from
high to low variance may be abrupt (July 1984) or slow
(1994). This is the first statistic found where the T, and I
series behave essentially differently.
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Figure 3. Running standard deviations calculated (a) for
increasing time interval in log/log scale, and (b) for non-
overlapping constant T = 30 day sequences of the anomaly
and increment series. Month and year of the abrupt changes
in the irradiance record are marked with arrows.

3.4. Spectral Density

[29] Spectral density p(f) is calculated using of the
routine SPCTRM by Press et al. [1993]. Bartlett window
function is used in it. Choice of the window type is not
important in our case. To reduce statistical noise, the average
of two estimates each calculated for 4096 points is presented.
The cost of this approach is loss of information at the large
scales. Smoothed spectral density estimates in logarithmic
scale log,p(f) are shown in Figure 4a for the daily anoma-
lies and in Figure 4b for the increments. Log, is used because
it facilitates counting periods starting from the Nyquist
frequency (log,f = —1) to whole interval (log,f = —12).
They correspond to the periods 2, 4, ..., 4096 days.

[30] Low frequencies are dominating in the variability of
all three daily anomaly series. An approximate power-law
behavior holds for the main interval of frequencies (—10 <
log, f < —1) available from the current anomaly records.
Estimated values for the scaling exponent 3 in equation (1)
equal to 2 (Ty,), 1.75 (T,) and 1.5 (I). All anomaly series
appear to be nonstationary with stationary daily increments
in the corresponding timescale.

[31] Determined high-frequency limit for nonstationarity
is presumably technical due to the daily sampling. Synoptic
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scale motions in the troposphere are covering the scale from
some hours to a week and the 3 value for turbulent energy
dissipation spectral density is 5/3. A close exponent value (3
= 1.8) has been found for several ground based temperature
records in Lovejoy and Schertzer [1986] extending to at
least several minutes to month. The present estimate for the
mean tropospheric temperature anomaly appears also to be
close to those.

[32] Obtained 3 = 2 estimate for T, over a considerably
wide frequency interval corresponds to that for Brownian
motion (Bm), but the spectral density does not determine a
process uniquely [Davis et al., 1996a].

[33] Spectral density estimates for dT,, show that the
similarity with Bm continues. The graph is close to that for
white noise, (p(f) =~ const) over the whole available
interval. Two other increment series have more complicated
spectra. Higher frequencies associated with 8—32 day
periods are evidently dominating in both cases. The sit-
uation seems to be natural, because energetically strong
annual course in the solar irradiance (in comparison with
the daily anomalies) suppresses lower frequency Fourier
modes for the increment series. Note that difference
between the T, and T, spectral behavior is larger than that
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Figure 4. Smoothed spectral density estimates (a) for
three daily anomaly series and (b) for their daily increment
series in log/log scale. Here f = 1/days; that is, —I1
corresponds to Nyquist frequency (2-day period), and —12
to 4096-day period.



XX X-6

between T, and 1. The same situation holds for most of the
calculated statistics.

4. Detection of Long Memory

[34] Results show that the temperature anomaly series
behave like nonstationary processes with stationary incre-
ments. Estimating H is the next important step to character-
ize the samples of the series. The result enables us to
separate nonstationary scale invariant processes with sta-
tionary increments (i.e, 1 < 3 < 3) into different groups
depending on H. Such a separation is useful for monitoring
the temperature (irradiance) anomaly development and
helps to distinguish between situations where positive or
negative correlation (or lack of it) dominates in the physical
system generating the series.

[35] Methods to estimate long-range dependence by
means of H are rapidly developing during the last decade.
Technically, one can use both the anomalies and increments
for that. Due to large variance of spectral estimates the
results from previous section are not used for that purpose.
Instead of that, two other independent schemes are used for
estimating H on the basis of 22-year daily time series: R/S
analysis and regression on the periodogram. The former is
one of the oldest methods (its graphical presentation gives a
picture about possible dependence of A on block size), and
the latter is certified by Taqqu and Teverovsky [1996] to be
one of the most robust methods for this task.

4.1. R/S Method

[36] The R/S method is one of the better known methods
for estimating H. It is discussed in detail by Mandelbrot and
Wallis [1969].

[37] The letters R/S stand for the rescaled range R; . /S; -,
where R;. is the cumulated range of a process between
times i + 1 and i + T after removal of the sample average
and S7. is the corresponding sample variance. That is, for a
series x; in discrete integer valued time with X; defined by
X; =X 1x;, and given any lag T > 1, R; . is defined by

Rir = max[(Xiy; — Xi) — (j/7)(Xigs
—min | (X — Xi) = (j/7)(Xigs

- X))

where max and min are taken over 0 <j < 7. Let 57, be the
corresponding sample variance,

then the rescaled range R, is defined as follows:
§RT - E[R[,T/Si.‘r] 3 (3)

where the averaging is over nonoverlaping intervals of
length T going in the available interval i = 1, ... n.

[38] Actual calculation of the rescaled range is convenient
to produce over nonoverlapping time intervals T, 2T, 4T,
etc. Averaging in equation (3) is then over the number of
intervals of each length fitting in the all available interval.
The longest interval gives a single i estimate. On the basis
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Log, (Rescaled range)
S
T
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Figure 5. Rescaled range R, results (T in days) for three
increment series and MA(3) residuals (label RES) together
with values computed by Anis-Lloyd equation (5) (AL).

of averaged R, values, estimate of the Hurst exponent H can
be easily computed fitting a linear equation

log, (Rr) = A4 + Hlogy() 4)

by least squares over the interesting 7 interval. Obtained
solution H for equation (4) shows the average slope over the
used T interval. Value of the intercept A4 is less important in
our case. Log, is used again in order to have the same scale
division with the spectral densities.

[39] The R/S calculations are carried out for three series
using dI, dT,;, and dT, as x; values for equation (2),
respectively. The following block size T values (in days)
are used: T = 16, 32, 64, 128, ..., 8192. The averaged R,
values are plotted in Figure 5 in log/log scale.

[40] Unfortunately, the "> law does not hold precisely
for short series if R, is calculated from pseudo random
numbers. It is due to systematically lower R, values
obtainable by means of differently generated pseudorandom
variables for shorter series (i.e., those with length in a few
hundred points). 4nis and Lloyd [1976] developed the
following approximate equation to circumvent the system-
atic deviation of the R, value for small T:

£ = | 25 Vel (5
J=1

[41] R, values for the lags used in the present study
calculated by means of equation (5) are shown in Figure 5
(with label AL).

[42] For finite series R is sensitive to short-range corre-
lation in initial series. A simple method to eliminate this is
to fit some ARIMA type model to initial series and after-
wards use R/S analysis to the residuals. The process is
carried out with dT,. data set using MA(3) model. The
approach is justified, because three first sample autocorre-
lations for dT,,. (see Figure 1) are remarkably nonzero The
approach is sufficient to remove the short-run correlation
(not shown). R, estimates are calculated for the residuals
over the same grid for T as previously. The results are
marked in Figure 5 with label RES. They show that the
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Table 2. Estimated H Values for Three Series by Two Methods

Parameter Ty, T, 1
n, days 8192 8192 7882
Hris 0.57 0.27 0.23
OHps +0.04 +0.04 +0.04
M, frequencies 400-800 400-800 200-400
Min Hp,, 0.54 0.26 0.25
Max Hp,, 0.58 0.36 0.35
SHp,, +0.06 +0.06 +0.09

model shifted R, values for all intervals. However, calcu-
lating partial A values between successive points confirms
that these H estimates remain unchanged in respect to those
for dT,. for longer lags if log,T > 8. The straight line
sections of R, for dT,. and RES are nearly parallel if T >
256. The MA(3) model is incapable to change the behavior
of R, for longer time lags (i.e., to represent a long-run
dependence). The growing rate in both cases is evidently
slower than that for Bm indicating A < 0.5. In terms of
empirical modeling the result does not support using
ARIMA family for modeling the daily anomaly series
temporal variability.

[43] Average values over the straight part (i.e T > 64) of
the 3, curves together with the corresponding 6H by R/S
analysis are shown in the third and fourth row of Table 2,
respectively. Here 6H denotes the approximate 95% con-
fidence interval (£1.960) around the estimate. Here o = 0.02
is the empirical estimate obtained independently by Bas-
singtwaite and Raymond [1994] and Taqqu et al. [1995] on
the basis of various model calculations for the case H = 0.5
and maximum of T ~ 10000.

4.2. Regression on the Periodogram

[44] This method is useful, because of known asymptotic
variance of the obtainable H (see Taqqu and Teverovsky
[1996] for discussion). The method is based on the periodo-
gram (i.e., an estimator of the spectral density) of the time

series, defined by
2
1 .

p(f) =+ : (

n
E xjez“’ff
Jj=1

where f'is frequency, n is the number of terms in the series,
and x; are the data. A series with long-range dependence has
a spectral density proportional to |/ |7B, close to the origin,
where 3 =2H — 1. Thus, a regression of the logarithm of the
periodogram versus the logarithm of the frequency should
give a coefficient of 1 — 2H. Note that here we use
increments instead of anomalies. Because of this, the
corresponding (3 value is smaller by two in comparison with
that in the first formula. Since the proportionality to | f|' ~ 2
holds only for fclose to the origin, finding the right cut-off is
very important. Let M be the number of frequencies used for
the regression. Using large values of M, we may find a range
where the estimates of A are incorrect because of the short-
range effects. Moving to small M value we will get into a
region where the estimates of H are very scattered and
unreliable because there are not enough frequencies left to
have an accurate regression.

[45] Still no method has been found to determine the right
cutoff M value a priori. Following [Tagqu et al., 1995], the
lowest 10—-20% of the roughly n/2 = 4096 (temperature)
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and n/2 = 2048 (irradiance) frequencies are used since the
proportionality above holds for f close to the origin. On the
basis of that frequency interval, maximum and minimum of
the H estimates are determined and are shown in Table 2
together with the corresponding dH values. The 0H denotes
the approximate 95% confidence interval (+1.96c0) around
the estimate. Here 0 = w/+/24M is the asymptotic standard
deviation calculated by Robinson [1995].

4.3. Results for the Daily Increment Series

[46] Figure 5 shows the dependence of :. on T according
to equation (4). For short lags (T < 32 days), all three .
curves are approximately parallel to that with the label AL.
For longer lags, the curves depart significantly. Behavior of
the global average stratospheric temperature anomaly is still
looking close to a Bm sample path, as long as the scale is up
to 4096 days. The estimated H values remain close to 0.5
for that scale. Table 2 values together with their estimated
confidence intervals fully support that result.

[47] In the stratosphere, dynamics, radiation, and photo-
chemistry are coupled in a complicated feedback loop
which retains its radiative equilibrium [e.g., Staehelin et
al., 2001]. The loop also generates weakly correlated daily
temperature increments for the globally averaged strato-
spheric layer between 15 and 19 km (i.e., the layer covered
by MSU observations). The antipersistence in the daily
irradiance values has no visible effect to the stratospheric
temperature fluctuations. Probably the Chapman cycle of
ozone production does not depend significantly on daily
variations in irradiance because all solar energy in wave-
lengths shorter than 242 nanometers is absorbed by ozone
anyway. The corresponding daily variations are small in
comparison with the whole energy in that spectral band.

[48] In Figure 5, a noticeable turn towards antipersistence
of the stratospheric R, curve can be seen for the largest T
interval (i.e., between 4096 and 8192 days). Might this be
an indication about the existence of integral scale between
small-scale nonstationarity and large-scale stationarity?
Physical mechanism behind the possible scale break may
be connected to stratospheric ozone [Robock, 1996]: Most
of the total solar irradiance variations over an 11-year
sunspot cycle is in ultraviolet wavelengths, which are
absorbed by the ozone in the stratosphere. The ozone
production is also dependent on solar cycle. The amplitude
of the global mean total ozone variation from solar mini-
mum to solar maximum is 1.5% to 2% and 85% of that
change occurs in the lower stratosphere [Hood, 1997]. The
process introduces a cyclic forcing to the stratosphere and
thus slows down the growing rate for i, in comparison with
that for random walk. Because there is only one observation
for the scales longer than 11-year solar cycle, the question
about the scale break in the stratospheric temperature
anomaly series remains open. The appeared antipersistency
might be an influence of the cyclic solar forcing to the
rescaled range, or just a deviation due to considerable
variance of the R, estimates. For a more precise answer,
we need to await the data set growing during at least one
more solar cycle.

[49] Figure 5 shows that the lower tropospheric temper-
ature and irradiance increments are evidently antipersistent
for T values 64 (days) and longer. H estimates for dT,. and
dI are close to each other for all available scales. Figure 5
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and Table 2 do not contradict the possibility, that the Hurst
exponent might have constant value H = 0.25 during a
considerably long temporal interval from 2 months to 20
years. Tropospheric temperature is closely related to the
surface air temperature. Long-term fluctuations (i.e., annual
cycle removed) of the latter are studied by Lovejoy and
Schertzer [1986]. They used two different data sets of
monthly averaged temperatures over the Northern Hemi-
sphere. Their result, H = 0.4 for 7 > 5 years, is somewhat
larger. At least a part of the difference is due to technical
reasons. Monthly averaged ground based data sets are more
noisy than the satellite records. It is reasonable to assume
that the averaging grid (spatial and temporal) is independent
of temperature. If the H estimate for a pure signal is less
than 0.5, then an additional white noise component
increases it. As a result the estimates are in reasonable
accord and both methods are obviously pointing to the
antipersistency.

[s0] Variability of the daily irradiance and tropospheric
temperature anomaly increments is similar in terms of H on
the basis of spectral density, R/S analysis, and periodogram
regression. Relationship between (main) forcing and
response becomes evident on that level. Variability of the
solar forcing is quite accurately followed by tropospheric
temperature anomaly. This is an indication that the solar
forcing variability is actually the governing one among
other existing (random or not) forcings in the Earth climate
system. Variations in the Earth climate system also give rise
to changes in the radiation budget at the top of the
atmosphere. Such variations may be separated into two
groups: those having trends during several decades and
those being periodic or random. The first group describes
long-term tendencies in the atmosphere (e.g., growing of the
concentration of CO, and other greenhouse gases or on the
land such as the decrease of the lake Chad area from 25,000
to 1350 km* during 35 years [Coe and Foley, 2001]). The
second group is mainly connected to the interannual
changes in geographical distribution of snow, ice, and
cloudiness. Strong fluctuations of the radiation budget both
at the top of the atmosphere and at the surface are caused by
cloudiness. Cloud fields are highly transitory in spatial
scales about 1000 km or smaller [Cahalan et al., 1982],
but show certain systematic behavior if zonal variability is
considered [Kdrner and Rannik, 1996]. However, the infor-
mation is still insufficient for estimating the average radi-
ation budget variability due to cloudiness changes.

[s1] Very similar values for H for [ and T} over the
analyzed time interval indicate that the atmospheric and
ground-based forcing fluctuations should be quite random
in aggregate. They have no power to change the antipersis-
tent behavior declared by the irradiance variability.

[52] Simple comparison for the obtained H values can be
produced counting zero crossings. The days i and i + 1
where X; and X;;| have different signs determine at least one
zero crossing for the continuously varying temperature
anomaly sample path. The amount of such crossings should
be higher for T, (as a sample of an antipersistent process)
than for Ty, (that close to Bm). Counting sign changes for
daily values during 8278 days gives 131 for T, and 442 for
T, This is an independent result to confirm that the current
T, trajectory is produced by means of increments with
stronger anti-persistence than that for T, Similarly, cross-
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ings the mean value of the irradiance are counted,and the
result, 525 is close to that for the tropospheric temperature.

5. Summary and Climatic Relations

[53] Behavior of the studied temperature and irradiance
time series appears to be nonstationary. Daily increments for
the temperature anomaly series are stationary, weakly cor-
related, and close to normal for the lower stratosphere.
Daily increments for the solar irradiance anomaly are non-
normal with varying variance depending on solar activity.
An essential difference is revealed in the long-range behav-
ior of the series. Estimates of the Hurst exponent enable one
to make a few conclusions about the contemporary global
average climate and human influence to it.

[s4] Determination of stationary or nonstationary behav-
ior in temporal variability of climate variables over a
sufficiently broad scale is important for climate definition.
Although one dimension (temperature) is not sufficient for
satisfactory description of climate it is useful to explain the
problems connected to the definition. Climate is often
determined using statistical tools, for example, “the climate
is represented by the statistical collective of its weather
conditions during a specified interval of time” [Huschke,
1959], or ““is ensemble of states visited by the Earth climate
system during a few decades” [Monin, 1982].

[s5] The available satellite records are too short, but as
time goes on there might be a specific scale, at which the
Fourier modes stop increasing with scale and become
constant. It is known as an integral or correlation scale L;
[Davis et al., 1996a]. The integral scale L; separates scales
where 3 < 1 from those where 3 > 1 thus defines the
threshold between large-scale stationary and small-scale
nonstationary regimes. If L; < oo exists, a specified interval
of time can be connected to it with a rational hope that the
sample mean values for climate variables converge if
averaged over larger than Z; scale provided that the climate
does not change. In this case we have a quantitative basis to
characterize the climate for a certain epoch.

[s6] These hopes cannot still be very promising, at least
for the tropospheric temperature. Previous analysis of the
Northern Hemispheric temperature records by Lovejoy and
Schertzer [1986] and recent study of climatic records from
the Greenland ice-core project [Schmitt et al., 1995] do not
find any sign of L, Ghil [2001] points out that climate
varies in all timescales. If these variations bring about
nonstationarity, there is a danger for the term climate to
retain only some qualitative sense which does not help to
determine the possible human-induced climate change. In
order to get a practically meaningful definition of climate it
may be reasonable to change the words “‘ensemble of
states” to “‘ensemble of increments with a certain Hurst
exponent.” Instead of trying to characterize the climate via
nonstationary, anomalies simply change to use of stationary
increments (existing for the global temperature, at least).
Determining the Hurst exponent helps to quantify their
long-range dependence. Stationary processes have so many
useful properties in comparison with nonstationary ones that
the idea might be worth of research. The frequency distri-
butions in Figures 2a and 2b show that increment distribu-
tions have much simpler form and can be more easily
approximated by means of theoretical curves.
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[s7] The revealed antipersistence in the lower tropo-
spheric temperature increments does not support the science
of global warming developed by /PCC [1996]. Negative
long-range correlation of the increments during last 22 years
means that negative feedback has been dominating in the
Earth climate system during that period. The result is
opposite to suggestion of Mitchell [1989] about domination
of a positive cumulative feedback after a forced temperature
change. Dominating negative feedback also shows that the
period for CO, induced climate change has not started
during the last 22 years. Increasing concentration of green-
house gases in the Earth atmosphere appeared to produce
too weak forcing in order to dominate in the Earth climate
system. Estimate of the adjusted radiative forcing due to
changes in the concentrations of the so-called greenhouse
gases since preindustrial times is 2.45 Wm ™2 [[PCC, 1996].
If the increase was during 15 years, its annual increment
(0.16 Wm™?) would be comparable to standard deviation of
the daily increment of solar forcing at the top of the
atmosphere (0.18 Wm™2). The observed global warming
in surface air temperature series [Jones et al., 1999] is more
likely produced due to overall nonstationary variability of
the Earth climate system under anti-persistent solar forcing.

Appendix A: ARIMA Representation for
Monthly Temperature Anomalies

[s8] The dT, series appear to be approximately normally
distributed and weakly correlated at least during one solar
cycle. This means that Bm (more precisely, ARIMA (0, 1,
0) or random walk for current discrete series) should be an
acceptable model to represent the global mean stratospheric
temperature anomaly temporal variability, at least for series
shorter than one solar cycle. In this section an ARIMA
model is fitted to both monthly temperature series dT,, and
dT,. The global monthly data sets are used to ease the
calculations. The averaging adds one necessary MA term to
initial model (because of the averaging grid is independent
of the temperature), and (0, 1, 1) model is fitted. The same
model has been earlier used by Kdrner [1996] to represent
temporal variability for several monthly series. The goal
here is not to seek for the best approximation but to
demonstrate an applicability of the simplest model.

[s9] For monthly increments x; = X; — X;_; the model
takes even simpler form (0, 0, 1),

x;i =mg+a; — Ora;_1, (7)

where a; (i =1, 2, ..., ny) is white noise and O is fitted by
least squares. Constant mq stands for the existing trend
(mean monthly increment in our case) in the initial sample.
The estimated trends are available online and m estimates
for n; = 265 month series are equal to 0.0002°C (T,.) and
—0.005°C (Ty,). This means that there has been slight
warming in lower troposphere and a bit stronger cooling in

Table Al. Model (7) Fitting Results for Monthly Mean Series

Data Time n;, months 0, S2 S2/52 Q
dT,, 1979-2001 264 —0.501  0.0103 0.04 28.3
dT,. 1979-2001 264 0.354 0.0129 0.35 22.4

-t
N
(2]
o
-
4k dTy ——
Formula (8) ------
2+
_3 ] ] ] ] ] ]
8 -7 -6 -5 -4 -3 -2 -
Log,f f=1/months
Figure Al. Empirical and model (8) determined spectral

densities for monthly stratospheric temperature increment
series.

stratosphere during the last 22 years. It is too small trend to
cause an essential error for short-range approximation and it
is neglected in further calculations. Parameters for the fitted
models are shown in Table Al, where S% and S2 stand for
initial (i.e., that for the monthly anomaly data) and residual
variance, respectively.

[0] ©; values fitted to dT,. and dT,, series have different
signs. This feature introduces a big difference in the time
series behavior. Power spectrum for a MA(1) model can be
written as [Box and Jenkins, 1976]

p(f)=2(1+61 20 cos2nf), 0<f<05 (8
Equation (8) shows that if ©; < 0 (dT,,) lower frequencies
are dominating and if ©; > 0 higher frequencies are
dominating in the spectra.

[61] Estimated and model determined (with ©; = —0.501
from Table A1) spectral densities for the stratospheric series
are shown in Figure Al in log/log scale. Comparison of
Figures 4b and 6 shows the scaling properties for the
stratospheric temperature anomaly are changed for the
monthly averaged series in comparison with those for daily
ones. The same is valid for dT,. (not shown). Results by
[Pelletier, 1998] calculated from different station data show
that similar changes are likely if going from the global
average towards smaller spatial scale.

[62] Frequency distributions for the monthly increments
and residuals appear to be close to normal (not shown). The
result may be valid for short series (n1 = 264 months) only.
There are actually two comparatively large jumps in the
stratospheric temperature anomaly data set, corresponding
to El Chichon (April 1982) and Pinatubo (August 1991)
eruptions [McCormick et al., 1995], respectively. However,
in the case of 265 observations, two large deviations can not
prevent passing the K-S test. Nevertheless, the physical
basis for long-run nonnormality due to large volcanic
eruptions obviously remains. Another considerable feature
is that no large jump occurred in the daily temperature
increments during the eruption days or even during the
following week. Only after some accumulation time the
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average stratospheric temperature responded. The response
is clearly distinguishable in monthly series (www.ghcc.
msfc.nasa.gov/temperature).

A.1. Diagnostic Testing

[63] Any test is needed to get an idea about adequacy of
the fitted models. It has been shown [e.g., Box and Jenkins,
1976] that for a satisfactory model, the variable

K
k=

Q=N rik), 9)

1

where r,(k) are estimated autocorrelations for the residuals
a;, has approximately y? distribution with K-p-q degrees of
freedom. Here, N = n; — 1 (in our case) equals to the
amount of initial data used for the model fitting.

[64] Calculated Q values for every case are shown in
column 7 of Table Al. Critical values are obtainable from
any table for the x? distribution. The critical value for O
(for K =24, i.e., 23 degrees of freedom in our case) at the
95% significance level equals to 35.2. Results (Table Al,
column 7) show that the test is passed in both cases and the
random walk philosophy is acceptable to model global
average temperature fluctuations.

[6s] The ARIMA(O, 1, 1) model turns out to be a useful
tool for representing short-run development of the global
average stratospheric and tropospheric temperature anoma-
lies. Note an exceptionally small residual variance for T,
only 4% (column 6 in Table Al). The model can easily be
used for short-run predictions of the monthly mean strato-
spheric temperature anomaly. The dT,,. data set has stronger
long-range dependence which leads to much worse approx-
imation accuracy (i.e., 35% residual variance).
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