American Ingenuity’s component panels for the 22′ – 48′ domes contains seven inch thick rigid Expanded Polystyrene (E.P.S.) insulation which has an R value of 28.

American Ingenuity’s component panel contains seven inch thick rigid Expanded Bead Polystyrene (E.P.S.) insulation which has an R value of 28.  The seven inch thick insulation is comparable to eleven inch thick fiberglass batting. There is no wood in the American Ingenuity Dome shell to interrupt the insulation or to rot or to be eaten by termites or to burn. However, a temporary wooden rib system is utilized to support the panels during the dome assembly until all the seams between the panels and the entryways and dormers are concreted and then the system comes down.  The dome is self supporting. The exterior is steel reinforced concrete that is primed and painted.  To view a file that covers the rib system, view Rib.

1. What’s the benefit of insulating my home?

  • Insulation can help reduce the cost of your heating and cooling bills by preventing the flow of heat into your house in the summer time and reducing the flow of heat out of your home in the winter time. In short, you can save money.

2. What’s the most important thing to know about insulation?

  • Its “R-value.” The R-value of an insulation product gauges the resistance the insulation has to the flow of heat.The higher the R-value, the better the product will resist heat flow. R-values are standardized, so you can compare different brands and types of insulation, and still know their relative ability to resist heat flow.

R-Value Table: Insulation Values For Selected Materials

Use the R-value table below to help you determine the R-value of your wall or ceiling assemblies. To obtain a wall or ceiling assembly R-value you must add the r-values of the individual components together.

This method ‘Wall Assembly R-Value” gives incorrect results for MASS walls such as the All Wall System.

Example of error, as defined by ORNL research papers.

When compared to a 6” R-20 framed Wood Wall a Foam Block (ICF) wall performed with a 9% better Energy Savings.

A wall built like All Wall performed with an 18% better Energy Savings. (9% over the Foam Block walls) because of the concrete being in direct contact with the interior.

See ORNL’s report conclusions by clicking here. Oakridge National Laboratory

Example:

Wall Assembly R-Value Example:

Component R-value
Wall – Outside Air Film 0.17
Siding – Wood Bevel 0.80
Plywood Sheathing – 1/2″ 0.63
3 1/2″ Fiberglass Bat 11.00
1/2″ Drywall 0.45
Inside Air Film 0.68
Total Wall Assembly R-Value 13.73

R-Value Table

Material R/
Inch
R/
Thickness
Insulation Materials
Fiberglass Bat 3.14
Fiberglass Blown (attic) 2.20
Fiberglass Blown (wall) 3.20
Rock Wool Bat 3.14
Rock Wool Blown (attic) 3.10
Rock Wool Blown (wall) 3.03
Cellulose Blown (attic) 3.13
Cellulose Blown (wall) 3.70
Vermiculite 2.13
Air-entrained Concrete 3.90
Urea terpolymer foam 4.48
Rigid Fiberglass (> 4lb/ft3) 4.00
Expanded Polystyrene (beadboard) 4.00
Extruded Polystyrene 5.00
Polyurethane (foamed-in-place) 6.25
Polyisocyanurate (foil-faced) 7.20
Construction Materials
Concrete Block 4″ 0.80
Concrete Block 8″ 1.11
Concrete Block 12″ 1.28
Brick 4″ common 0.80
Brick 4″ face 0.44
Poured Concrete 0.08
Soft Wood Lumber 1.25
2″ nominal (1 1/2″) 1.88
2×4 (3 1/2″) 4.38
2×6 (5 1/2″) 6.88
Cedar Logs and Lumber 1.33
Sheathing Materials
Plywood 1.25
1/4″ 0.31
3/8″ 0.47
1/2″ 0.63
5/8″ 0.77
3/4″ 0.94
Fiberboard 2.64
1/2″ 1.32
25/32″ 2.06
Fiberglass (3/4″) 3.00
(1″) 4.00
(1 1/2″) 6.00
Extruded Polystyrene (3/4″) 3.75
(1″) 5.00
(1 1/2″) 7.50
Foil-faced Polyisocyanurate
(3/4″)
5.40
(1″) 7.20
(1 1/2″) 10.80
Siding Materials
Hardboard (1/2″) 0.34
Plywood (5/8″) 0.77
(3/4″) 0.93
Wood Bevel Lapped 0.80
Aluminum, Steel, Vinyl
(hollow backed)
0.61
(w/ 1/2″ Insulating board) 1.80
Brick 4″ 0.44

 

Interior Finish Materials
Gypsum Board (drywall 1/2″) 0.45
(5/8″) 0.56
Paneling (3/8″) 0.47
Flooring Materials
Plywood 1.25
(3/4″) 0.93
Particle Board (underlayment) 1.31
(5/8″) 0.82
Hardwood Flooring 0.91
(3/4″) 0.68
Tile, Linoleum 0.05
Carpet (fibrous pad) 2.08
(rubber pad) 1.23
Roofing Materials
Asphalt Shingles 0.44
Wood Shingles 0.97
Windows
Single Glass 0.91
w/storm 2.00
Double insulating glass
(3/16″) air space
1.61
(1/4″ air space) 1.69
(1/2″ air space) 2.04
(3/4″ air space) 2.38
(1/2″ w/ Low-E 0.20) 3.13
(w/ suspended film) 2.77
(w/ 2 suspended films) 3.85
(w/ suspended film and low-E) 4.05
Triple insulating glass
(1/4″ air spaces)
2.56
(1/2″ air spaces) 3.23
Addition for tight fitting drapes or shades, or closed blinds 0.29
Doors
Wood Hollow Core Flush
(1 3/4″)
2.17
Solid Core Flush (1 3/4″) 3.03
Solid Core Flush (2 1/4″) 3.70
Panel Door w/ 7/16″ Panels
(1 3/4″)
1.85
Storm Door (wood 50% glass) 1.25
(metal) 1.00
Metal Insulating
(2″ w/ urethane)
15.00
Air Films
Interior Ceiling 0.61
Interior Wall 0.68
Exterior 0.17
Air Spaces
1/2″ to 4″ approximately 1.00