

EPIC: An Architecture for
Instruction-Level Parallel Processors

Michael S. Schlansker, B. Ramakrishna Rau
Compiler and Architecture Research
HP Laboratories Palo Alto
HPL-1999-111
February, 2000

E-mail:{schlansk, rau}@hpl.hp.com

EPIC architecture,
VLIW architecture,
instruction-level
parallelism, MultiOp, non-
unit assumed latencies,
NUAL, rotating register
files, unbundled branches,
control speculation,
speculative opcodes,
exception tag,
predicated execution,
fully-resolved predicates,
wired-OR and wired-AND
compare opcodes,
prioritized loads and
stores, data speculation,
cache specifiers,
precise interrupts,
NUAL-freeze and NUAL-
drain semantics, delay
buffers, replay buffers,
EQ and LEQ semantics,
latency stalling,
MultiOp-P and MultiOp-S
semantics,
dynamic translation,
MultiTemplate and
VariOp instruction
formats, history of EPIC

Over the past two and a half decades, the computer industry
has grown accustomed to, and has come to take for granted,
the spectacular rate of increase of microprocessor
performance, all of this without requiring a fundamental
rewriting of the program in a parallel form, without using a
different algorithm or language, and often without even
recompiling the program. The continuation of this trend is the
topic of discussion of this report. For the time being at least,
instruction-level parallel processing has established itself as
the only viable approach for achieving the goal of providing
continuously increasing performance without having to
fundamentally re-write applications. In this report, we
introduce the Explicitly Parallel Instruction Computing
(EPIC) style of architecture which was developed, starting
eleven years ago, to enable higher levels of instruction-level
parallelism without unacceptable hardware complexity. We
explain the philosophy underlying EPIC as well as the
challenges faced as a result of adopting this philosophy. We
also describe and discuss the set of architectural features that
together characterize the EPIC style of architecture, and
which can be selectively included in some specific instance of
an EPIC instruction set architecture.

 Copyright Hewlett-Packard Company 2000

- 1 -

1 Introduction

Over the past two and a half decades, the computer industry has grown accustomed to, and

has come to take for granted, a spectacular rate of increase in microprocessor performance,

all of this without requiring a fundamental rewriting of the program in a parallel form,

without using a different algorithm or language, and often without even recompiling the

program. The benefits of this have been enormous. Computer users have been able to take

advantage of of faster and faster computers while still having access to applications

representing billions of dollars worth of investment. This would be impossible if software

had to be continually re-written to take advantage of newer and faster computers.

Continuing this trend, of ever-increasing levels of performance without re-writing the

applications, is the topic of discussion of this report.

Higher levels of performance benefit from improvements in semiconductor technology

which permit shorter gate delays and higher levels of integration, both of which enable the

construction of faster computer systems. Further speedups must come, primarily, from the

use of some form of parallelism. Instruction-level parallelism (ILP) results from a

set of processor and compiler design techniques that speed up execution by causing

individual RISC-style machine operations, such as memory loads and stores, integer

additions and floating point multiplications, to execute in parallel. ILP systems are given a

conventional high-level language program written for sequential processors and use

compiler technology and hardware to automatically exploit program parallelism. Thus an

important feature of these techniques is that like circuit speed improvements, but unlike

traditional multiprocessor parallelism and massively parallel processing, they are largely

transparent to application programmers. In the long run, it is clear that the multiprocessor

style of parallel processing will be an important technology for the main stream computer

industry. For the present, instruction-level parallel processing has established itself as the

only viable approach for achieving the goal of providing continuously increasing

performance without having to fundamentally re-write applications. It is worth noting that

these two styles of parallel processing are not mutually exclusive; the most effective

multiprocessor systems will probably be built using the most effective ILP processors.

A computer architecture is a contract between the class of programs that are written for the

architecture and the set of processor implementations of that architecture. Usually this

contract is concerned with the instruction format and the interpretation of the bits that

constitute an instruction, but in the case of ILP architectures it can extend to information

- 2 -

embedded in the program pertaining to the available parallelism between the instructions or

operations in the program. The two most important types of ILP processors, to date, differ

in this respect.

• Superscalar processors [1] are ILP processor implementations for sequential

architectures—architectures for which the program is not expected to convey and, in

fact, cannot convey any explicit information regarding parallelism. Since the program

contains no explicit information regarding the ILP available in the program, if this ILP

is to be employed, it must be discovered by the hardware, which must then also

construct a plan of action for exploiting the parallelism.

• Very Long Instruction Word (VLIW) processors [2, 3] are examples of

architectures for which the program provides explicit information regarding

parallelism1. The compiler identifies the parallelism in the program and communicates it

to the hardware by specifying which operations are independent of one another. This

information is of direct value to the hardware, since it knows with no further checking

which operations it can start executing in the same cycle.

In this report, we introduce the Explicitly Parallel Instruction Computing (EPIC)

style of architecture, an evolution of VLIW which has absorbed many of the best ideas of

superscalar processors, albeit in a form adapted to the EPIC philosophy. EPIC is not so

much an architecture as it is a philosophy of how to build ILP processors along with a set

of architectural features that support this philosophy. In this sense EPIC is like RISC; it

denotes a class of architectures, all of which subscribe to a common architectural

philosophy. Just as there are many distinct RISC architectures (Hewlett-Packard's PA-

RISC, Silicon Graphic's MIPS and Sun's SPARC) there can be more than one instruction

set architecture (ISA) within the EPIC fold. Depending on which features are picked from

EPIC's repertoire of features, an EPIC ISA can be optimized for domains as distinct as

general-purpose computing or embedded computing. The EPIC work has been motivated

by both domains of computing. In general, any specific ISA that subscribes to the EPIC

philosophy will select the subset of EPIC features needed in that ISA's domain of

application—no one EPIC ISA need possess all of the features. Furthermore, each specific

EPIC ISA will, typically, have additional features which differentiate it from another EPIC

ISA targeted at the same domain.

1 Corporaal's book [4], though focused primarily on transport-triggered architectures, provides an excellent, in-
depth treatment of many issues relevant to VLIW processors.

- 3 -

The first instance of a commercially available EPIC ISA will be Intel's IA-64 [5].

However, the IA-64 is not the topic of our discussion. Rather, we shall focus our

discussion upon the broader concept of EPIC as embodied by HPL-PD [6, 7] which

encompasses a large space of possible EPIC ISA's. HPL-PD, which was defined at

Hewlett-Packard Laboratories in order to facilitate EPIC architecture and compiler research,

is more appropriate for our purposes since it abstracts away from the idiosyncratic features

of a specific ISA and concentrates, instead, upon the essence of the EPIC philosophy.

In the rest of this section we outline the considerations that led to the development of EPIC,

the key tenets of the EPIC philosophy, as well as the primary challenges that this

philosophy must face. In Sections 2 through 4, we discuss the various architectural

features that were developed in support of the EPIC philosophy. We start off with

somewhat of a purist's viewpoint, motivating and explaining these features without regard

to the three challenges listed above. Then, in Sections 5 through 7 we describe the

mechanisms and strategies provided in order to address these three challenges. This enables

us, in Section 8, to look at how the domain of application of an EPIC ISA specifies the

relevance of the three challenges and, consequently, determines the relative importance of

the various EPIC features. Section 9 discusses the history of EPIC and its intellectual

antecedents. We make some concluding observations in Section 10.

1.1 The motivation behind EPIC

HP Labs' EPIC research program was started by the authors early in 19892 at a time when

superscalar processors were just gaining favor as the means to achieve ILP. However, as a

research activity which we knew would take a number of years to influence product design,

we felt that it was important to look five to ten years into the future to understand the

technological obstacles and opportunities that would exist in that time frame. We came to

two conclusions, one obvious, the other quite controversial (at least at that time). Firstly, it

was quite evident from Moore's Law3 that by 1998 or thereabouts it would be possible to

fit an entire ILP processor, with a high level of parallelism, on a single die. Secondly, we

believed that the ever increasing complexity of superscalar processors would have a

2 However, the name EPIC was coined later, in 1997, by the HP-Intel alliance.
3 Moore's Law states that the number of transistors, on a semiconductor die, doubles every eighteen to twenty four
months. This prediction has held true since 1965, when Gordon Moore first articulated it.

- 4 -

negative impact upon their clock rate, eventually leading to a leveling off of the rate of

increase in microprocessor performance4.

Although the latter claim is one that is contested even today by proponents of the

superscalar approach, it was, nevertheless, what we belived back in 1989. And it was this

conviction that gave us the impetus to look for an alternate style of architecture that would

permit high levels of ILP with reduced hardware complexity. In particular, we wished to

avoid having to resort to the use of out-of-order execution, an elegant but complex

technique for achieving ILP that was first implemented commecially in the IBM

System/360 Model 91 [8] and which is almost universally employed by all high-end

superscalar microprocessors today. The VLIW style of architecture, as represented by

Multiflow's and Cydrome's products [2, 3], addressed the issue of achieving high levels of

ILP with reduced hardware complexity. However, these machines were specialized for

numerical computing and had shortcomings with respect to scalar applications, i.e.,

applications that are branch-intensive and characterized by pointer-based memory accesses.

It was clear to us that this new style of architecture would need to be truely general-

purpose—capable of achieving high levels of ILP on both numerical and scalar

applications. In addition, existing VLIWs did not provide adequate object code

compatibility across an evolving family of processors as would be required for a general-

purpose processor.

The code for a superscalar processor consists of a sequence of instructions which, if

executed in the stated order, will yield the desired result. It is strictly an algorithm, and

except for the fact that it uses a particular instruction repertoire, it has no explicit

understanding of the nature of the hardware upon which it will execute or, the precise

temporal order in which the instructions will be executed. In contrast, the code for a VLIW

processor reflects an explicit plan for how the program will be executed. This plan is

created statically, i.e., at compile-time. This plan specifies when each operation will be

executed, using which functional units, and with which registers as its operands. We shall

refer to this as the plan of execution (POE). The VLIW compiler designs the POE, with

full knowledge of the VLIW processor, so as to achieve a desired record of execution

(ROE), i.e., the sequence of events that actually transpire during execution. The POE is

communicated, via an instruction set architecture that can represent parallelism explicitly,

4 Although we shall find occasion to compare EPIC to superscalar in order to illustrate certain points, the purpose
of this report is not to try to establish that EPIC is superior to superscalar. Nor is it to defend EPIC. Rather, it is to
explain the chain of reasoning that has led to EPIC.

- 5 -

to hardware which then executes the specified plan. The existence of this plan permits the

VLIW processor to have relatively simple hardware despite high levels of ILP.

A superscalar processor takes the sequential code and dynamically engineers a POE. While

this adds hardware complexity; it also permits the superscalar processor to engineer a POE

which takes advantage of various factors which can only be determined at run-time.

1.2 The EPIC philosophy

One of our goals for EPIC was to retain VLIW's philosophy of statically constructing the

POE, but to augment it with features, akin to those in a superscalar processor, that would

permit it to better cope with these dynamic factors. The EPIC philosophy has the following

key aspects to it.

Providing the ability to design the desired POE at compile-time. The EPIC

philosophy places the burden of designing the POE upon the compiler. The processor's

architecture and implementation can either assist or obstruct the compiler in performing this

task. EPIC processors provide features that actively assist the compiler in successfully

designing the POE.

A basic requirement is that the run-time behavior of EPIC processors be predictable and

controllable from the compiler's viewpoint. Dynamic scheduling, and especially out-of-

order execution, obfuscate the compiler's understanding of how its decisions will affect the

actual ROE constructed by the processor; the compiler has to second-guess the processor,

which complicates its task. An "obedient" processor, that does exactly what the program

instructs it to do, is preferable.

The essence of engineering a POE at compile-time is to re-order the original sequential code

to take best advantage of the application's parallelism and make best use of the hardware

resources, thereby minimizing the execution time. Without suitable architectural support,

re-ordering can violate program correctness. One example is when the relative order of a

branch and an operation that it guards are exchanged in order to reduce the execution time.

A requirement of EPIC’s philosophy of placing the burden of designing the POE upon the

compiler is a commitment to provide architectural features that support extensive code re-

ordering at compile-time.

Providing features that permit the compiler to "play the statistics". An EPIC

compiler is faced with a major problem in constructing the POE at compile-time which is

- 6 -

that certain types of information that necessarily affect the ROE can only be known for sure

at run-time. Firstly, the compiler cannot know for sure which way a conditional branch will

go and, in certain cases, it cannot even know for sure what the target of the branch will be.

Secondly, when scheduling code across multiple basic blocks in a control flow graph, the

compiler cannot know for sure which control-flow path is taken. It is often imposible to

jointly optimize an operation’s schedule over all paths through the control flow graph when

it is dependent upon operations in multiple preceeding basic blocks or when operations in

multiple successor blocks depend upon it. The operation is scheduled conservatively so as

to accommodate all such paths. Likewise, a conservative view must be taken of which

resources might be in use when operations overlap branches within such a control flow

graph. A third source of ambiguity, which can often only be resolved at run-time is

whether two memory references are to the same location. If they are, they need to be

sequentialized. If not, they can be scheduled in any order. The fourth source of compile-

time ambiguity concerns the non-deterministic latency of certain operations, which can

affect the schedule profoundly. For memory loads, the ambiguity arises from not knowing,

for instance, at what level in the cache hierarchy the data will be found.

In the worst case, there is little that can be done other than to react to these ambiguities at

run-time, once the information is known. Very often, however, the situation is quite a bit

better. Although we may not know for sure at compile-time what will happen, it is often the

case that there is a very strong probability of a particular outcome. An important part of the

EPIC philosophy is for the compiler to play the odds under such circumstances. The POE

is constructed, and optimized for, the likely case. However, architectural support—such as

control and data speculation, which we discuss later—must be provided to ensure the

correctness of the program's semantics even when the guess is incorrect. When the gamble

does not pay off, a performance penalty is incurred, but these occasions should be

infrequent. For instance, the penalty may be visible in the program schedule when a branch

diverts control flow away from optimized code for the frequent case to compensation code

which ensures correctness in the less likely, non-optimized case. Alternatively, the penalty

may be reflected in stall cycles, which are not visible in the program schedule; certain

operations may execute at full performance for the likely, optimized case but might stall the

processor to ensure correctness for the less likely, non-optimized case.

Providing the ability to communicate the POE to the hardware. Having

designed a POE, the compiler needs to be able to communicate it to the hardware. In order

to do so, the ISA must be rich enough to express the compiler's decisions as to when each

operation is to be issued and which resources are to be used. In particular, it should be

- 7 -

possible to specify which operations are to issue simultaneously. The alternative would be

to create a sequential program which is presented to the processor and re-organized by it

dynamically in order to yield the desired ROE. But this defeats EPIC's goal of relieving the

hardware of the burden of dynamic scheduling.

In addition to communicating such information to the hardware, it is important to do so at

the appropriate time. A case in point is the branch operation which, if it is going to be

taken, requires that instructions start being fetched from the branch target well in advance

of the branch being issued. Rather than providing branch target buffer hardware [9] to

deduce when to do so and what the target address is, the EPIC philosophy is to provide

this information to the hardware, explicitly and at the correct time, via the code.

There are other decisions made by the micro-architecture that are not directly concerned

with the execution of the code, but which do affect the execution time. One example is the

management of the cache hierarchy and the associated decisions of what data to promote up

the hierarchy and what to replace. The relevant policies are typically built into the cache

hardware. EPIC extends its philosophy, of having the compiler orchestrate the ROE, to

having it also manage these other micro-architectural mechanisms. To this end, EPIC

provides architectural features that permit programmatic control of these mechanisms which

normally are controlled by the micro-architecture.

1.3 Challenges faced by the EPIC philosophy

EPIC has evolved from, and subsumes, VLIW which has been associated with certain

limitations. The importance of these limitations depends upon the domain of application of

the ISA and is quite different depending on whether the domain is, for instance, general-

purpose processing or embedded digital signal processing. The three issues discussed

below are the most frequently raised concerns. We believed it was necessary for EPIC to

provide a strategy for dealing with each of them in order for EPIC to be suitable for use in

those domains where the issues are important.

Interruptions. We shall use the term interruption to refer to the entire class of events

that cause a program's execution to be paused, for it to be swapped out, and then resumed

after some interruption handler has been executed. Interruptions include events external to

the program, such as interrupts, as well as exceptions, a term we shall use to collectively

refer to events caused by the execution of the program, such as divide by zero exceptions

or page faults. The problem in common is that the schedule created by the compiler is

- 8 -

disrupted by the interruption; the schedule is torn apart, as it were, at the point in the

program that the interruption is fielded. The properties of the EPIC hardware along with the

compiler's conventions must together ensure that the POE allows this disruption while

maintaining correct program semantics.

Object code compatibility. Object code compatibility is the ability to take code that was

compiled for one particular processor within a family of processor implementations having

the same ISA, and to be able to execute it on any other member of that family. This poses

two main challenges for a family of EPIC processors. One is that the operation latencies

that were assumed by the compiler may not be correct for the processor in question. The

second one is that the assumed and actual parallelism of the processor, in terms of the

number of function units, may not match.

Compatibility is made more difficult by the use of shared libraries, especially in a network

setting. The various executables may have been compiled with different members of the

processor family in mind, but are now to be executed by a single processor which must

switch dynamically between modules compiled with different assumptions regarding the

processor.

Code size. A defining feature of EPIC is the ability to specify multiple operations within

one wide instruction. This is how the compiler explicitly specifies the parallel POE that it

has devised. The instruction format must be wide enough to be able to express the

maximum parallelism of which the processor is capable. But when the parallelism in the

program is unable to sustain this level of parallelism, no-ops need to be specified, leading

to wasted code space.

EPIC processors require efficient static schedules for branch-intensive loop and scalar

programs. Techniques for generating efficient static schedules often require code replication

which can dramatically increase code size. For example, when efficient static schedules are

developed for innermost loops with embedded conditionals, the need to overlap

conditionals from adjacent loop iterations may require the generation of static schedules

which replicate code for many possible dynamic paths through consecutive then- and else-

clauses. EPIC provides features which reduce the need to replicate code even when highly

overlapped static schedules are required for efficient execution.

- 9 -

2 Basic features to support static scheduling

EPIC's most basic features are directly inherited from VLIW and are concerned with the

fundamental requirements of being able to create a POE statically and communicate it to the

hardware. The two characteristics that are most strongly associated with VLIW are the

ability to specify multiple operations per instruction and the notion of architecturally

exposed latencies, often of non-unit length.

2.1 Multiple operations per instruction (MultiOp)

MultiOp is the ability to specify a set of operations that are intended to be issued

simultaneously, where each operation is the equivalent of an instruction of a conventional

sequential processor. We shall refer to such a set of operations as a MultiOp instruction. In

addition, each MultiOp instruction has a notion of time associated with it; exactly one

instruction is issued per cycle of the virtual time which serves as the temporal framework

within which the POE is created5. Virtual time differs from actual time when run-time

stalls, that the compiler did not anticipate, are inserted by the hardware at run-time.

Together, these two attributes of MultiOp are the primary mechanisms by which an EPIC

compiler is able to communicate the statically designed POE to the EPIC processor.

In constructing a POE, the compiler must be fully aware of the number of resources of each

type available in the processor and, in order to be sure that it has a viable plan, it must

perform resource allocation to ensure that no resource is over-subscribed. Given that it has

already done so, the EPIC philosophy is to communicate these decisions to the hardware

via the code so that the hardware need not re-create the resource allocation at run-time. One

way of achieving this is by using a positional instruction format, i.e., the position of an

operation within the MultiOp instruction specifies the functional unit upon which it will

execute. Alternatively, this information can be specified as part of each operation's opcode.

2.2 Architecturally visible latencies

The execution semantics for traditional sequential architectures are defined as a sequence of

atomic operations; conceptually, each operation completes before a subsequent operation

begins, and the architecture does not entertain the possibility of one operation's register

5 Herein lies an important distinction between EPIC code and conventional sequential code. An EPIC program
constitutes a temporal plan for executing the application, whereas sequential code is merely a step-by-step
algorithm.

- 10 -

reads and writes being interleaved in time with those of other operations. With MultiOp,

operations are no longer atomic. When the operations within a single MultiOp instruction

are executed, they all read their inputs before any of them writes their results. Thus, the

non-atomicity of operations, and their latencies, are already exposed architecturally.

Moreover, in reality, operations often take multiple cycles to execute. An ILP

implementation of a sequential architecture must cope with the non-atomicity of its

operations, in practice, while ensuring the very same semantics as if the operations really

were atomic. This leads to many of the hardware complexities of a superscalar processor.

To avoid these complexities, EPIC does away with the architectural notion of atomic

operations and recognizes that the read and write events of an operation are separated in

time. It is these read and write events that are viewed as the atomic events. The semantics

of an EPIC program are determined by the relative ordering of the read and write events of

all the operations. By raising the micro-architectural reality to the level of the architecture,

the semantic gap between the architecture and the implementation is closed, eliminating the

need, as required in the superscalar processor, to project an illusion (of atomic operations)

that does not really exist. The primary motivation for architecturally non-atomic operations

is hardware simplicity in the face of operations that, in reality, take more than one cycle to

complete. If the hardware can be certain that no attempt will be made to use a result before

it has been produced, the hardware need have no interlocks and no stall capability. If, in

addition, the compiler can be certain that an operation will not write its result before its

assumed latency has elapsed, tighter schedules can be crafted; the successor operation in an

anti- or output dependence relationship can be scheduled earlier by an amount equal to its

latency.

Assumed latencies serve as the contractual guarantee, between the compiler and the

hardware, that these assumptions will be honored on both sides. With EPIC assumed

latencies are part of the overall architectural contract between the processor and the

compiler. The concept of virtual time, built into an EPIC program, is central to the

provision of this guarantee. Recall that (the issuance of) each instruction in EPIC represents

a unit of virtual time. This enables the compiler and the hardware to have a common notion

of time, and it is within this temporal framework that the compiler and the hardware are

able to create this contractual guarantee. Conventional architectures, having no such notion

of time, are unable to do so.

A non-atomic operation which has at least one result with an architecturally assumed

latency that is greater than one cycle is termed a non-unit assumed latency (NUAL)

- 11 -

operation. A non-atomic operation which has an architecturally assumed latencies of one

cycle for all of its results is termed a unit assumed latency (UAL) operation. NUAL

operations can possess differential latencies, where each source and destination

operand can have a different sample and write time, respectively, relative to the time of

issue of the operation [10, 11]. For instance, this might occur in a multiply-add operation

of the form (a×b)+c which computes the product of a and b before reading c and

performing a final sum6.

Assumed latencies can be specified as constants implicitly agreed upon by the EPIC

compiler and the EPIC processor. Or, they may be specified dynamically by the program

prior to or during execution. This can be done in a number of different ways, each

representing a different trade-off between cost and generality [6]. The hardware then uses

the assumed latency specification to ensure correct program interpretation.

When the actual latencies are really not one cycle, UAL represents the extreme case of

assumed latencies differing from actual latencies. Although this leads to some of the same

problems that one faces with atomic operations, there is one important benefit. If all the

operations in an ISA are UAL, these constant assumed latencies need not be specified, and

all software is correctly interpreted using the same unit latency assumptions. This

eliminates the need to attend to the troublesome case of an operation's assumed latency

spanning a transfer of control between functions. It can also greatly simplify matters in a

system environment where applications make use of shared and dynamically linked

libraries which may have been compiled with different members of the processor family in

mind. When all members of an architectural family use identical (e.g. unit) assumed

latencies, this problem is eliminated.

We shall refer to two other types of latencies which should not be confused with the

assumed latencies defined above. The actual latency is the true latency of the operation in

the processor under consideration, which can be either greater or less than the assumed

latency. It is the hardware's burden to ensure correct program semantics if actual latencies

are different from assumed latencies (see Section 6.1.1). The compiler latency is the

latency used by the compiler during scheduling and register allocation. The compiler

latency specifies an appropriate distance between an operation and a dependent successor,

6 Differential input latencies complicate the discussion pertaining to compatibility and the handling of
interruptions. In order to simplify the exposition, we assume hereafter that all inputs are sampled during the cycle
of issue.

- 12 -

used by the compiler, to optimize the program. If not the same as the assumed latency, it is

the compiler's responsibility to ensure that program semantics are preserved by erring on

the conservative side; the scheduler must use a compiler latency that is greater than or equal

to the assumed latency, whereas the register allocator must assume a latency that is less

than or equal to the assumed latency. The assumed latencies serve as the contractual

interface between the compiler and the hardware, allowing compiler and actual latencies to

be different without compromising the correctness of execution.

The compiler may wish to knowingly schedule to latencies that are quite different from the

actual hardware latencies. For example, in the face of non-deterministic actual load

latencies, load operations on the critical path may use a short compiler latency to expedite

the critical path, while loads which are off the critical path may use a longer assumed

latency to better overlap cache misses with further processing.

Scheduling benefits. MultiOp instructions take immediate advantage of non-atomicity,

even in the case of UAL operations. Since an operation takes at least one cycle to execute,

its result will not be written prior to all the operations, that were issued in the same

instruction, having read their inputs7. Therefore, operations with anti-dependences can be

scheduled in the same instruction, yielding shorter schedules. It is even possible for two

operations in the same instruction to be anti-dependent upon each other, as in the case of a

register exchange implemented as two copy operations, each of which writes to the other's

source register.

Often, operations take multiple cycles to complete. The EPIC compiler must understand

these latencies in order to achieve correct and high quality schedules. For best results, it

must understand exactly when an operation reads its inputs and writes its outputs, relative

to the time of issue of the operation. Given that this is the case, the compiler can benefit

from this knowledge by taking advantage of the fact that the old value in each operation's

destination register, is available not just until the time that the operation is issued, but until

the operation completes execution and overwrites it. By reserving the register for this

operation's result only at the end of the operation, the register pressure can be reduced.

7 This takes advantage of our assumption that all operations read their inputs during their first cycle of execution
even if their execution latency is greater than one cycle. For a discussion of the general case, the reader is referred
to the technical report by Rau, et al. [10].

- 13 -

low dependence nti-dependence utput dependence

Q successor

EQ successor

AL successor

Figure 1: Scheduling implications of EQ, LEQ and UAL operations in the context of flow, anti- and output
dependences. The arrows indicate the precedence relationships that must be maintained between the
predecessor and successor operations to ensure correct semantics. The relative placement in virtual time of
the two operations reflects what a scheduler might do in order to minimize the schedule length.

- 14 -

We define two versions of NUAL semantics which allow EPIC architects to make

appropriate tradeoffs between performance, hardware simplicity, and compatibility among

differing hardware implementations. We call the strictest form of a NUAL operation an

"equals" (EQ) operation. The EQ operation reads its input operands precisely at issue

time and delivers results precisely at the specified latency in virtual time. The other version

of NUAL is the "less than or equals" (LEQ) operation. A NUAL operation with

LEQ semantics is an operation whose write event latency can be anything between one

cycle and its assumed latency. Codes scheduled using LEQ operations are correct even if

the operations complete earlier than the assumed latency. The distinction between EQ and

LEQ vanishes for a UAL operation whose assumed latency is exactly one.

EQ and LEQ semantics affect the set of constraints that the scheduler must honor to ensure

correctness, as well as the nature of the ideal schedule from a performance viewpoint.

Figure 1 illustrates scheduling constraints for flow, anti-, and output dependences for

EPIC processors which employ EQ, LEQ, and UAL latency semantics as well as the

preferred relative schedule for the predecessor and successor operations. To understand the

relationship of these relative schedules to the corresponding dependences, it is necessary to

understand that in our notion of virtual time register writes happen at the end of a virtual

cycle—at the time of the virtual clock— whereas register reads occur sometime after the

start of a virtual cycle. Also, in this example, the actual latency of the predecessor operation

is three cycles while the actual latency of the successor operation is 7 cycles.

We, first consider flow dependence where the predecessor operation computes an operand

which is read as an input by a flow dependent successor operation. NUAL

programmatically exposes latency which, in this example, is assumed to match the actual

latency. The flow dependent successor must be scheduled to issue at least three cycles later

than the operation upon which it depends. The three cycle delay is required for both EQ and

LEQ semantics because, the schedule must accommodate the worst case situation for the

LEQ which occurs when the first operation delivers its result at the maximum latency of

three cycles. With UAL semantics, the flow dependent successor could be correctly

scheduled only one cycle after the operation upon which it depends. However, this would

typically stall cycles into the processor’s ROE and would degrade performance. A high

performance schedule would allow the the same three cycles between operations even

though it is not required for correctness.

An anti-dependence occurs when the predecessor operation reads an operand before it is

overwritten by its anti-dependent successor. With EQ semantics, the earliest time that the

- 15 -

anti-dependent successor operation may finish is on the same cycle as the issue cycle for

the operation upon which it depends. If this occurs, the predecessor operation reads its

input operands just before they are overwritten at the end of the same cycle. In this

example, the anti-dependent successor may issue as many as six cycles before the operation

upon which it depends. For scheduling purposes, latencies between operations are

measured from the issue cycle of the predecessor operation to the issue cycle of the

successor operation. Accordingly, the correct latency for this anti-dependence is -6 cycles.

This negative “issue-to-issue” latency means that the successor operation may precede the

predecessor by no more than six cycles. With LEQ semantics, the successor operation may

complete in as little as a single cycle. Hence, the earliest time at which it may issue is

concurrent with the operation upon which it depends. In the UAL case, the successor

appears to execute in one cycle and, again, the earliest time that the successor may issue is

concurrent with its predecessor.

An output dependence occurs when a predecessor operation writes a result operand which

is overwritten by an output dependent successor operation. The final value must be the

value written by the successor. With EQ semantics, the earliest time that the successor can

finish is one cycle later than its predecessor. In this case, the first operation will write its

value to the operand and, one cycle later, the successor writes the correct final value to the

same operand. A negative issue-to-issue latency of -3 cycles specifies that the successor

operation may issue as many as three cycles prior to the predecessor. For LEQ semantics,

the schedule must accommodate the worst case situation in which the predecessor operation

takes its full three cycle latency while the successor operation completes within a single

cycle. In this case, the successor may issue as early as one cycle after the latest completion

time of the operation upon which it depends and, the issue-to-issue latency for this output

dependence is three. In the UAL case, the output dependent successor may be correctly

scheduled a single cycle after the operation upon which it depends, but this may again

introduce stall cycles into the processor’s ROE. A three cycle issue-to-issue latency ensures

stall-free execution.

EQ semantics can be of significant advantage in achieving a shorter schedule if the critical

path through the computation runs through these two operations, and if the dependence

between them is either an anti- or output dependence.

Architectural state. In accordance with Corporaal's terminology [4], an EPIC

processor's architectural state can consist of two components: the visible state and the

hidden state. The visible state is that which is accessible to the operations of the normally

- 16 -

executing program, e.g., the contents of the architectural register files. The hidden state

is the rest of the processor state, typically in the form of the state of the functional unit

pipelines.

For a sequential ISA, with its atomic operations, there is no architectural notion of hidden

state. A superscalar processor might, in fact, have plenty of hidden state during execution,

for instance the contents of the reorder buffers, but this state must be disposed of prior to

any point at which the architectural state can be externally examined. When an interruption

occurs, processors typically ensure that all instructions prior to some program location are

complete and all instructions after that program location have not yet begun. At such a

moment, the atomic nature of operations ensures that architecturally visible state is

sufficient to resume operation.

At any moment in a program schedule with non-atomic NUAL operations, it is possible

that some operations have started but are not yet completed. In fact, it may be impossible to

complete all operations prior to some point in the program schedule and not begin any

operation after that point in the schedule without violating NUAL program semantics. In

this case, when an interruption occurs, hidden state must be used to represent the action of

operations which have started but are not yet completed. If present, it should be possible to

save and restore the hidden state, on the occurrence of an interruption, just as one can the

visible state. The inclusion of hidden architectural state is an option which comes with its

own set of benefits and drawbacks which we shall discuss in Section 5.

2.3 Architecturally visible register structure

High levels of ILP require a large number of registers, regardless of the style of the ILP

processor. Parallelism is achieved by scheduling (statically or dynamically) a number of

independent sub-computations in parallel, which leads to an increased number of temporary

values residing in registers simultaneously. Consequently, having a large number of

registers is as indispensable to high levels of ILP as is having a large number of functional

units. Superscalar processors, which do dynamic scheduling, can make use of a large

number of physical registers even though the number of architectural registers is limited,

using a hardware mechanism known as register renaming [12]. However, as we shall see

below, such techniques are inadequate when static scheduling is employed and the

demands placed upon the architectural registers are more stringent.

- 17 -

Large number of architectural registers. Static scheduling, along with high levels

of ILP, requires a large number of architecturally visible registers. Consider the fragment

shown in Figure 2a of a schedule that the compiler has constructed for a processor that has

32 architectural registers, and assume that the schedule makes full use of these 32 registers

(i.e., there are 32 simultaneously live values). Assume, also, that the functional units of the

processor are under-utilized with the specified schedule. Even so, the compiler cannot

construct a more parallel schedule. It cannot, for instance, create the more parallel schedule

of Figure 2b, in which the two lifetimes overlap, since both are allocated to register r2, and

since there are no architectural registers available to which to re-assign one of the lifetimes.

OP1

OP3

r2

OP2

OP4

r2

(a)

OP1

OP3

r2 OP2

OP4

r47

(b)

Figure 2: The impact of a limited number of architectural registers upon the achieveable schedule.

- 18 -

An out-of-order processor with register renaming can achieve a ROE similar to that of

Figure 2b with just 32 architectural registers, although it might require 64 physical

registers. Whereas the compiler delivers to the processor the legal, but relatively sequential

schedule of Figure 2a, the superscalar processor renames the registers and executes the

instructions of out order, to achieve a ROE that is approximately that of Figure 2b. Of

course, this is precisely what EPIC is trying to avoid having to do.

In contrast, with static scheduling, the more parallel schedule requires more architectural

registers. With 64 architectural registers, the compiler can re-assign one of the lifetimes to

r47 to get the valid schedule of Figure 2b. Note that both processors require the same

number of physical registers for equivalent levels of ILP. The difference is that static

scheduling requires that they all be architecturally visible. The benefit, of course, is that

dynamic scheduling is eliminated.

Rotating registers. Modulo scheduling [13] engineers the schedule for a loop so that

successive iterations of the loop are issued at a constant interval, called the initiation

interval (II). Typically, the initiation interval is less than the time that it takes to execute a

single iteration. As a result, the execution of one iteration can be overlapped with that of

other iterations. This overlapped, parallel execution of the loop iterations can yield a

significant increase in performance. However, a problem faced while generating the code

for a modulo schedule is to prevent results from the same operation, on successive

iterations, from overwriting each other prematurely.

Consider the example in Figure 3a which shows the schedule for two consecutive

iterations, n and n+1, of a loop. In each iteration, OP1 generates a result which is

consumed by OP2. The value is communicated through register r13. The execution of OP1

in iteration n will write a result into r13. The lifetime of this value extends to the cycle in

which OP2 is scheduled. Meanwhile, II cycles later OP1 will be executed again on behalf

of iteration n+1 and will overwrite the value in r13 before it has been read by the OP2 of

the previous iteration, thereby yielding an incorrect result.

One could unroll the code for the body of a loop and use static register renaming to address

this problem [14]. However, the systematic unrolling of program loops, and the need to

interface code for the unrolled loop body to code reached after exiting the loop body, cause

substantial code growth [15]. The use of rotating registers both simplifies the construction

of highly-optimized software pipelines and eliminates this code replication.

- 19 -

OP1

OP2

r13 OP1

OP2

r13

Iteration n

Iteration n+1

II

(a)

OP1

OP2

r20 OP1

OP2

r19

Iteration n
RRB = 7

Iteration n+1
RRB = 6

II

(b)

Figure 3: Compiler-controlled register renaming with rotating registers.

The rotating register file [3] provides a form of register renaming such that successive

writes to r13 actually write to distinct registers, thereby preserving correct semantics. A

rotating register file has a special register, the rotating register base (RRB) register,

associated with it. The sum of the register number specified in an instruction with the value

of the RRB, modulo the number of registers in the rotating register file, is used as the

actual register address. Special loop-closing branch operations [15], which are used for

modulo scheduling, decrement RRB each time a new iteration starts, thereby giving the

same operation, from different iterations, distinct registers to hold its results. In the case of

our example in Figure 3, OP1 in iteration n writes to register r20 since the instruction

specifies r13 and the RRB is 7 (Figure 3b). In the next iteration, the RRB has been

decremented to 6. As a result, OP1 writes to register r19.

Rotating register files provide dynamic register renaming but under the control of the

compiler. It is important to note that conventional hardware renaming schemes cannot be

used in place of rotating register files. In a modulo scheduled loop, successive definitions

of a register (r13 in the above example) are encountered before the uses of the prior

- 20 -

definitions. Thus, it is impossible even to write correct software pipelined code with the

conventional model of register usage.

We have presented some of the fundamental features in EPIC that enable and facilitate the

compiler in engineering a desired POE and in communicating it to the hardware. It is

precisely these features, especially MultiOp and NUAL, that generate concern regarding the

handling of interruptions, object code compatibility and code size. We shall return to these

issues in Section 5, 6 and 7, respectively.

3 Features to address the branch problem

Many applications are branch-intensive and execute only a few non-branch operations for

every branch. Frequent branches present barriers to instruction-level parallelism often

greatly reducing execution efficiency. Branch operations have a hardware latency which

extends from the time when the branch begins execution to the time when the instruction at

the branch target begins execution. During this latency, a branch performs a number of

actions:

• a branch condition is computed,

• a target address is formed,

• instructions are fetched from either the fall-through or taken path, depending on the

branch condition, and

• the instruction at the location reached after the branch completes is decoded and issued

for execution.

The fundamental problem is that although the conventional branch is specified as a single,

atomic operation, its actions must actually be performed at different times, spanning the

latency of the branch. This latency, measured in processor cycles, grows as clock speeds

increase and represents a critical performance bottleneck. When an insufficient number of

operations are overlapped with branch execution, disappointing performance results. This

is especially problematic for wide-issue processors which may waste multiple issue slots

during each cycle of branch latency.

Superscalar processors use innovative hardware to deal with this problem. They do so by

executing elements of the branch before operations which precede the branch in order to

make it appear as if the branch occurred without significant delay. For example, in order to

hide the instruction memory latency, branch target instructions may start to be fetched from

- 21 -

memory right after the fetch of the branch has been initiated, and well before operations

needed to compute the branch condition have completed. This can result in the concurrent

fetch of taken and fall-through branch successor instructions. Unneeded instructions are

later discarded after the branch condition is known. When multiple branches are

overlapped, the number of program paths for which instructions must be fetched may grow

exponentially.

Superscalar processors also use dynamic, out-of-order execution to move operations across

one or more branches. Operations, on one or both paths following the branch, may be

executed speculatively before the branch condition is known [16, 17]. When the branch

condition is determined, operations on the path that was supposed to be followed are

committed, while those on the remaining paths are dismissed [18]. When speculation is

performed on both paths and past multiple branches, many speculative operations are

dismissed, causing inefficient execution.

To avoid this inefficiency, dynamic branch prediction [9, 19] is used, at each branch, to

speculate down only the likely path, ignoring the unlikely path. When a branch is correctly

predicted, its latency may be hidden. When a branch misprediction occurs, any operations

which are speculatively executed after the branch must be dismissed, and the processor

stalls. It is unable to issue new operations until instructions from the correct path have been

fetched from memory and have emerged from the instruction pipeline ready to execute, at

which point execution resumes on the correct path. In this case, the branch latency is fully

exposed. With accurate prediction, relatively few speculative operations are later dismissed.

Modern high-performance processors take advantage of both high-speed clocks and high-

density circuitry. This leads to processors with wider issue-width and longer operation

latencies. Out-of-order execution must move operations across more operations and across

more branches to keep multiple deeply pipelined resources busy. This is precisely what we

are trying to avoid with EPIC, but without it branches have a hidden latency consisting of

stall cycles which may occur in connection with the branch. Stall cycles are not visible in

the compiler’s program schedule but degrade run-time performance, nevertheless.

- 22 -

EPIC's philosophy is to eliminate stall cycles by trading them for architecturally visible

latencies which can then be minimized or eliminated, under compiler control, by

overlapping branch processing with other computation. Rather than relying on hardware

alone to solve the problem, EPIC provides architectural features which facilitate the

following three capabilities:

• explicit specification in the code as to when each of the actions of the branch must take

place

• compile-time code motion of operations across multiple branches without violating

correctness, and

• elimination of branches, especially those that are hard to predict accurately.

Whereas EPIC's static scheduling techniques have parallels to dynamic scheduling, the

responsibility is shifted from hardware to software, thus allowing simpler, highly parallel

hardware.

3.1 Reducing branch stall cycles

EPIC architectures provide NUAL branches which expose branch latency to the compiler.

If the assumed branch latency is equal to the actual branch latency, branches can execute

without speculation and without stalls. A NUAL branch evaluates its condition and, if its

condition is true, it begins fetching instructions from the taken path. Otherwise it continues

fetching from the fall-through path. This allows the implementation of a pipelined branch

which does not require dynamic branch prediction, speculative instruction prefetch or

speculative execution of the dynamic type, and which also does not require instruction

issue to be stalled. However, exposed latency branches (both UAL and NUAL) require

careful treatment. For UAL branches, operations within the same MultiOp instruction as a

branch execute regardless of the branch condition. These operations are in the delay slot of

a UAL branch. For NUAL branches the operations in its delay slots are all of the

operations in the L consecutive instructions, starting with the one which contains the

branch, where L is the branch latency.

The compiler must assume the responsibility for generating efficient schedules by filling up

the delay slots of the branch. Even when instructions at the branch target address reside in

the first-level cache, the branch latency can be greater than one. If instructions at the branch

target are in a second-level cache or main memory, the branch latency is far greater. EPIC's

architectural features, which we discuss in Sections 3.2 and 3.3, facilitate high quality

- 23 -

static scheduling with NUAL branches. Despite these features, NUAL branches with very

long latencies can be problematic, particularly so in branch-intensive programs.

To address this problem, EPIC also supports a viewpoint that does not treat the branch as

an atomic operation; rather than viewing a branch as an single long-latency operation, EPIC

unbundles branches [9] into three distinct operations: a compare computes the branch

condition; a prepare-to-branch calculates the target address and provides it to the branch

unit; and the actual branch marks the location in the instruction stream where control flow is

conditionally transferred.

Unbundling the branch architecture is used to reduce both the exposed latency and the

hidden (stall) latency required by branches. The exposed branch latency is reduced because

of the simpler and less time-consuming nature of the actual branches, and because other

branch components have completed much of the work before the actual branch is reached.

When work required within a bundled branch is removed from the actual branch operation

(e.g. computing the branch condition or target address), the simplified branch is

implemented with reduced latency.

The unbundling of branches allows the compiler to move the prepare-to-branch and the

compare operations sufficiently in advance of the actual branch so that in-order processors

can finish computing the branch condition and prefetching the appropriate instructions by

the time that the actual branch is reached. If a compare computes a branch predicate and a

subsequent prepare-to-branch (guarded by this predicate) is statically scheduled far enough

in advance of the actual branch, then the processor can fully overlap branch processing

without prediction, speculation or redundant execution, just as it was able to with the long

latency NUAL branch.

The unbundling of the branch also enhances freedom of code motion. Branch components

move to previous basic blocks and are replicated as needed by code motion across program

merges. This facilitates the overlap of the long latency involved in branch processing,

especially when instructions are fetched from a slower cache or from main memory, across

multiple basic blocks. Furthermore, the prepare-to-branch can be executed

speculatively—before the branch condition is known—achieving a further reduction in

program dependence height. When speculation is performed, EPIC’s prepare-to-branch

provides a static branch prediction hint used to select which program path to follow when

instruction fetch bandwidth does not permit speculative prefetch along multiple paths.

While static prediction assists processors which do not provide dynamic branch

- 24 -

predication, dynamic branch prediction hardware can be incorporated into EPIC and may

override a static prediction after sufficient branch prediction history is acquired.

Once the latency of an individual branch has been dealt with, the next bottleneck that arises

is a chain of dependent branches, each of which is guarded by the preceding branch. If

branch-intensive code, with few operations per branch, is to be executed on a wide-issue

processor, the ability must exist to schedule multiple branches per instruction. Both UAL

and NUAL branches are ambiguous when multiple branches take simultaneously. In this

case, the branch target is indeterminate and the program is illegal. For UAL branches, this

ambiguity can be treated using branch priority [20] which executes simultaneous branches

in prioritized order; lower priority branches are dismissed if a higher priority branch is

taken. Each branch, in the chain of dependent branches, has a lower priority than the one

upon which it is dependent.

Pipelined NUAL branches open up the possibility of having multiple taken branches in

execution simultaneously. That is, a branch may take in the delay slot of a previous taken

NUAL branch before the effect of that prior branch is complete. When multiple taken

branches are overlapped, branch pipelining complicates the compiler's task. Rather than

treating each branch sequentially and separately, the compiler’s scheduler must consider,

and generate customized code for, a large number of possible combinations of the taken

and not-taken conditions for multiple overlapped branches. As we shall see in Section

3.3.4, EPIC processors can use an alternate, simpler strategy for scheduling branches

within the delay slots of prior branches.

3.2 Architectural support for predicated execution

EPIC supports predicated execution, a powerful tool to assist in the parallel execution of

conditionals arising from source code branches. Predicated execution refers to the

conditional execution of operations based on a boolean-valued source operand, called a

predicate. For example, the generic operation "r1 = op(r2,r3) if p1" executes normally if p1

is true and is nullified (i.e., has no effect on the architectural state) if p1 is false. In

particular, the nullified operation does not modify any destination register or memory

location, it does not signal any exceptions and, it does not branch. Omitting the predicate

specifier for an operation is equivalent to executing the operation using the constant

predicate true. Predicated execution is often a more efficient method for controlling

execution than branching and it provides additional freedom for static code motion.

- 25 -

EPIC support for predicated execution is an enhanced version of the predication provided

by the Cydra 5 [3]. EPIC provides a family of compare-to-predicate8 operations, which are

used to compute guarding predicates for operations. A two-target compare-to-predicate

operation has the following format:

p1,p2 = CMPP.<cond>.<D1-action>.<D2-action>(r1,r2) if p3

The compare is interpreted from left to right as: "p1" - first destination predicate; "p2" -

second destination predicate; "CMPP" - compare-to-predicate op-code; <cond> - the

compare condition which is to be evaluated; <D1-action> - first destination action; <D2-

action> - second destination action; "(r1,r2)" - data inputs to be tested; and "p3" - predicate

input. A single-target compare is specified by omitting the second destination predicate

operand and the second destination action specifier.

Allowed compare conditions include "=", "<", "<=", and other tests on data which yield a

boolean result. The boolean result of a comparison is called its compare result. The

compare result is used in combination with the predicate input and destination action to

determine the destination predicate value.

The possible actions on each destination predicate are denoted as follows: unconditionally

set (UN or UC), conditionally set (CN or CC), wired-OR (ON or OC), or wired-AND

(AN or AC). The first character (U, C, O or A) determines the action performed on the

corresponding destination predicate; the second character (N or C) indicates whether the

compare result is used in "normal mode" (N), or "complemented mode" (C). When an

action executes in complemented mode, the compare result is complemented before

performing the action on the destination predicate.

Table 1: Behavior of compare-to-predicate operations.

Predicate Compare
On result On complement

of result

input result UN CN ON AN UC CC OC AC

0 0 0 -- -- -- 0 -- -- --

0 1 0 -- -- -- 0 -- -- --

1 0 0 0 -- 0 1 1 1 --

1 1 1 1 1 -- 0 0 -- 0

8 This name derives from the fact that the destination of this type of compare operation is a predicate register.

- 26 -

Table 1 defines the action performed for each of the allowed destination action specifiers.

The result of an action is specified for all four combinations of predicate input and compare

result. Each cell describes the result corresponding to the input combination indicated by

the row, and action indicated by the column. The cell specifies one of three actions on the

destination predicate register: set to zero ("0"), set to one ("1"), or leave unmodified ("-").

The names of destination action specifiers reflect their behavior. In Table 1, we see that

with the unconditional actions (UN or UC), a compare-to-predicate operation always

writes a value to its destination predicate. In this case, the predicate input acts as an input

operand rather than as a guarding predicate, and the compare-to-predicate operation is never

nullified. The value written to the destination predicate register is simply the conjunction of

the predicate input and the compare result (or its complement, if the action is UC). On the

other hand, cmpp operations using the conditional actions (CN or CC) behave truly in a

predicated manner. In this case, a cmpp operation writes to its destination register only if

the predicate input is 1, and leaves the destination register unchanged if the predicate input

is 0. The value written is the compare result (if CN is specified) or its complement (if CC is

specified).

The wired-OR action is named for the familiar circuit technique of computing a high fan-

in OR by directly connecting the outputs of suitable devices, instead of computing the OR

of those outputs using an OR gate. In the compare-to-predicate operation, the wired-OR

action specifies that the operation write a 1 to its destination predicate only if the predicate

input is 1 (i.e. the operation is not nullified) and the compare result is asserted (1 if ON,

else 0 for OC). Since a wired-OR cmpp operation either leaves its destination predicate

unchanged or writes only the value 1, multiple wired-OR cmpp operations that target the

same destination predicate can execute in parallel or in any arbitrary order. The parallel

write semantics are well-defined since the multiple values being written (if not nullified) are

guaranteed to be the same, namely 1. Furthermore, wired-OR compares with the same

destination predicate can be statically scheduled in any order without affecting the result; no

output dependence exists between these compare operations.

By initializing a predicate register p to 0, the disjunction of any number of compare

conditions can be computed in parallel, or in any arbitrary order, using wired-OR cmpp

operations all of which have the same destination, p. The value of p will be 1 if and only if

one or more of the compare operations executes with its compare result asserted. The

- 27 -

wired-AND compare is used in a similar manner, but to compute the conjunction of any

number of compare conditions. The common destination predicate is initialized to 1.

3.3 Overcoming the branch barrier

Branches present a barrier to the unrestricted static re-ordering of operations that is

desirable for creating the best schedules. EPIC provides two important features, predicated

execution and control speculation, for increasing the mobility of operations across

branches.

3.3.1 Control speculation with biased branches

Traditional compilers schedule each basic block separately. While this produces high-

quality code for sequential processors, it produces inefficient code for ILP processors. To

improve efficiency, ILP compilers use region-based schedulers to enhance the scheduling

scope. Region-based schedulers operate on larger regions of code consisting of multiple

basic blocks on high probability paths through the program. These schedulers move

operations over the full scope of a region to efficiently use processing resources. The

regions are best formed using branch profiles gathered from sample runs of the program. It

has been shown that sample runs usually accurately predict branch profiles for differing

program data [21]. Compilers can also directly estimate branch profiles from the program's

syntax, but the accuracy is reduced.

Many branches are highly biased, and easily predicted statically. When scheduling code

with biased branches, ILP compilers use linear regions which capture the likely paths

through the program9. Code is moved within these regions (along the likely paths) to

increase performance. In doing so, compilers balance the cost of unnecessarily executing

an operation against the reduced height achieved by moving it across a branch. When

branches are highly biased, code is moved speculatively across multiple branches and

efficiency is maintained because few operations are later dismissed. Linear region types

include: the trace [20] which allows multiple entries and multiple exits, and the

superblock [22] which allows a single entry and multiple exits. Both trace scheduling and

superblock scheduling expose substantial instruction-level parallelism and often produce

9 Note that this is essentially what dynamic speculation does as well and that it is in the context of biased
branches that dynamic speculation is most successful.

- 28 -

very efficient program schedules. For simplicity, superblocks are used to describe

subsequent examples.

branch 0

ld 0

st 0

cmp 0

0 b0

branch 1

ld 1

st 1

branch 2

ld 2

st 2

cmp 1

1 b1

cmp 2

2 b2

branch 0

ld 0

st 0

branch 1

ld 1

st 1

branch 2

ld 2

st 2

cmp 0

0 b0

cmp 1

1 b1

cmp 2

2 b2

branch 0

ld 0

st 0

branch 1

ld 1

st 1

branch 2

ld 2

st 2

cmp 0

a0 b0

cmp 1

a1 b1

cmp 2

a2 b2

unc

unc

unc

T

(a) (b) (c)

Figure 4: Control speculation of operations in a superblock. (a) A superblock with basic block dependences.
(b) The same superblock with speculative code. (c) The superblock with FRPized code.

Figure 4a, shows a superblock with basic block dependences. Each branch precedes a load

operation (ld) which produces a value that is stored using a store operation (st) before the

following branch. Without speculation, operations remain trapped between branches; each

load is trapped below a previous branch and each store is trapped above the subsequent

branch. In Figure 4b static speculation of the load operations is allowed. Dependences are

removed from branches to subsequent loads and loads can now move upward across

preceding branches to enhance ILP. Load operations can now execute even when they

would not have executed in the original program.

- 29 -

While static speculation enhances available ILP, it also requires hardware assistance to

handle exceptions, for instance, when an operation results in an illegal memory reference or

division by zero. If exceptions from speculative operations are reported immediately, it may

lead to the reporting of spurious exceptions. For example, assume that the first branch in

Figure 4b is taken. All three subsequent loads should be dismissed because they did not

execute in the original (non-speculative) program. If a load is speculatively scheduled

above the first branch and the error is reported immediately, then it is reported even though

it never occurred in the original program. EPIC uses a 1-bit tag in each register, termed the

NAT (Not A Thing) bit, to defer the reporting of exceptions arising from speculative

operations [23, 24, 7]. This permits the reporting of exceptions due to speculative

operations to be delayed until it is clear that that operation would have been executed in the

original (non–speculative) program.

A brief description of EPIC’s hardware support for speculation follows. For every type of

operation that may be speculated and can generate an exception, there are two versions of

the opcode—the speculative one and the normal non-speculative one. Operands are tagged

as correct or erroneous by the NAT bit. Non-speculative operations report exceptions that

they generate immediately. Speculative operations never report exceptions immediately;

when a speculative operation generates an exception, it merely tags its result as erroneous.

When a speculative operation uses an erroneous input from a previous speculative

operation, its result is also tagged as erroneous. Non-speculative operations, however,

report an exception when one of their inputs is erroneous, since this indicates an exception

that has been propagated from a prior speculative operation and since it is now clear that

that speculative operation would have, in fact, been executed in the original program. An

exception can thus propagate through a chain of data dependent speculative operations until

it finally is reported by a non-speculative operation. Thereafter, code generated by the

compiler is responsible for determining the cause of the exception and what action to take.

The processing of exceptions often requires more complex interaction between an

application and an exception handler. Flow-of-control is often transferred from the

application to an exception handler (where the exception is processed) and back as the

application is resumed. Again EPIC can use tagged data to defer an exception that is

produced while executing a speculative operation. The deferred exception is processed later

by a non-speculative operation, at which point the exception handler is invoked. The

compiler must ensure that any data required during exception processing is not overwritten

prior to the execution of the operation where the exception is processed.

- 30 -

Speculative and non-speculative versions for each operation can be provided using multiple

approaches. One approach defines two opcodes for every potentially speculative operation:

speculative and non-speculative operation forms which defer or report the error,

respectively. Typically, no extra operations are needed in order to handle errors but the

number of opcodes is doubled to accommodate two versions of most instructions. An

alternative approach removes the responsibility for reporting exceptions from the non-

speculative operations as well and hands it over to special exception checking operations

called sentinels [24]. Here, extra operations are scheduled to check whether the results of

chains of speculated operation are erroneous, but opcodes need only be specified in one

form which is, effectively, the speculative version.

3.3.2 Control speculation with unbiased branches

With unbiased branches, traces and superblocks can not be readily identified. Linear code

motion speculates along a single preferred path and expedites one path at the expense of

others which are equally important. When scheduling unbiased branches in linear regions,

control often flows off-trace onto paths that were not statically optimized and efficiency

suffers. Scheduling using more general non-linear regions [25, 26] can improve

performance. Speculative scheduling using non-linear regions allows operations to move

prior to a branch from either or both branch targets and simultaneously expedites multiple

paths.

When optimizing programs with unbiased branches, an EPIC compiler schedules

unbundled branch components like other operations. When large basic blocks contain many

non-branch operations, branch overlap is easily achieved as branch components are moved

upward within their home basic block. However, with small basic blocks, scheduling

branch components before the actual branch may hoist compare and prepare-to-branch

operations speculatively across multiple branches.

Excessive speculation leads to inefficient execution. When an operation is speculatively

moved across a single unbiased branch, it may be dismissed about half of the time. When

an operation is moved speculatively across multiple unbiased branches, it is dismissed most

of the time. Schedulers limit excessive speculation by balancing the cost of executing

unneeded speculative operations against reduced critical path length, in an attempt to

achieve the shortest possible schedule [27]. Thus, branch components are sometimes

scheduled too close to the actual branch and branches are not always efficiently overlapped.

As we shall see, EPIC facilitates the elimination of branches where beneficial.

- 31 -

3.3.3 Non-speculative code motion

Speculative motion alone is not sufficient to fully exploit instruction-level parallelism.

Operations like branches and stores to memory are not speculatively executed since they

cause side-effects that are not easily undone. EPIC uses predicated execution to facilitate

code motion by allowing operations to move non-speculatively across branches. This is

accomplished using fully-resolved predicates. A fully-resolved predicate (FRP) for an

operation is a boolean which is true if and only if program flow would have reached that

operation’s home block in the original program. An operation’s home block is its original

basic block in the non-speculative program. FRPs are also computed for branches. A

branch FRP is true when program flow reaches the branch’s home block and the branch

takes, otherwise the branch FRP is false.

FRPs are used as predicates to guard operations, that are moved above branches, in order

to keep them non-speculative. The FRP ensures that the operation is nullified whenever

control branches away from the operation’s home block in the original program. Figure 4c

illustrates FRPized code. Each compare computes two predicate results using an input

predicate and two data values. Recall that the UN modifier indicates unconditional action

(U) for a normal (N) condition, while the UC modifier indicates unconditional action for a

complemented (C) condition. If the input predicate is false, both UN and UC target

predicates are false. If the input predicate is true, the value of the UN predicate is the

compare result and the value of the UC predicate is the complement of the compare result.

Each compare computes an FRP for the branch exiting the current basic block (UN target),

as well as an FRP for the subsequent basic block (UC target).

FRPized regions do not require dependences between branches and subsequent FRP-

guarded non-speculative operations (including stores and succeeding branches). These

FRP-guarded non-speculative operations can move upward across prior branches. In

particular, the three branches in Figure 4c may be scheduled to occur simultaneously or in

any arbitrary order relative to one another.

Note that a chain of dependences through branches in 1b has been exchanged for a chain of

dependences through compares in 1c. To the extent that this chain of dependences is the

bottleneck to achieving a good schedule, one can shorten the critical path by employing

wired-AND compares. There are six different FRPs that must be computed in Figure 4c,

three for the branches and three for the stores. Each of these is a conjunction of up to three

compare results (possibly after they have been complemented). One or more of these six

- 32 -

FRPs may be computed using wired-AND compares in order to reduce the critical path

length to the point where it is no longer the bottleneck.

3.3.4 Operation mobility across branches

Branches present barriers to the static re-ordering of operations needed for efficient

schedules. Even without predicated execution and control speculation, the compiler can

move an operation down into the delay slots of the branch, that is in its home block, and

beyond (but with replication along all paths from the branch). But with predication and

speculation, the mobility of operations bracketed by branches is greatly increased.

MP

R

OP1

OP2

b

CMP

BR

f
pb

OP1

OP2

CMP

BR

OP1

f

OP2

pb CMP

BR

OP1*

P2

(a) (b) (c) (d)

Figure 5. Examples of code motion across branches and merges of control flow. (a) The original code
consisting of three sequential basic blocks. (b) The safe motion of OP1 below a merge in control flow
using predication. (c) The non-speculative motion of OP1 above the branch using predication. (d) The
motion of OP1 above the branch using control speculation. The operation is now labeled “OP1*” to
indicate that it needs a speculative operation code.

- 33 -

Consider the program fragment of Figure 5a consisting of three basic blocks. Figure 5b

illustrates the safe motion of OP2 below the merge of control flow and into the third basic

block. It is guarded using the FRP for the second basic block, i.e., the complement of the

branch exit condition (“pf=~pb”). Correctness requires that pf be set to FALSE on the other

path into the merge. Figure 5c shows the motion of OP1 above a branch (but not above the

compare that computes OP1's FRP). OP1 remains non-speculative because it is guarded by

the FRP for its home block. In both cases, OP2 and OP1, respectively, execute only if the

flow of control would have passed through the second basic block in the original program

of Figure 5a. Predicated code motion is valuable for operations, such as branches and

stores to memory, that are not executed speculatively because they cause side-effects which

are not easily undone. As shown in Figure 5d for OP1, other operations can move above

branches, as well as above the compares that compute their FRPs, using control

speculation.

When FRPs for dependent branches in a superblock are computed, they are mutually

exclusive—at most one branch's FRP is true and at most one branch takes. Branches

guarded by FRPs are readily reordered; they can move freely into the delay slots of and

across preceding branches. When branches guarded by FRPs execute simultaneously,

mutual exclusion guarantees well-defined behavior without branch priorities. This yields

simpler hardware for supporting multiple simultaneous branches.

3.4 Eliminating branches

The increased operation mobility obtained by the use of predicated execution and control

speculation assists the scheduler in reducing the schedule length by permitting the relatively

free motion of code across branches. However, it does not decrease the number of

branches that must be executed. This is a problem when branch-intensive code, with few

operations per branch, is to be executed on a wide-issue processor; a very parallel

schedule, resulting from the increased operation mobility, necessitates the ability to execute

multiple branches per instruction. This is a burden on the branch hardware as well as the

branch prediction hardware, if present.

3.4.1 Eliminating biased branches

Biased sequences of branches can be further accelerated using compiler techniques that

move branches off-trace [28]. These techniques eliminate many executed branches and can

provide improved performance using simpler branch hardware.

- 34 -

The motion of branches off-trace is illustrated for a superblock, the example in Figure 4b,

in which the loads have already been freed of their dependence on the branches. Recall that

all three branches are supposed to have a low probability of being taken, but they are

present and they lengthen the schedule. The transformation begins with the insertion of a

bypass branch as shown at the bottom of Figure 6a. The "exit FRP" which guards the

bypass branch is true (and the bypass branch takes) if and only if one of the original

branches would have taken. Note that in the code of Figure 6a, the bypass branch falls

through every time it is reached; its predicate would allow it to take only when one of the

preceding three branch operations branches off-trace before reaching the bypass branch. As

such, it is completely redundant, but it enables the code transformation that is to follow.

branch 0

ld 0

st 0

branch 1

ld 1

st 1

branch 2

ld 2

st 2

cmp 0

a0 b0

cmp 1

a1 b1

cmp 2

a2 b2

cmp 0a

0 0

cmp 1a

1 1

cmp 2a

2 2

c on

c on

c on

bypass
branch

LA
FRP

original
codeexit

FRP

ld 0

st 0

ld 1

st 1

ld 2

st 2

mp 0a

0 0

mp 1a

1 1

mp 2a

2 2

c on

c on

c on

exit
FRP

LA
FRP

bypass
branch

on-trace
code

branch 0

st 0

branch 1

st 1

branch 2

st 2

cmp 0

0 0

cmp 1

1 1

cmp 2

2 2

off--trace
code

(a) (b)

Figure 6: Reduction of the number of on-trace branches in a superblock. (a) The insertion of the bypass
branch, the FRP that guards it, and the "look-ahead" FRP. (b) The motion of the branches off-trace.

In the next step of the transformation (Figure 6b), the original compares and all operations

that are dependent upon those compares (including the original branches) are moved

- 35 -

downward across the bypass branch. When operations are moved downward across a

branch, they must be replicated on both taken and fall-through paths. After code motion,

unused operations are eliminated in both copies of this code. The FRP that guards the

bypass branch is such that the on-trace copies of the original branches, which were moved

downward across the bypass branch on its fall-through path, can never take. They are

redundant and can be eliminated. As a result, whereas the original code had three branches

on-trace, the transformed code has only a single branch, the bypass branch. Also, the off-

trace copy of “branch 2” can never fall through; the fact that the bypass branch was taken

means that one of the three off-trace branches must be taken, and if the first two have fallen

through, the last one must necessarily be taken. This branch can be replaced by an

unconditional branch and the off-trace copy of the store "st 2" may be deleted.

The on-trace copies of operations that were moved across the bypass branch (less the

branches which were eliminated) may be predicated on the look-ahead FRP, "LA FRP",

which corresponds to the condition that the bypass branch falls through, i.e., that all three

of the original branches would have fallen through. This allows the operations to move

non-speculatively above the bypass branch if a good schedule demands it.

At this point, the on-trace code has been greatly improved (Figure 6b). There is a single,

infrequently taken branch guarded by the exit predicate, three stores, guarded by the look-

ahead predicate, which are free to move non-speculatively above the branch, and three

loads that can move speculatively above the branch as well as the predicate computation.

The two predicates could be computed in a manner similar to that for the store operation,

"st 2", in Figure 4c. The branch dependence chain would have been eliminated, only to be

replaced by two predicate dependence chains. The remaining obstacle to achieving a highly

parallel schedule is the computation of the exit and look-ahead predicates.

EPIC provides the means to height-reduce the computation of these FRPs. Wired-AND and

wired-OR compares parallelize the evaluation of the multi-term conjunctions and

disjunctions needed to compute these two FRPs. The LA and exit FRPs are computed

using three compares (Figure 6a), each of which provides a wired-AND term (for the LA

FRP) and a wired-OR term (for the exit FRP). Wired-AND terms use the AC compare

target modifier indicating that the branch condition is complemented and AND-ed into the

result. Wired-OR terms use the ON compare target modifier indicating that the branch

condition is OR-ed into the result. Note that the logic gate symbols for the LA and exit

FRPs, shown in Figure 6a, are not actual operations but are inserted to explain the effect of

the preceding compares which, jointly, implement these operations.

- 36 -

The wired-AND for the LA FRP is evaluated by first initializing the common destination

predicate to the value true (not shown). A wired-AND compare, targeting the common

destination, is executed for each term in the conjunction. Each wired-AND compare (with

target modifier AC) assigns false to the result when its condition indicates that the

corresponding branch condition is true, otherwise the result remains unchanged. The

conjunction is formed after all compare operations have finished and the result will be true

if and only if all three branches would have fallen through. The wired-AND compares may

be scheduled to execute simultaneously or in arbitrary order. In effect, the scheduler's

ability to reorder the compares allows the use of associativity to reduce the height of the

FRP computation. Simultaneous wired-AND compares compute a high fan-in boolean

operation in a single cycle. The exit FRP is similarly computed using wired-OR compares.

The final on-trace code is highly efficient in both operation count and schedule length.

3.4.2 Eliminating unbiased branches

Sequences of unbiased if-then-else clauses represent both an opportunity and a challenge.

Each such clause will be executed independent of which way each of the branches go, in

the preceding if-then-else clauses. In principle, since the clauses are control independent

computations, they may be executed in parallel, limited only by their data dependences.

Since the schedule for an individual if-else-clause can extend over a substantial number of

cycles as a result of operation dependences and latencies, high performance requires that

multiple clauses be scheduled to execute in an overlapped manner. In practice, this is

difficult. If there are n clauses being scheduled in an overlapped manner, there can be as

many as 2n versions of code, each one corresponding to one particular combination of

either the then- or the else-computation for each of the n overlapped clauses.

Furthermore, the branches in each of the if-then-else clauses are independent. If m of them

are scheduled to execute in the same cycle, there will be 2m possible outcomes

corresponding to whether each of the m simultaneous branches is taken. 2m target

addresses must also be provided. In view of this, rather than using static schedules with

high code replication and complex multi-way branch hardware, the potentially parallel

clauses are traditionally scheduled sequentially.

EPIC's solution is to eliminate these unbiased branches completely, using if-conversion.

If-conversion consists of predicating every operation in the code region upon the

appropriate FRP, i.e., one that is true if and only if flow of control would have passed

through that operation's home block. Once this is done, every branch in the region is

- 37 -

redundant and can be eliminated, as long as both its taken and fall through paths are in the

region.

CMP

BR

R

OP1

P2

CMP

OP1 P2

(a) (b)

Figure 7. An example of using predicated execution to perform if-conversion. (a) An if-then-else construct.
Each rectangular block represents a basic block. Black arrows represent flow of control, whereas grey arrows
represent data dependences. (b) After if-conversion, the branch has been eliminated and there is just one basic
block containing operations that are guarded by the appropriate predicates.

A simple example of if-conversion is shown in Figure 7. Figure 7a shows the control flow

graph for an if-then-else construct while Figure 7b shows the resulting if-converted code.

A single EPIC compare operation computes complementary predicates which each guard

operations in one of the conditional clauses. If-converted code regions contain no branches

and are easily scheduled in parallel with other code, often substantially enhancing the

available instruction-level parallelism. The use of if-conversion is especially effective when

branches are not highly skewed in either direction and the conditional clauses contain small

numbers of operations.

UN and UC compares support the efficient computation of the FRPs for nested if-then-else

clauses. A single EPIC compare computes two FRPs, using the UN and UC actions,

respectively, to guard the operations in the “then” and “else” clauses corresponding to a

given branch. FRPs for nested if-then-else clauses, in which an if-then-else is executed

within one of the two clauses of a surrounding if-then-else, are computed by guarding the

compare operation with the FRP of the surrounding clause. When a UN or UC compare

- 38 -

executes in a nullified clause its guard FRP will be false and the computed FRPs for the

nested then-clause and else-clause will both be false.

EPIC also supports the if-conversion of unstructured control flow regions. Unstructured

control flow requires a general method to compute the FRPs for operations following

merge points in complex control flow graphs. Control flow reaches a merge point if it

traverses any of the paths entering the merge. Consequently, the FRP for the operations

after the merge point is the logical OR of the FRPs for the paths entering the merge. This

OR can be computed using one wired-OR compare per path that enters the merge.

Once a code region has been if-converted, it can be scheduled in an overlapped manner

without having to deal with the problems of code replication and the complexities of multi-

way branching caused by the presence of simultaneous, mutually non-exclusive branches.

If-conversion is used to the improve the performance of both loop and scalar code regions.

In the case of loop regions, the body of the loop is if-converted to eliminate all branches,

after which modulo scheduling is applied to effect the overlapped execution of multiple

iterations of the loop [3]. For non-loop regions the superblock is extended to a hyperblock

[29] to allow if-conversion. A hyperblock, prior to if-conversion, is a single entry, multiple

exit region with control flow interior to the region. After if-conversion, the interior control

flow is eliminated, and the hyperblock looks like a superblock containing predicated

operations. Hyperblocks are then scheduled much like superblocks.

The execution of if-converted code involves issuing operations along all paths within the

region; only those on the correct path will have their FRPs true, and the remaining

operations will all be nullified. This often achieves much of the performance benefit of

dynamically speculating past multiple branches and, in each case, along both paths

following the branch, but without the attendent exponential increase in cost. When an

overlapped sequence of if-converted if-then-else clauses is executed, less than half of the

issued operations are typically nullified, regardless of the number such clauses processed in

parallel. In each clause, either the "then" operations or the "else" operations are nullified,

but never both. However, when if-conversion is applied to nested if-then-else clauses,

efficiency decreases as the likelihood of operations being nullified increases.

It is the probability, that the guarding predicate will be true, that is the key to efficiency.

For instance, in an if-converted unstructured control flow region, the probability of every

operation's FRP being true can be fairly high even if there is a good deal of control flow

prior to if-conversion. This is caused by the presence of merges in the control flow in the

- 39 -

original region. Even though each successive branch lowers the probability of both

emanating paths, merges increase the probability of the code following the merge. Low

frequency paths can be excluded from the region that is to be if-converted. If-conversion

need not be used to eliminate all branches within the resulting region. Unbiased branches

may be eliminated using if-conversion while biased branches are retained. Only the high

probability path out of the biased branch is included in the region to be if-converted.

When employed judiciously, the fraction of operations nullified can be controlled. On

highly parallel machines, this waste is acceptable and is, in fact, smaller than the waste

introduced by scheduling in the presence of unbiased branches. A benefit of if-conversion

is that code replication and multi-way branches are unnecessary. A further benefit of

eliminating unbiased branches is that the branch prediction hardware, if present, is relieved

of having to predict the branches that are the most difficult to predict accurately [30]. As

processor issue-width and branch latencies increase, the cost of branch misprediction

increases and the use of predicated execution to treat unbiased branches will continue to

gain in relative efficiency.

4 Features to address the memory problem

Memory accesses represent another performance bottleneck, and one which is getting

worse rapidly. Since the processor's clock period has been decreasing much faster than has

the access time of dynamic RAM, the main memory access time has been increasing

steadily, as measured in processor cycles. This leads to one of the primary problems that

must be dealt with, which is the latency of load operations and its deleterious effect upon

the length of the critical path of the computation when the critical path runs through load

operations. A second problem, which is independent of the first one, but which is

compounded by it, is that of spurious or infrequent dependences between pairs of memory

operations. This results from situations in which the compiler cannot statically prove that

the two memory operations are to distinct memory locations. It must, therefore,

conservatively assume that they may be to the same location, i.e., that they may alias, even

if in actuality they rarely or never do. These dependences can have the same

consequence—a lengthened critical path.

The standard mechanism for addressing the problem posed by a long memory access time

is a data cache hierarchy, which is provided in the expectation that most of the memory

operations will find their referenced data in the fastest level of the cache hierarchy, thereby

reducing the average memory access time. However, data caches are a mixed blessing for

- 40 -

all processors, and especially so for EPIC processors. Hardware cache management

policies, which do not understand the nature of the data that is being accessed, can reduce

or nullify the benefits of a cache. One cause of this is cache trashing. For instance, a data

stream with little locality, if moved through the first-level cache, can displace other data

with good locality. This displaced data, when referenced subsequently, will cause a cache

miss. The data with good locality might need to be fetched into the cache repeateadly—a

phenomenon referred to as cache thrashing. In this case, neither the data with good locality

nor the data with no locality benefit from the use of the cache.

Hardware cache management strategies can sometimes even exacerbate the problem. An

example would be if the aforementioned data stream had no spatial locality, as can be the

case with strided accesses of array data structures when the stride is greater than the length

of a cache line. Now, in addition to the fact that we get no benefit from the cache because

of cache trashing and cache thrashing, we end up fetching an entire cache line for each

word that is referenced by the program. Since there is neither temporal nor spatial locality,

the rest of the cache line is useless. Far from improving matters, the presence of the cache

has actually degraded performance by increasing the volume of data that must be fetched

from main memory. This is why supercomputer architects have tended to avoid the use of

caches. Of course, for a general purpose architecture, which often run programs with

excellent data locality, this would amount to throwing the baby out with the bath water! We

need to preserve the benefits of data caches while preventing ineffective modes of usage.

This motivates the provision in EPIC of the architectural capability for the compiler to help

manage the cache hierarchy.

The second problem that caches cause is specific to statically scheduled processors like

EPIC. The actual latency of a load operation is now non-deterministic and depends on the

level in the cache hierarchy at which the referenced data is found. This poses a problem

when deciding what the assumed and compiler latencies should be for the load operation10.

If the compiler or assumed latency is optimistic with respect to the actual latency,

performance is lost due to stall cycles. On the other hand, if it is pessimistic, performance

may be lost due to an unnecessarily long schedule.

10 Whether it is the compiler latency or the assumed latency that matters depends upon the type of interlock
mechanism that is used. This is discussed in Section 6. For latency stalling, it is the assumed latency that matters.
For NUAL interlocking and issue interlocking, it is the compiler latency that is relevant.

- 41 -

In the rest of this section, we shall see how EPIC copes with these problems. For the sake

of specificity in our discussion, we assume the following architecturally visible structure

for the data cache hierarchy. At the first-level, closest to the processor, there is a

conventional first-level cache and a data prefetch (or streaming) cache. At the next level,

there is a conventional second-level cache which is also architecturally visible. Beyond the

second-level, there may be further levels of caching or just main memory, but these levels

are not architecturally distinct to the processor.

The data prefetch cache is intended to be used to prefetch large amounts of data having little

or no temporal locality while bypassing the conventional first-level cache. When such

prefetching is employed, the first-level cache does not have to replace other data having

better temporal locality which is potentially more valuable. Typically, the data prefetch

cache is much smaller in size than the first-level cache and employs a FIFO replacement

policy.

We also assume that memory references, issued in distinct cycles, that are to overlapping

memory locations, are performed in FIFO order by the memory system, regardless of the

level in the cache hierarchy at which the referenced data are found. Consequently, despite

the fact that a load's latency may be many cycles long, a store which is anti-dependent on

the load (potentially overwrites the same memory location as the load) may be issued in the

very next cycle, and a load that is dependent upon that store, or a second store that is output

dependent upon the first one, could be issued in the following cycle.

4.1 Overcoming low probability memory dependences

Accurate static disambiguation of memory references (especially with pointers) is often

difficult. One may be statistically confident that references do not alias but the compiler may

be unable to prove it. Potential dependences of this type, which rarely or never occur, can

prevent an EPIC compiler from fully exploiting the ILP existent in the program. In such

situations, the EPIC philosophy is to play the odds in order to avail of the statistically

available ILP.

EPIC provides a set of architectural features which permit a compiler to statically violate

selected memory dependences, while relying on the hardware to check whether ignored

dependences have actually been violated at run-time. This results in a schedule which

corresponds to an optimistic POE. In the cases where the actual dependences differ from

those assumed by the compiler, a performance penalty is paid to honor these additional

- 42 -

dependences and to ensure correctness. Because this perfomance penalty is significant, the

EPIC compiler should be selective in choosing the subset of dependences which are to be

ignored, only selecting those which have a low probability. Techniques, such as memory

dependence analysis or memory dependence profiling, can provide the statistical

information needed by the compiler to identify memory dependences which are not likely to

occur during execution. EPIC provides two closely related run-time memory

disambiguation mechanisms at the architectural level: prioritized memory operations and

data speculation.

4.1.1 Prioritized loads and stores

Even with a unit assumed latency for stores, dependences between memory operations can

degrade performance. For example, when a sequence of potentially aliasing stores are

written to memory, only one store per cycle is allowed independent of the number of

memory ports. Loads that are dependent upon these stores, or upon which the stores are

dependent, must be in separate instructions from the stores. This restriction applies even

when the stores do not (or rarely) alias, but the compiler has been unable to prove that they

definitely do not alias. As a first step in dealing with low probability memory dependences,

we would like the EPIC compiler to be able to schedule, in the same instruction, memory

operations which, with low probability, have dependences between them.

The use of prioritized memory operations accelerates such sequences. When a single

EPIC instuction issues multiple memory operations, the compiler and the hardware both

assume that, within the same instruction, a higher priority memory operation logically

precedes a lower priority memory operation. Using one of many possible encoding

strategies, the priority of each memory operation is specified via the opcode of the memory

operation. It is the compiler’s responsibility to ensure that two potentially aliasing memory

operations are never assigned the same priority.

The hardware checks for aliases and, when they occur, it stalls instruction issue and

sequentializes the memory operations, in accordance with the specified priorities. (If the

compiler has been judicious in its use of this capability, this should only happen rarely.)

This mechanism achieves an effect similar to the capability that superscalar implementations

use to concurrently issue memory operations, and takes a small step towards some of the

parallel dependence checking complexities of in-order superscalar processors. The

difference, here, is that the parallel dependence checking need only be done across the

memory operations, which are relatively few in number. Prioritized memory operations

- 43 -

allow for a more efficient usage of multiple memory ports and allows the compiler to

shorten the critical path by scheduling memory operations more tightly together.

4.1.2 Data speculation

Prioritized memory operations allow a compiler to reduce the latency of a potential memory

dependence to zero cycles. Even so, a dependent load operation cannot be scheduled any

earlier than the store operation upon which it is potentially, but rarely, dependent—a

performance bottleneck if the load is on the critical path. In such cases, it is desirable to be

able to schedule the load operation speculatively before the store operation upon which it

may be (but is unlikely to be) dependent, while being guaranteed correct results in the

unlikely event that the dependence actually exists. Superscalar architectures have

microarchitectural mechanisms to dynamically execute a load speculatively before a store

and to re-issue the load if the store turns out to be to the same location. However, since the

hardware cannot differentiate loads which never alias from loads which potentially alias, all

must be treated alike.

Instead, EPIC architecturally exposes to the compiler the hardware mechanism for the

detection of memory access conflicts by providing opcodes which invoke address

comparison hardware. EPIC incorporates data speculation [31, 23, 7] which allows the

safe static motion of a load across a prior potentially aliasing store. Loads can be treated

selectively; loads which the compiler knows will definitely not alias are simply moved

across the store, while loads which might alias use data speculation. Data speculation

allows the compiler to make optimistic assumptions concerning memory dependences; the

compiler aggressively, but safely, schedules and optimizes code for the most common case

without precise memory alias information.

A data-speculative load is split into two operations: LDS (data speculative load), and LDV

(data verify load). Both operations reference the same memory address and destination

register; the first operation initiates the load while the second operation ensures a correct

final value. The LDS operation works as follows. It performs a conventional load operation

which returns a result to the destination register. It also informs the hardware to start

watching for stores which alias the LDS operation’s memory address. Just like normal

loads, LDS operations may specify any source cache specifier, implying the corresponding

latency. A subsequent short latency (typically one) LDV operation, which is scheduled no

earlier than all of the stores upon which the original load might have been dependent, acts

as follows. If no aliasing store has occurred, nothing more needs to be done and the LDV

- 44 -

operation is nullified. If, on the other hand, an intervening aliasing store has occurred, the

LDV operation re-executes the load to ensure that the correct data ends up in the destination

register. In the meantime, the processor is stalled (allowing the LDV operation to appear to

have a latency of one cycle in virtual time). The LDV operation terminates the hardware

watch for potentially aliasing stores.

Data speculation with LDV allows only a limited degree of code motion. To ensure that a

correct result is formed, the LDV operation must appear before any operation that uses the

result of the LDS operation. Consequently, all such operations are still held below the

potentially aliasing stores. The BRDV (data verify branch) operation generalizes data-

speculative code motion. Data speculation again uses operation pairs: an LDS followed by a

BRDV. The LDS operation, as well as operations which depend upon its result, are moved

above the potentially aliasing stores, but the BRDV operation is scheduled no earlier than

the stores. The LDS operation executes as described above. The BRDV operation, like the

LDV operation, checks to see whether stores have aliased with the preceding LDS

operation and terminates the watch. If no aliasing store to the same memory address has

occurred, the BRDV is nullified. Else, the BRDV branches to compensation code,

generated by the compiler, which re-executes both the load and the operations, that were

dependent upon it and which had been moved above the BRDV, in order to yield correct

results.

4.2 Coping with variability in load latency

As noted earlier, the non-determinacy in the actual latency of load operations in the

presence of data caches poses a problem to a compiler that is attempting to generate high

quality schedules. Fortunately, our research suggests that the actual latency of individual

load operations can be predicted quite accurately [32, 33]. A small number of load

operations are responsible for a majority of the data cache misses in a program, and these

loads have a miss ratio that is close to one, i.e., they almost always miss in the cache. They

can be assigned an assumed latency equal to the cache miss latency without compromising

performance. Furthermore, most of the remaining loads have a miss ratio close to zero,

almost always hitting in the data cache. These can safely be assigned an assumed latency

equal to the cache hit latency. Typically, only a small fraction of accesses are accounted for

by the remaining loads which have an intermediate miss ratio. These can be assigned an

assumed latency equal to the cache miss latency, if there is adequate ILP in the computation

at that point. Else, they can be assigned an assumed latency equal to the cache hit latency.

- 45 -

Load operations need to be classified prior to or during compilation. Though loads can be

classified via program analysis in regular matrix-based programs, there are only broad

heuristics available for integer applications. These heuristics need to be refined further.

Another approach is to use cache miss profiling to classify the loads. Once the loads have

been classified, the correlation between their compiler or assumed latencies and their actual

latencies is greatly improved. The compiler can now generate schedules which generate few

stall cycles without being unnecessarily long.

In the case of latency stalling (see Section 6), the assumed latency must be communicated

to the hardware. To accomplish this, an EPIC load provides a source cache specifier.

Using the source specifier, the compiler informs the hardware of where within the cache

hierarchy the referenced data is expected to be found. Since a load’s actual latency is

determined by where it is found in the cache hierarchy, the load’s source cache specifier

also indicates its assumed latency. For our example cache hierarchy, the available source

cache specifier choices are V1, C1, C2 and C3 for the prefetch cache, first-level cache,

second-level cache and higher levels of the hierarchy, respectively.

4.3 Coping with long load latencies

Once the cache miss behavior of each load operation has been determined, its actual latency

is known with a fairly high degree of confidence. The compiler can now generate schedules

using compiler latencies that are neither optimistic nor pessimistic. If the expected actual

latency is long, the compiler is faced with the task of minimizing the impact of the load

latency upon the length of the schedule. If the critical path of the computation does not run

through a given load operation, the scheduler will be successful in creating a schedule that,

firstly, overlaps the latency of the load with other computation and, secondly, will not

cause stall cycles as long as the compiler latency is at least as big as the actual latency.

If, however, the critical path of the computation does run through the load operation, then

its full latency may not be overlapped with other computation. On the critical path may lie

either the data dependence of this load operation upon a prior store, or the data dependence

of the load operation upon its address computation. In the former case, and when the

dependence upon the store has a low probability, data speculation can be used as discussed

earlier. However, if the dependence upon the store has a high probability, then data

speculation is not an advisable option. Instead, one can insert a preceding non-binding load

operation to reduce the latency of the load that is on the critical path.

- 46 -

A non-binding load (conventionally referred to as a prefetch) does not deposit its result into

a register; it does, however, perform the normal action of promoting referenced data from

its source cache to its target cache. Non-binding loads are encoded using loads which target

a null register 11. In contrast to regular loads, non-binding loads promote data up the cache

hierarchy without altering the register state. The data must still be fetched into the desired

register by a subsequent binding load before it can be used. The advantage is that this

subsequent load, which presumably is on the critical path, will have a lower actual latency

and, therefore, a lower compiler latency than it would have had without the preceding non-

binding load to the same address. Since the non-binding load does not alter the register

state, it is not subject to any data dependences whatsoever and can, therefore, be scheduled

adequately in advance of the load that is on the critical path. While correctness will never be

compromised, if overdone, cache performance may be adversely affected.

The non-binding load can help reduce the critical path length even in the case when it is the

binding load's dependence upon its address computation that contributes to the critical path.

If the memory address of the load can be predicted with reasonable accuracy, then one can

insert a non-binding load from the predicted address, before the address computation has

been performed, and sufficiently in advance of the load that is on the critical path. Now,

with a high probability, the load on the critical path has a low, cache hit latency.

4.4 Programmatic cache hierarchy management

The necessity of a data cache to minimize the impact of the ever-increasing latency of main

memory along with the potential for hardware-managed caches, under certain

circumstances, to negate the benefits of the cache, argues for placing some of the

responsibility for cache management upon the compiler. EPIC provides architectural

mechanisms which allow the compiler to explicitly control the cache hierarchy. When used,

these mechanisms selectively override the usual, simple default hardware policies.

Otherwise, the default hardware policies apply. These mechanisms are used when the

compiler has sufficient knowledge of the program's memory access behavior and when

significant performance improvements are obtainable through compiler control.

An EPIC load or store can also provide a target cache specifier, which is used by the

compiler to indicate its view of the highest level to which the referenced data should be

11 A non-binding load can be specified, for instance, by using a normal, binding load which has as its destination
register some read-only register. Often, this is register 0 and is hardwired to a value of 0.

- 47 -

promoted for use by subsequent memory operations. This specifier can take on the same

values as the source cache specifier: V1, C1, C2 and C3. The target cache specifier is used

by the compiler to reduce misses in the first- and second-level caches by controlling the

contents of these caches and managing cache replacement. By excluding data with little

temporal locality from the highest levels of the cache hierarchy, and by removing data from

the appropriate level when they are last used, software cache management strategies using

the target cache specifiers can improve miss ratios and thereby reduce data traffic between

levels of the cache hierarchy.

As discussed earlier, a non-binding load (conventionally referred to as a prefetch) does not

deposit its result into a register, but does perform the normal action of promoting

referenced data from its source cache to its target cache. In order to distinguish between the

two first-level caches, we use the terms pretouch and prefetch, respectively, to refer to non-

binding loads that specify the target cache as C1 and V1. In contrast to regular loads,

prefetches and pretouches bring the data closer to the processor without tying up registers

and, thereby, increasing register pressure. On the other hand, the data must still be fetched

into a register by an additional binding load before it can be used.

EPIC's ability to programmatically control the cache hierarchy can be used to implement a

number of cache management strategies. One simple cache management strategy might be

to hold scalar variables in the first-level cache while vector variables are held in the second-

level cache. This strategy is based on the assumption that these particular vector memory

references have no locality, neither temporal nor spatial. If such a stream of vector data

originating in the second-level cache passes through the first-level cache, it could end up

replacing all the scalars in the first-level cache.

To prevent this, scalar references use C1 as the target cache specifier while vector

references use C2 as the target cache specifier. Thus, memory references to scalar variables

cause them to end up in the first-level cache, regardless of where in the cache hierarchy

they are found. In contrast, memory references to vector variables cause them to end up in,

and stay in, the second-level cache. The data are fetched from here, bypassing the first-

level cache on their way to the processor. This strategy is successful in ensuring that the

vector data do not pollute the first-level cache and interfere with its use by the scalar

variables which do have high locality.

The cache management strategy also has implications for the source cache specifiers that

should be used. Loads for scalars use the C1 source cache specifier since they expect a

- 48 -

first-level cache hit, while loads for vectors use the C2 source specifier since they expect

only a second-level cache hit. (Given that vector manipulation typically occurs in loops, the

long assumed latency of the vector loads are readily overlapped.)

A second example of a cache management strategy is motivated by a situation similar to the

one just considered, but where the vector references do have spatial locality even though

thay have no temporal locality. The prefetch cache is used to support such streams of data

which are quickly referenced and then of no further immediate use. Such data can be

prefetched into the prefetch cache using non-binding loads. A prefetch operation is

constructed using a non-binding load whose source cache specifier indicates the cache level

at which the data is expected to be found (e.g. C2), and whose target cache specifier is V1.

This operation promotes data from the source cache, bypassing the first-level cache, to the

prefetch cache where they can be accessed with low latency by a subsequent binding load.

This subsequent load, with a source cache specifier of V1, accesses the data from the

prefetch cache without having displaced data from the first-level cache.

5 Features to support interruption handling

The problem caused by an interruption is that the schedule that was carefully crafted by the

compiler is disrupted by the interruption, and the relative ordering of a number of read and

write events will be different from that assumed by the compiler. Unless program execution

is to be aborted as a result of the interruption, it is necessary that the program be restartable,

after the interruption has been handled, and without any alteration to the semantics of the

program as a result of the modification of the relative ordering of the read and write events.

In addition, if the interruption was caused by the program's execution, i.e., the interruption

is an exception, it should be possible to repair the problem before restarting the program.

While discussing the interruption issue in this section, we ignore the possibility that the

actual latencies are different from the assumed latencies, and focus solely on the problems

caused by interruptions. The mechanisms presented in Section 6 address any the mismatch

between the assumed and actual latencies.

Precise interruptions. Restartability is facilitated by using precise interruptions. For a

sequential, atomic ISA, an interruption is precise if a point can be found in the program

such that every instruction before that point has been issued and has completed, whereas no

- 49 -

instruction after the point of interruption has been issued12 [34]. The architectural state

reflects the completed instructions. In the case of an exception or fault, the operation that is

the cause of it appears to be either the first instruction amongst those that have not yet been

issued or the last of those that have.

Given the sequential and atomic view of instructions, this is a natural definition for precise

interruptions. Interruptions due to external events are easy to handle, even in a superscalar

processor. All the hardware need do is to stop issuing any further instructions, let all those

that have already been issued complete, and then hand control over to the interruption

handler. Exceptions pose more of a problem. In general, by the time the exception is

flagged, a number of subsequent instructions have been issued, and some of them might

even have completed execution. Presenting the view that the excepting instruction, and all

the instructions after it, were not issued requires that the result of each instruction be

committed to the architectural state only after it is definite that it will not cause an exception

and in the same order that the instructions appear in the program. This requires reorder

buffers, or some equivalent mechanism [34]. At the same time, if any ILP is to be

achieved, the results must be made available as soon as they have been computed. Since

this cannot be through the architectural state, a set of associative registers are needed for

this purpose.

In the context of MultiOp instructions and NUAL operations, we define a precise

interruption to have occurred if a point can be found in the program such that all of the

instructions prior to it have been issued and none of those after it have been issued. The

point in the program, that separates these two sets of instructions, is the point o f

interruption. The benefit of precise interruptions for EPIC is the same as for a sequential

ISA: there is a well defined point in the program, right after the point of interruption, at

which instruction issue can resume once the program is restarted.

However, with NUAL no attempt is made to project the illusion of atomicity.

Consequently, we do not necessarily require that all instructions prior to the point of

interruption have completed execution. At the time of an interruption, there will be one

instruction IA such that all of the operations of all the preceding instructions have

12 We note, in passing, the desirability, but impracticality, of precise exceptions with respect to the source code.
Even in the case of sequential processors, extensive optimizations, code motion and code transformations destroy
the correspondence between the source code and the object code. This is further exacerbated by the code reordering
performed by the scheduler for an ILP processor. We shall not view precise exceptions, at the source code level, as
an objective.

- 50 -

completed, and there will be another instruction IB such that it and all succeeding

instructions have not even been issued. The intervening instructions, including IA but not

including IB, are in some state of completion. In general, for each of these instructions,

some of its operations will have completed execution and others will not.

The first question that arises is which point in the program the hardware should present as

the point of interruption. The point between IB and the previous instruction is the natural

definition of the point of interruption since it exactly matches the description of the point of

a precise interruption. Any earlier point would require the use of reorder buffers to prevent

the visible architectural state from having been modified by operations from the instructions

between the point of interruption and IB.

Point of
nterruption

C

D

A

B

C

D

(a) (b) (c)

Figure 8: Interruption semantics for NUAL operations. (a) The POE for four operations. Virtual time
increases in the downward direction. The point of interruption is indicated. Operation B is NUAL-freeze and
operation C is NUAL-drain. (b) The ROE for the four operations. The vertical direction represents true
time, and the unshaded region the interval during which virtual time is frozen. Whereas operation C
continues to completion while virtual time is frozen, operation B is delayed so that it completes at the
scheduled virtual time. (c) The ROE viewed in virtual time (by deleting the unshaded region in (b).
Operation C appears to have completed at the point of interruption.

The second question is how one deals with those operations that were issued prior to the

point of interruption but which have not completed by that point in time. EPIC handles

these operations, in a manner that is dependent upon the type of the operation. A NUAL-

freeze operation is one which appears not to advance when virtual time is frozen and

- 51 -

which, therefore, performs its read and write events at the scheduled virtual time from the

viewpoint of every other operation, both before and after the point of interruption. A

NUAL-drain operation is one which continues to advance even when virtual time has

stopped and which can, therefore, appear to perform its read and write events prematurely

in virtual time, but only with respect to the NUAL-freeze operations in execution and the as

yet unissued operations. With respect to the events of the already issued NUAL-drain

operations, there is no change in the relative times. A UAL operation is a special case of

NUAL, with a latency of one cycle. For UAL, the distinction between freeze and drain

semantics vanishes.

The behavior of NUAL-freeze and NUAL-drain operations is illustrated by Figure 8.

Comparing Figures 8a and 8c, we see that the NUAL-freeze operation, B, performs its

read and write events at the scheduled virtual time from the viewpoint of every other

operation, whereas the NUAL-drain operation, C, continues to advance even when virtual

time has stopped (Figure 8b) and performs its write events prematurely with respect to the

NUAL-freeze operations in execution, such as B, and the as yet unissued operations, such

as D. To them, it appears to complete at the virtual time at which the interruption occurred.

With respect to the events of the already issued NUAL-drain operations, such as A, or

other NUAL-drain operations that are in execution, there is no change in the relative times.

In principle, the architect of an EPIC ISA can decide, on an opcode by opcode basis,

whether the opcode is to be NUAL-freeze, NUAL-drain or UAL. Typically, the decision

will tend to go one way or the other for the majority of opcodes, depending upon the

domain for which the ISA is being designed (see Section 8).

Given these two types of NUAL operations, EPIC provides precise interruptions which

present the following view to the interruption handler.

• Every read and write event of every NUAL-freeze operation in every instruction before

the point of interruption, that was supposed to have been performed by the point of

interruption, has completed. The visible architectural state only reflects these completed

write events. The write events that were supposed to happen after the point of

interruption have not yet occurred. These events have been recorded as part of the

hidden architectural state so that they will occur at their scheduled virtual time once the

program is restarted.

- 52 -

• Every read and write event of every NUAL-drain operation in every instruction before

the point of interruption has completed. The visible architectural state reflects all of

these write events.

• An excepting operation appears to have been issued but its offending write events to the

visible architectural state have not been completed.

From the viewpoint of the instructions following the point of interruption, the NUAL-

freeze operations that were issued prior to the point of interruption perform their write

events at their scheduled virtual times. NUAL-freeze operations provide the illusion of no

disruption whatsoever to the schedule crafted by the compiler. In contrast, the NUAL-drain

operations that were executing at the point of interruption appear, to the instructions that

follow the point of interruption, to have all completed prematurely at the point of

interruption (but retaining the correct relative timing amongst themselves).

When creating the POE, the compiler must take this into account and ensure that the

program semantics will not be altered by such an occurrence at any point in the program

where an interruption can occur [10]. At such points, the compiler must ensure that no

NUAL-drain operation is scheduled prior to a potential point of interruption while a

predecessor operation is scheduled after that point. If interruptions can occur at any point in

the program, then, the compiler must ensure that no NUAL-drain operation is ever

scheduled to issue any earlier than an operation upon which it has any form of dependence.

The hidden state due to NUAL-freeze operations that were in execution must be saved in

such a way that it can subsequently be restored and caused to modify the visible state at

exactly the same virtual time as if the interruption had never occurred. This requires

hardware support in the form of snapshot buffers [35], run-out buffers [4] or replay

buffers [36]. These buffers must be visible to the code that saves and restores processor

state.

NUAL branches must be NUAL-freeze even if the rest of the opcodes are all NUAL-

drain13. Since the branch latency is greater than once cycle, it is possible to have at least

one branch in execution at the point of interruption. Again, since the latency of the branch

is more than one cycle, some number of the instructions following the point of interruption

13 Strictly speaking, NUAL branches can be NUAL-drain and yet have unambiguous semantics as long as it i s
made illegal to schedule any other operation in the delay slots of the branch. This is an unattractive enough
option that, in practice, one would never select it.

- 53 -

(those that are in the branch's delay slots) were supposed to be issued whether or not the

branch ended up being taken. Therefore, the program must be restarted right after the point

of interruption. On the other hand, the functionality of a branch is to potentially alter the

flow of control and start issuing a new stream of instructions. If the branch is allowed to

continue to completion, it could alter the flow of control, implying a different point at

which the program ought to be restarted. Neither point of resumption would yield correct

program semantics. The problem is further exacerbated when there are multiple branches in

flight at the point of interruption, something that is possible when the branch latency is

greater than one cycle. In view of these ambiguities, a NUAL branch is constrained to be

NUAL-freeze, forcing it to alter flow of control at precisely the scheduled virtual time.

Repairability is the ability to repair the cause of an exception, and to then continue

program execution. This can be an extremely complicated issue depending on what the

requirements are, e.g., the provision of user-specified exception handlers at the source

program level. Here, we shall focus on just two basic capabilities that must be provided by

the hardware. One is the ability for the exception handler to figure out which operation

caused the exception. The other is to provide the exception handler access to the correct

values of the source operands of the excepting operation. The latter capability can be

provided without any hardware support by enforcing appropriate compiler conventions

which preserve the source operands from being overwritten before the exception handler

receives control [10]. However, this leads to increased architectural register requirements.

To reduce the use of expensive, multiported architectural registers for this purpose, one

could instead provide hidden state consisting of a buffer per functional unit, which saves

the values of all the operations that are in execution.

In general, the excepting operation could take a large number of cycles to execute. By the

time it raises the exception and freezes instruction issue, the program counter points many

instructions beyond the instruction containing the excepting operation. The exception

handler can utilize its knowledge of the latency of the excepting operation to determine how

many instructions ago it was issued. However, in the meantime, one or more branches

could have been taken. It is necessary for the hardware to keep a log of the address of last

so many instructions that were issued so that the exception handler can index back through

them to locate the address of the instruction that contains the excepting operation. This

structure is termed the PC History Queue [35]. Whatever the original cause of the

interruption, the NUAL-drain operations, that are in execution at the time that an

interruption of any kind occurs, can cause multiple exceptions while going to completion.

- 54 -

All of these exceptions must be handled by the exception handler before the program is

resumed. The PC History Queue supports this as well.

Relative merits. From a compiler viewpoint, NUAL-freeze operation semantics are

preferable because they provide better opportunities for optimization, scheduling, and

register allocation than do NUAL-drain semantics. NUAL-drain operations impose the

scheduling constraint that they cannot be scheduled to issue earlier than an operation upon

which they are flow, anti- or output dependent. However, the benefits of NUAL-freeze

semantics may not justify the hardware complexity associated with the replay buffers.

NUAL-freeze requires replay buffers and a multiplexer in the functional unit pipeline to

select between the pipeline and the replay buffer, which NUAL-drain does not. NUAL-

drain operations do not contribute to the hidden state since they go to completion and so

they do not need to use replay buffers. Instead, by completing earlier than the scheduled

virtual time, they contribute to increased register requirements in the visible part of the

processor state which, typically, is in the form of an expensive, highly-ported register file.

A careful analysis is required to decide which option is preferable from a hardware

viewpoint.

6 Compatibility strategies

The importance of compatibility depends upon the domain of application of the ISA. For

instance, while it is crucial in general-purpose processing, it is of much less importance in

embedded digital signal processing. The decisions as to whether to provide compatibility,

and if so to what extent, have to be made consciously and deliberately, since compatibility

comes with its attendent costs.

In discussing object code compatibility, it is useful to distinguish between two possible

objectives. Correctness compatibility is the ability to execute the same code correctly

on any member of the family, but not necessarily at the same level of performance as if the

code had been compiled for that specific processor. Performance compatibility has the

further objective of being able to execute the same code on any member of the family at

close to the best performance that that processor is capable of achieving on that application.

Clearly, performance compatibility is a much more difficult goal.

- 55 -

6.1 Correctness compatibility

The compiler builds two types of assumptions, regarding the target processor, into the POE

that it constructs. In the course of scheduling it must necessarily make certain assumptions

regarding the latencies of the various operations and the number of functional units (and

other resources) of each type available to execute these operations. If the actual latencies

and numbers of resources in the target processor are different from the assumed ones, the

object code runs the risk of being incorrect14. We shall consider each of these two

compatibility problems in turn.

6.1.1 Correctness compatibility with respect to latency

The techniques that we shall discuss address two different problems. One is that the

processor on which a program is to be executed might have different latencies than those

that the compiler assumed. The other is that certain operations, such as loads, might have

non-deterministic latencies even on the same processor. Regardless of what latency the

compiler assumes, the actual latency of a given dynamic instance of that operation may be

different. In both cases, we need to ensure that the program will execute correctly despite

incorrect assumed latencies.

For the purposes of our discussion of compatibility, we consider again the two versions of

NUAL semantics introduced earlier in Section 2.2. In the strictest form of NUAL

semantics an EQ operation reads its input operands precisely at issue time and delivers

results precisely at the assumed latency in virtual time. The LEQ operation is one whose

write event latency can be anything between one cycle and its assumed latency15. Codes

scheduled using LEQ operations are correct even if the operations complete earlier than the

assumed latency—a clear advantage from the standpoint of compatibility. The distinction

between EQ and LEQ vanishes for a UAL operation16.

14 A third assumption built into the ROE has to do with the number of architectural registers of each type. As i s
the case with all processor families, we assume that the number of registers is fixed across all processors
corresponding to a particular EPIC ISA. Consequently, there is no compatibility problem caused by this
assumption. It is also worth noting that in certain domains of application, compatibility is not an issue with
respect to either latency, number of resources or number of registers.
15 Actually, the lower bound on the latency need not be one cycle. For instance, if it can be anticipated that no
processor across the compatible family will have a multiply latency of less than two cycles, the lower bound could
be set at two cycles.
16 In the subsequent discussion, EQ and LEQ can be quite easily confused with NUAL-freeze and NUAL-drain,
respectively. The discussion of these two topics has a great deal of similarity. However, they are different
concepts, even though the differences are quite subtle. They are in response to two different problems that need to

- 56 -

In principle, the architect of an EPIC ISA can decide, on an opcode by opcode basis,

whether the opcode is to be EQ or LEQ. Typically, the decision will tend to go one way or

the other for the majority of opcodes, depending upon the domain for which the ISA is

being designed (see Section 8). Typically, operations on the same functional unit will all be

of the same type. A NUAL branch, however, must possess EQ semantics; unless the

change in the flow of control takes place at exactly the planned virtual time (i.e., precisely

after the intended instruction), the semantics of the program will be altered17.

In an EPIC processor with NUAL operations, there are two situations that must be dealt

with to support compatibility: tardiness and hastiness. A tardy operation is one that is not

ready to write its result at the scheduled virtual time, whereas a hasty operation is one that

is ready to write its result prior to the virtual time at which it was scheduled to do so.

Consider first the case of hasty operations. The manner in which a hasty NUAL operation

is handled depends on whether it has EQ or LEQ semantics. Codes scheduled using LEQ

operations are required to be correct even if the operations complete earlier than the

assumed latency. Consequently, a hasty LEQ operation poses no problem and nothing

special need be done; the operation just proceeds to an early completion. A hasty EQ

operation, however, cannot be allowed to write its result early without violating EQ

semantics. At the same time, the operation cannot be permitted to block the functional unit

pipeline since new operations are being issued to it each cycle. The problem is solved by

writing the result into a delay buffer [37] at the output of the functional unit. The delay

buffer acts as a variable-length delay line causing the write event to be delayed just enough

to occur at the correct virtual time. The Cydra 5, for instance, provided such a mechanism

for dealing with load operations that completed earlier than the assumed latency due to the

non-determinacy of the interleaved memory system [35]. As observed by Rudd, this

mechanism is similar enough to that needed to deal with NUAL-freeze operations, that are

in flight at the point of interruption, that the two can be combined into a single mechanism

that he terms a replay buffer [36].

On detecting a tardy operation, the simplest policy is to stop virtual time (which implies that

instruction issue is stopped, and no further reads or writes of architectural registers take

be addressed and the scheduling and register allocation constraints as well as the requisite hardware support are
slightly different in the two cases.
17 Again, in principle, NUAL branches could have LEQ semantics and yet have unambiguous semantics as long as
it is made illegal to schedule any other operation in the shadow of the branch. As noted earlier, this is an
unattractive enough option that, in practice, one would never select it.

- 57 -

place) until the tardy operation is ready to complete. This is known as latency stalling

and it ensures that a NUAL operation will never take more time to complete, in virtual time,

than it was supposed to take. This is necessary since, at any point thereafter in virtual time,

a read or write event might have been scheduled which, if reordered with respect to the

write event in question, would lead to incorrect program semantics. In tightly scheduled

code, there is good reason to expect that a dependent event will, in fact, immediately follow

the write event. Fairly simple techniques can be devised for implementing latency stalling

[6]. This policy guarantees literal adherence, in virtual time, to the compiler's schedule and,

hence, correctness as well.

While virtual time is stopped, other non-tardy operations can be handled in one of two

ways. The first is to freeze the progress of the non-tardy operation through the functional

unit pipeline. Since no further instructions are being issued, this is a viable strategy as long

as it does not obstruct the progress of a tardy operation, thereby causing a deadlock18. The

second option is to allow non-tardy operations to proceed regardless of whether virtual time

is advancing. The advantage of this approach is that an operation that is not currently tardy,

but which is at risk of being so in the future, can take advantage of the periods when virtual

time is stopped to reduce the amount by which it will be tardy or, possibly, to eliminate its

future tardiness completely. This can even result in the operation becoming hasty, in which

case it is dealt with as described earlier.

The drawback of latency stalling is that instruction issue is stopped even if there was no

dependent event about to take place. Other policies for handling tardy operations, that are

simultaneously more powerful and more costly, are possible. For instance, some interlock

scheme, which stops instruction issue only when necessary, could be employed to address

this problem. However, the conventional in-order interlock scheme, that is used with a

sequential ISA, cannot be used with NUAL since, unlike latency stalling, this interlock

mechanism has no control over the virtual completion time of operations. NUAL

interlocking keeps track of the tardiness of operations using the same mechanism as

latency stalling. However, at the point when latency stalling would have stalled instruction

issue (at the virtual time at which the destination was supposed to be written), NUAL

interlocking merely marks the destination register as invalid and continues instruction issue.

When the tardy operation completes, this register is marked valid. Instruction issue and

18 Note that this is an option that is not available to the interruption strategy since the interruption handler itself
needs to use the functional units while executing.

- 58 -

virtual time are stalled only if an operation is about to be issued which will read an invalid

register, i.e., a read-after-write (RAW) interlock, or if a second operation is about to write

to an invalid register, i.e., a write-after-write (WAW) interlock. Instruction issue is

resumed once the register becomes valid19. NUAL interlocking guarantees the relative

ordering of all the read and write events to any given register and, thus, the correct program

semantics20. Although NUAL interlocking has merit, latency stalling remains especially

important for embedded computers where processor simplicity is critical, and re-

compilation of programs is acceptable.

For atomic operations, NUAL interlocking reverts to the familiar in-order interlock scheme

in which the destination register of an operation is marked invalid at the time of issue, and

an operation will not be issued if it is going to either read or write an invalid register. We

shall refer to this as issue interlocking.

Relative merits. As we saw in Section 2.2, an EQ operation offers the highest degree of

determinacy to the compiler and provides the greatest opportunity for the compiler to

exploit NUAL and achieve the highest quality schedules and register usage. In fact, a long

latency EQ operation that is anti- or output dependent upon another short latency operation

can even be scheduled to issue earlier than the operation upon which it is dependent. In

contrast, an LEQ operation that is anti-dependent (output dependent) upon another

operation must be scheduled to issue no earlier than (after the completion of) that other

operation. In either case, the LEQ operation must be scheduled later, by an amount equal to

its latency, than if it had been an EQ operation. It is, however, possible to articulate

conditions under which this general rule can be ignored, safely and to the benefit of the

schedule21.

19 In the case of a WAW interlock, instruction issue can actually be resumed sooner. In principle, a sufficiently
sophisticated interlock implementation can resume instruction issue once the tardy operation is far enough along
that the hardware, with full knowledge of the residual actual latencies of both operations, is certain that the two
write events will happen in the correct order. In practice, this level of sophistication might be too expensive.
20 NUAL interlocking as described here is just one of a number of schemes that can be used with NUAL [37]. In
principle, even out-of-order execution is possible with MultiOp and NUAL semantics. However, this would fly in
the face of the EPIC philosophy, which is precisely to avoid the use of such schemes.
21 For instance, if the predecessor and the output dependent successor operations are both scheduled on the same
functional unit, and if this functional unit has the property that a subsequently issued operation cannot overtake
and complete earlier than a previously issued operation, then the output dependent successor operation can be
issued to schedule in the very next cycle after its predecessor. As a second example, even in the face of disparate
latencies across the family of processors, if it can be guaranteed that the difference in the latencies of two LEQ
operations will be constant across the entire family, then an output dependence between the two operations can be
treated by the scheduler as if it were between two EQ operations. Regardless of the processor on which this code i s
executed, the time between the write events of the two operations is unaffected.

- 59 -

EQ requires delay buffers and a multiplexer in the functional unit pipeline to select between

the pipeline and the delay buffer, which LEQ does not. Instead, hasty LEQ operations

deposit their results, which would have gone to the delay buffer, into architectural

registers. Since architectural registers are typically much more expensive than delay

buffers, due to their higher degree of multi-porting, this is a drawback. EQ is to be

preferred for operations with long latencies, which greatly increase register pressure, if the

application domain is not very sensitive to the increase in the operation's latency due to the

multiplexing.

If the ratio of actual latencies to assumed latencies is large, latency stalling will yield poor

performance since the the performance will be reduced by roughly the same ratio relative to

the performance expected from the schedule. NUAL interlocking can perform better than

latency stalling if there is some slack in the schedule, i.e., the dependent event is not

scheduled immediately after the event upon which it is dependent. One scenario leading to

the presence of slack is if the computation possesses more ILP than the hardware for which

the code was scheduled. Complex control flow also leads to slack. Since the schedule

cannot be simultaneously optimized for all paths through the control flow graph, it is likely

that slack exists on at least some of the paths.

A UAL ISA, which maximizes the latency ratio by using an assumed latency of one cycle,

will end up achieving unacceptably poor performance with the latency stalling policy unless

the actual latencies are, in fact, very close to one cycle. If not, issue interlocking is the only

choice for a UAL ISA. Of course, the compiler must still work with its best estimate of the

actual latencies in order to avoid invoking unnecessary stall cycles. Once this is done, there

is little difference in the quality of the schedule for a UAL ISA and that for a LEQ ISA.

Likewise, UAL and LEQ generate identical register pressure.

Since EQ and NUAL-drain semantics are mutually contradictory, an EQ operation must

necessarily be NUAL-freeze, and a NUAL-drain operation must necessarily be LEQ. A

decision to use NUAL-freeze semantics for an operation implies the inclusion of a replay

buffer. Given the existence of a replay buffer, EQ semantics are preferable over LEQ. If

one selects LEQ semantics for an operation, the scheduling benefits of EQ have already

been lost, and the choice between NUAL-freeze and NUAL-drain is determined by whether

or not a replay buffer is viewed as desirable. In general, it is fair to say that the most

common combinations are likely to be either EQ and NUAL-freeze, or LEQ and NUAL-

drain.

- 60 -

6.1.2 Correctness compatibility with respect to inadequate resources

The natural semantics for a MultiOp instruction are to state that correct execution is only

guaranteed if all the operations in the instruction are issued simultaneously. We refer to this

as MultiOp–P semantics. The compiler can schedule code with the assurance that all

operations in one instruction will be issued simultaneously. For instance, it can even

schedule two mutually anti-dependent copy operations, which together implement an

exchange copy, in the same instruction. Without this assurance, the exchange copy would

have had to be implemented as three copy operations that require two cycles.

However, MultiOp-P semantics pose a problem when code that was generated for a

machine with a certain width, i.e., number of functional units, has to be executed by a

narrower machine. The narrow processor must necessarily issue the MultiOp instruction

semi-sequentially, one portion at a time. Unless care is taken, this will violate MultiOp-P

semantics and lead to incorrect results. For instance, if the aforementioned copy operations

are issued at different times, the intended exchange copy is not performed.

This is just another case of hasty operations needing to be delayed. Virtual time cannot be

allowed to advance until the entire instruction has been issued. In particular, no EQ

operation, whether from the current or an earlier instruction, that was supposed to write a

result at the end of this virtual cycle, can be allowed to write its result until all the read

events, that were scheduled for the current virtual cycle, have taken place. (Included in this

constraint are all UAL operations from the same instruction.) These results must be

buffered until all read events for the current virtual cycle have occurred. This is just a

special case of dealing with hasty EQ operations with the new twist that even UAL

operations can now be hasty. The additional buffering and multiplexing within processor

data paths can be costly in cycle time or latency unless, of course, they are already present

to support operations with EQ or NUAL-freeze semantics.

MultiOp-S semantics simplify semi-sequential execution by excluding certain bi-

directional dependences across a MultiOp instruction. MultiOp-S instructions can still be

issued in parallel, but they can also be issued semi-sequentially from left to right without

any buffering. However, it is still the case that no EQ operation from an earlier instruction,

that was supposed to write a result at the end of the current virtual cycle, can be allowed to

write its result until all the read events, that were scheduled for the current virtual cycle,

have taken place. In general, a MultiOp-S instruction is composed of multiple chunks.

Whereas the chunks, themselves, may be issued either in parallel or sequentially, the

- 61 -

operations within a single chunk must be issued simultaneously. Each chunk can be

viewed, for any purpose including interruptions, as a MultiOp-P instruction. The point of

interruption can be at any chunk boundary within the MultiOp-S instruction. The remainder

of the MultiOp-S instruction constitutes the first instruction to be executed when the

program is resumed. Admissible dependences (e.g. anti-dependences) between operations

within the same chunk are permitted to be bi-directional, but the compiler must ensure that

admissible dependences between operations, that are within the same MultiOp instruction

but in different chunks, are only from left to right. The size of the chunk defines the

narrowest processor in the compatible family. In the extreme case, a chunk can consist of a

single operation, in which case an instruction can be issued in parallel, semi-sequentially or

sequentially, operation by operation.

A common problem with both MultiOp-P and MultiOp-S is that resource allocation must be

performed dynamically if the processor is narrower than the MultiOp instruction. This is

the price that must be paid for providing compatibility. However, constraints upon the

manner in which members of the family differ can reduce the complexity of resource

allocation. One approach is to require that the resources of every processor in the family are

a multiple of some common resource unit which consists of a certain set of resources. The

instruction format is correspondingly constrained to consist of multiple chunks, where each

chunk corresponds to a resource unit. Dynamic allocation can now occur at the level of

resource units rather than functional units.

MultiOp-P and MultiOp-S bear similarities to EQ and LEQ, respectively. Both MultiOp-P

and EQ guarantee that operations will not complete early in virtual time, whereas MultiOp-S

and LEQ permit it. Although it need not necessary be the case, one would tend to use

MultiOp-P in conjunction with EQ semantics, and to pair MultiOp-S with LEQ.

6.2 Performance compatibility

Although correctness compatibility, as discussed above, ensures that a program will

execute correctly despite the fact that the latencies and width assumed by the compiler are

inaccurate, the performance can leave much to be desired when compared with what could

have been achieved if the application had been compiled with the correct latencies and width

in mind. Had this been done, the compiler would have reordered the operations differently,

assigned them to different functional units, and thereby designed a better POE.

Performance compatibility requires that this re-scheduling and re-allocation of resources

occur at run-time.

- 62 -

Superscalar processors utilize an array of techniques, including register renaming and out-

of-order execution, to perform such dynamic reorganization upon a sequential program

consisting of atomic operations. All of these techniques can, in principle, be applied to a

MultiOp, NUAL architecture once one recognizes the it is the read and write events that

must be treated as the atomic events [37]. However, if these techniques are undesirable at

high levels of ILP for a superscalar processor, they are almost equally undesirable for a

wide EPIC processor. Once again, our preference is to simplify the hardware by placing

more of the burden upon software.

Emulation of one ISA by a processor with a different ISA using instruction interpretation is

a well-understood technique. It has been used commercially to assist in the migration of

applications from one ISA to another [38]. However, instruction interpretation can be very

slow. Dynamic translation [39] is a way of accelerating this process. To minimize the

overhead of instruction interpretation, sequences of frequently interpreted instructions are

translated into sequences of native instructions, and cached for subsequent reuse in a

dynamic translation buffer. Dynamic translation has been applied commercially with great

success, resulting in significant increases in emulation speed [40-44]. In the context of this

report, the work at IBM [43] and HP [44] are of particular interest since they address the

issue of emulating conventional, sequential ISAs on a VLIW processor and the IA-64,

respectively. Furthermore, dynamic translation provides the opportunity of optimizing the

translated code before saving it in the dynamic translation buffer. This is termed dynamic

optimization [45-47]. Simple dynamic optimization is part of HP's Aries dynamic translator

from PA-RISC to IA-64 [44].

Dynamic translation can serve as an alternative to using hardware for performing the

dynamic scheduling required for performance compatibility [48-50]. Dynamic translation

serves as a means of accelerating the interpretation of one EPIC ISA by another EPIC ISA.

The added complication is the interpretation of EPIC code to which predication, control and

data speculation, and other more complex optimizations such as CPR, have been applied.

Research in this area has yet to be performed.

The technology for dynamic translation, between EPIC processors within the same family,

is still in its early years. But in our view, it represents the most promising path to achieving

performance compatibility at high levels of ILP. It is worth noting that, if dynamic

translation proves to be an effective way of achieving performance compatibility, the

performance demands placed upon the correctness compatibility mechanisms are greatly

reduced. Since the fraction of time that the processor is executing non-native code (which

- 63 -

has the wrong assumptions built into it) is minimized, the simplest compatibility

mechanisms, that ensure correctness, can be used. At the same time, it is reasonable to

expect that a processor family that plans to use dynamic translation as its compatibility

strategy, will provide special architectural support for the dynamic translation process [39].

7 Instruction encoding strategies

We define the canonical instruction format to be that MultiOp instruction format

which has an operation slot per functional unit. The operation slots need not be of uniform

width; each operation slot can use exactly as many bits as it needs. This conserves code

space. Furthermore, the correspondence between an operation slot and a functional unit can

be encoded by the position of the operation slot within the instruction—a further saving in

code space over having to specify this mapping explicitly as part of the instruction.

However, either because of the shared use, by the functional units, of other resources in

the hardware or because the compiler is unable to find adequate ILP in the program, the

compiler cannot always sustain the level of parallelism provided by the canonical format. In

that event, some of the operation slots will have to specify no-op operations, leading to a

wastage of code space. Worse yet, the schedule might be such that there is no operation

whatsoever scheduled to issue on certain cycles. If the processor does not support

hardware interlocks on results that have not yet been computed, this situation requires the

insertion of one or more MultiOp instructions containing nothing but no-ops. The need for

these no-op instructions reflects the fact that a program for such a processor represents a

temporal plan of execution, not merely a list of instructions. These explicit no-op

instructions can be eliminated quite simply by the inclusion of a multi-noop field in the

MultiOp instruction format which specifies how many no-op instructions are to be issued,

implicitly, after the current instruction [35, 20]. This gets rid of instructions that contain

nothing but no-op operations.

The far more challenging problem is to get rid of code wastage caused by explicit no-op

operations in an instruction that is not completely empty. One no-op compression scheme,

which we shall call MultiTemplate, involves the use of multiple instruction formats or

templates, each of which provides operation slots for just a subset of the functional units.

The rest of the functional units implicitly receive a no-op, avoiding wastage of code space.

The templates are selected in two ways. To begin with, the datapaths of the processor

might have been designed in such a way that it is impossible to issue an operation on all

functional units simultaneously, due to the sharing of resources such as buses or ports to

- 64 -

register files. Clearly, it only makes sense to provide those templates that correspond to

those maximally concurrent sets of functional units upon which it is permissible to issue

operations simultaneously. No template, that is a superset of any of them, is of interest.

However, it could be the case that certain subsets of these maximally concurrent sets are

expected to have a high frequency of occurrence in the workload of interest. The provision

of additional templates, that correspond to these statistically important subsets, further

reduces the number of explicit no-ops. By using a variable-length, MultiTemplate

instruction format, we are able to accommodate the widest instructions where necessary,

and make use of compact, restricted instruction formats for much of the code. A

rudimentrary version of this approach was used in the Cydra 5 [35].

A second scheme goes about eliminating no-ops rather differently. The VariOp instruction

format permits any arbitrary subset of the operation slots in the canonical format to be

specified explicitly. The remainder are understood to be no-ops. In essence, the VariOp

format is the canonical format with the no-op slots compressed away on a per instruction

basis. Each operation in the compressed instruction must specify the functional unit to

which it corresponds. Alternatively, a format field in the VariOp instruction can specify

which operation slots are present and which are absent, as was the case in Multiflow's

TRACE series of processors22 [2]. Either scheme permits each operation slot that is present

to be matched up with the appropriate functional unit, and for the remaining functional units

to be presented no-ops. A number of variations on this theme are possible. Practical

considerations favor the use of a uniform bit width for every slot to facilitate the

compression and decompression of no-ops.

The trade-off involved in the choice of an instruction format is between no-op compression

and the complexity of the instruction datapath from the instruction cache, through the

instruction register, and to the functional units. The canonical format has instructions all of

which are of the same width. If the instruction packet––the unit of access to the instuction

cache––has the same width, then instructions can be fetched from the cache and directly

placed in the instruction register. On the other hand, both no-op compression schemes yield

variable length instructions. The instruction packet size and the instruction register width

must be at least as large as the the longest instruction. When the current instruction is

22 A point to note is that the Multiflow processors expanded each VariOp instruction into its canonical format at
the time of fetching it into the instruction cache on a cache miss. Consequently, the instruction cache only
contained instructions with a canonical format. Whereas this led to a much less complicated instruction datapath,
the effective cache size was reduced by the no-ops in the canonical format instructions.

- 65 -

shorter, the unused portion of the instruction register contents must be shifted over to be

correctly aligned to serve as part of the next instruction and, if necessary, another packet

must be fetched from the instruction cache.

Also, the instruction fields in the individual operation slots must be distributed to the

appropriate points in the datapath: to the control ports of the functional units, register files

and multiplexers from the instruction register. This is trivial with the canonical format.

Each functional unit's operation slot is located in a specific segment of the instruction

register and can be directly connected to it. When a noop compression scheme is used, the

fields of the corresponding operation slot may be in one of many places in the instruction

register. A multiplexing network must be inserted between the instruction register and the

control ports of the datapath. The shifting, alignment and distribution networks increase the

complexity and the cost of the processor. They can also add to the length of the instruction

pipeline, which shows up as an increase in the branch latency.

The cost of the distribution network can be reduced by designing the instruction templates

in such a way that the instruction field corresponding to each control port in the datapath

occupies, as far as possible, the same bit positions in every instruction template in which it

appears. We refer to this as affinity allocation. If one were completely successful in doing

this, the distribution network would be trivial. However, this can sometimes lead to a fairly

substantial wastage of code space. Instruction format design heuristics can be articulated

which attempt to strike a compromise between these competing goals, reducing the amount

of multiplexing in the distribution network without causing too much wastage of code

space [51, 52].

The complexity of the shifting and alignment network can be partially contained by

requiring that the length of all instruction templates be a multiple of some number of bits,

which we refer to as the quantum. As a result, all shift amounts will only be a multiple of

this quantum, thereby reducing the degree of multiplexing in the shifting and alignment

network. The adverse effect of quantization is that the template length must be rounded up

to an integral number of quanta, potentially leading to some wastage of code space.

MultiOp-P semantics are compatible with both the MultiTemplate and VariOp instruction

format strategies. MultiOp-S, with its chunk structure, is best served by the VariOp

approach. However, each chunk is best encoded using a MultiTemplate instruction format

which has the property that all of the templates are either of the same length or are one of a

very small number of distinct lengths. This is key to containing the complexity of the

- 66 -

distribution network; if each chunk can be one of n lengths, the starting position of the i-th

chunk could be in one of as many as ni-1 places within the instruction.

8 Architecting an EPIC ISA

EPIC provides an architectural framework which addresses diverse high-performance

computing requirements. For any given application domain, a well-chosen architecture

must make engineering trade-offs which balance conflicting requirements. Factors to be

considered include: the nature of the workload, the amount of available ILP, the allowed

chip cost and device count, the potential need for compatibility across processors with

diverse cost, and interrupt and exception handling requirements.

Given the number of EPIC features presented and the enormous variation in how these

features could be combined, it is impossible to describe all possible interesting EPIC

architectures. Instead, we consider three fictitious examples with disparate requirements.

These example EPIC machines are:

• EACC - an example highly-customized accelerator,

• EDSP - an example digital signal processor, and

• EGP - an example general-purpose processor.

These three example machines illustrate variations in the way EPIC techniques can be

combined, and illustrate trade-offs faced when using EPIC. In addition, the IA-64 [5]

serves as a real-world example of an EPIC ISA tailored to the general-purpose domain.

8.1 The EPIC “EACC” custom accelerator

The first EPIC example, EACC is a customized, application-specific processor that is

dedicated to a single, image processing application. No compatibility is required for

EACC’s dedicated embedded application. This accelerator does not generate exceptions and

does not field any interrupts. The opcode repertoire, highly customized to the specific

requirements of the application, operates only on 8-bit data and contains no floating-point

opcodes. EACC’s simplicity and degree of customization allow the best performance at the

lowest cost.

EACC is a NUAL architecture with MultiOp-P semantics. The simple, canonical instruction

format is used. Since interruptions cannot occur, the choice between NUAL-drain and

NUAL-freeze is irrelevant. All operations have EQ semantics. This allows static scheduling

- 67 -

to fully exploit EQ semantics to minimize the number of registers required and to maximize

scheduling freedom. EACC code is precisely scheduled to known hardware latencies;

neither register interlocks nor latency stalling are required. No caches are provided and data

memory is implemented using static RAMs with constant access-time. The POE and the

ROE are identical for this simple VLIW-like architecture. Features such as programmatic

control over the cache hierarchy and data speculation are not needed. No register interlocks,

latency stalling or other dynamic control logic is needed.

In support of the loop-oriented application, rotating registers and loop-closing branches for

modulo scheduling are present. Predicated execution and unconditional compares (UN and

UC) are provided to support the modulo scheduling of loops with nested IF-THEN-ELSE

constructs. Although control speculation is employed by the compiler, no architectural

support is needed because there are no exceptions. NUAL branches are pipelined but since

EACC does not process exceptions, no specialized hardware is required to save and restore

the branch pipeline state.

8.2 The EPIC “EDSP” digital signal processor architecture

The second EPIC example, EDSP is a digital signal processor which is intended to execute

a range of signal-processing applications. While not as custom or as cost-effective as

EACC, EDSP still offers very high performance at greatly reduced cost. EDSP is similar to

EACC, but with the following points of difference.

Floating-point operations and operations on 16-bit data are supported. EDSP must handle

interrupts, but recognizes no exceptions. EDSP implementations fit into an architectural

family of processors. Binary compatibility, however, is neither provided nor required and

applications are re-compiled to the actual hardware latencies of each EDSP implementation.

Retargetable software tools, including a compiler and debugger, support the entire family

of EDSP implementations.

EDSP is a NUAL architecture with MultiOp-P semantics. Since the cost of the memory that

holds the code is important, conserving code size is an issue and a MultiTemplate

instruction format is used. Arithmetic operations have LEQ semantics and proceed toward

completion even during a stall. Branch and load operations, however, have EQ semantics.

EQ branch operations allows a simple implementation of pipelined branches consistent with

high speed and low-cost objectives. The use of EQ latency load operations dramatically

reduces the number of architected registers needed to overlap a stream of long-latency loads

- 68 -

from memory. When the processor stalls, the branch and memory pipelines also stall to

guarantee EQ semantics.

The branch architecture is relatively simple. Unbundled branches minimize the latency

required for the actual branch. However, the prepare-to-branch and compare operations

serve only to compute the target address and branch condition. No hardware is provided to

prefetch code from the target of a branch before the branch actually begins execution. The

NUAL branch executes with constant latency and without prediction. Its latency covers the

full access time for the target instruction and its decode. Branches have predictably constant

latency due to the simplicity of the instruction memory which uses no cache and is

implemented with static RAM.

No register interlocks are required. Arithmetic and branch operations complete within their

architected latency because code was scheduled to correct implementation latencies. EDSP

uses a simple single-level memory architecture where all memory operations reference main

memory. Load operations are also scheduled to the actual hardware latency and thus,

values never return early. Unlike EACC, EDSP is intended to be interfaced to dynamic

RAM which must be refreshed periodically. As such, EDSP must be able to handle tardy

memory references. Latency stalling detects tardy memory operands and freezes the

memory and branch pipelines to ensure EQ semantics. Since arithmetic operations are LEQ,

arithmetic pipelines are allowed to drain into their destination registers during stall cycles.

EDSP must handle interrupts, but the interrupt handling latency is not critical. Exception

processing is NUAL-drain for arithmetic operations which is consistent with LEQ

arithmetic operation semantics. NUAL-freeze is required for branch and memory

operations to ensure consistency with their EQ semantics. The state of the memory and

branch pipelines must be saved and restored during interrupts. However, the cost of saving

the memory pipeline state is offset by the savings in the number of higher cost, architectural

registers needed to sustain an overlapped stream of loads having long latencies.

Like EACC, EDSP has no exceptions. Even though the compiler schedules operations

speculatively, no architectural support is provided for deferring exceptions or accurate

reporting of errors from speculative operations.

8.3 The EPIC “EGP” general purpose architecture

The third EPIC processor, EGP is a general purpose processor. EGP represents an

architectural family of current and future implementations. The architecture is driven

- 69 -

primarily by high-end implementations which are expensive and offer state-of-the art

performance. Binary compatibility is required across all EGP implementations.

EGP uses UAL and MultiOp-S to provide binary compatibility across implementations of

disparate issue width and latency, in a system environment that requires the use of shared

and dynamically linked libraries. MultiOp-S allows codes developed for wide

implementations of EGP to be interpreted semi-sequentially on narrower, less expensive

implementations. Consistent with this is the use of VariOp. Although the assumed latency

for all operations is one across the entire family, compiler latencies for scheduling purposes

are implementation dependent since the use of the actual hardware latencies is required to

optimally schedule code. While some very low-end implementations of EGP may use

latency stalling, high-performance EGP implementations use register interlocks.

EGP has stringent interrupt handling requirements as normally seen in general-purpose

applications. Since EGP is a UAL processor, the choice between NUAL-drain and

NUAL-freeze is immaterial; EGP returns all results to registers prior to handling an

exception or interrupt.

EGP offers full architectural support for predicated execution, control speculation,

prioritized memory operations and data speculation. In high-end implementations, data

speculation uses special hardware to support the efficient static reordering of memory

references. Low-end implementations minimize hardware (and sacrifice performance) by

treating data speculative loads as null operations, and by treating data verifying loads as

low-latency conventional loads.

EGP offers a complex memory architecture which provides programmatic control of a

multi-level cache hierarchy. Memory loads are scheduled using a compiler latency which

corresponds to the actual latency of the cache level in which the referenced value is most

likely to reside. Source cache specifiers are not provided since all loads are unit latency

UAL operations. Memory operations use target cache specifiers to assist in controlling the

motion of data through the cache hierarchy. Prefetch and pretouch operations allow the

nonbinding promotion of data into higher-level caches (closer to the processor) for data

with excellent temporal locality as well as for data with poor temporal data locality.

EGP uses an unbundled branch architecture. The incorporation of separate prepare-to-

branch and compare operations enables static scheduling to move branch components

earlier in the instruction stream. This allows improved branch overlap and branch

throughput. High-end EGP implementations provide hardware which uses information

- 70 -

from prepare-to-branch and compare operations to begin the prefetch of instructions from

the branch target long before the actual branch is executed.

9 The history of EPIC

Although EPIC was developed at Hewlett-Packard Laboratories over the five-year period

from 1989 through 1993, it builds upon work that was performed, at various places, going

back twenty years. In this section, we briefly review the efforts that are the foundation

upon which EPIC is built.

9.1 Intellectual antecedents

Floating Point Systems. The common ancestor of all of the VLIW architectures that

have been defined to date was Floating Point Systems' AP-120B [53], which was

introduced in the late 1970's and was based on an earlier design by Glenn Culler. Although

it lacked certain features that would qualify it as a bona fide VLIW machine, it was the first

commercial product to borrow the microprogramming concept of a horizontal

microinstruction and adapt it to issue in parallel not a set of microoperations but, rather, a

set of operations at the level of RISC instructions.

Early VLIW research. Largely in reaction to the difficulty of programming the AP-

120B and the even greater challenge of writing a compiler for it, two research activities

were started in the early 1980's at TRW/ESL and at Yale University. Both fixed an

architectural problem in the AP-120B, namely, that it was not possible to exploit the full

ILP of the AP-120B if one only used register-to-register operations. Because of the limited

scratch pad (register file) bandwidth, some fraction of the operations issued on each cycle

had to be chained to earlier operations, i.e., they would have to get their source operands

off the result bus instead of from the scratch pad.

The Polycyclic Architecture project at TRW/ESL was primarily focused on the architectural

and compiler support needed to handle loops [54, 55]. The rather unusual compacting

FIFO structure in the polycyclic architecture was the precursor to the rotating register file.

The Bulldog project at Yale, which was primarily focused on extracting ILP out of branch-

intensive programs [56], introduced the concept of compiler-controlled control speculation

and considered architectures with levels of ILP that were high enough to motivate the

introduction of the multi-cluster architecture [57, 58]. In addition, out of this project came

- 71 -

the name that has since come to be associated with the style of architecture that was in

development by both activities: VLIW.

Multiflow. Multiflow Computer was founded in 1984 to commercialize the ideas and

technologies developed by the Bulldog project at Yale. Multiflow developed and shipped

the TRACE family of multi-cluster VLIW mini-supercomputers [2, 59]. The TRACE

machines introduced the architectural feature known as a dismissable load and exploited the

nature of the IEEE Floating Point Standard to provide hardware support for control

speculation. They also introduced the ability to simultaneously issue multiple, prioritized

branch operations, and pioneered the notion of what we have referred to in this report as

the VariOp instruction format.

Cydrome. Cydrome, likewise, was founded in 1984 to commercialize the ideas and

technologies arising out of the TRW/ESL work. It developed and shipped the Cydra 5

mini-supercomputer, whose Numeric Processor was a VLIW machine [3, 35]. The Cydra

5 introduced a number of architectural features: predicated execution23, support for

software pipelining in the form of rotating register files and special loop-closing branches,

latency stalling and the memory latency register (MLR), and the ability to execute multiple,

independent branches in a concurrent, overlapped fashion. In order to conserve code space,

it also made use of a rudimentary MultiTemplate instruction format, providing two formats:

UniOp and MultiOp.

The design of Cydrome's second product, the Cydra 10, was started in 1987. Although it

was never shipped, work on it was well underway when Cydrome closed its doors. The

most significant new architectural feature was an enhanced and generalized version of the

hardware support for control speculation provided by the Multiflow machines. This

included the concepts of speculative versions of opcodes, a speculative error tag bit in each

register, and the ability to defer exception handling until it was known not to be a spurious

exception [35]. These ideas, we later learned, were also independently developed by two

other research groups: contemporaneously at IBM Research [63] and subsequently by the

IMPACT project at the University of Illinois [24].

Superscalar work. Although EPIC grows more out of the VLIW work and philosophy,

superscalar processors have served as a stalking horse during our development of EPIC;

23 Predicated execution has since been adopted in a number of other products such as ARM [60], Philips TriMedia
[61] and Texas Instruments' VelociTI [62].

- 72 -

for every clever and useful technique present in superscalar processors, our goal was to

find an equivalent mechanism that would support compile-time scheduling and preclude the

need for out-of-order execution. The Control Data 6600 [64] and the IBM System/360

Model 91 [65] introduced the notion of out-of-order execution. The latter also introduced

register renaming as a way to get around output dependences [12]. The notions of

superscalar execution, the prepare-to-branch opcode, branch target buffers, and branch

prediction along with speculative instruction prefetch were all first introduced by the very

forward-looking Stretch project at IBM [9]. Speculative execution was introduced by Hwu

and Patt [18]. The first superscalar processor built commercially was the Astronautics

ZS–1 [66].

9.2 Hewlett-Packard Laboratories

Early in 1989, the authors started HP Labs' FAST (Fine-Grained Architecture and

Software Technologies) research project with the goal of evolving VLIW—which was then

primarily numerically oriented—into the general-purpose style of architecture that the HP-

Intel Alliance has since dubbed EPIC. Staggered by a year was HP Labs' SWS (Super

Workstation) Program, an advanced development activity with the mission of defining a

successor to HP's PA-RISC architecture, with Bill Worley as Chief Architect. The

objectives of these two efforts were complementary and compatible, with the result that

both teams were soon working jointly towards the development of the EPIC style of

architecture as well as the definition of PA–WW (Precision Architecture—Wide Word), an

EPIC architecture which we hoped would serve as the successor to PA-RISC. Each project

had other activities as well. In addition to its primary focus of developing EPIC, the FAST

project was also involved in developing the compiler technology for EPIC. The SWS

Program addressed a number of issues, in addition to defining the PA-WW ISA, that were

specific to, and crucial to, PA-WW such as the floating-point architecture, packaging and

OS support. Another major activity within SWS was the development of the technology for

dynamically translating PA-RISC code for execution on PA-WW. The SWS Program was

influenced in a fundamental way by the FAST project and benefited from the architectural

insights and innovations transferred to it from FAST. In turn, FAST's research agenda was

guided by the critical issues faced by SWS and was enriched by discussions with the SWS

team.

Out of this symbiotic activity came most of the remaining features of EPIC, as it currently

stands. The predicate architecture of the Cydra 5 was enhanced with the inclusion of wired-

OR and wired-AND predicate-setting compares and the availability of two-target compares.

- 73 -

The branch support for software pipelining and rotating registers, provided in the Cydra 5

for DO-loops, was extended to handle WHILE-loops as well. The architectural support for

control speculation, planned for the Cydra 10, was extended and polished. The concept of

data speculation, and the architectural support for it, were developed. (Once again, we later

learned that this idea, too, was independently and contemporaneously developed by the

IMPACT project at the University of Illinois [31] and at IBM Research [23].) The ability to

bypass the data cache when accessing data with low temporal locality, as introduced by

Convex in the C2 [67] and Intel in the i860 [68], was extended to deal with multi-level

cache hierarchies. Additional architectural innovations to deal with the data cache hierarchy

included the source cache (or latency) specifier and the target cache specifier. The prepare-

to-branch concept, first conceived of by IBM's Stretch project [9], was extended into the

three-part, unbundled branch architecture that is motivated by the notion of predicates.

Early in 1994, to stimulate and facilitate compiler research for EPIC processors, the FAST

research project published the HPL-PD architecture specification which defined the generic

space of EPIC architectures [7]. For its part, the SWS Program had, by the end of 1993,

created the PA-WW Architecture Specification which defined a specific EPIC ISA which

was proposed to HP's computer product group as the successor to PA-RISC. This ISA

contained additional innovations which are beyond the scope of this report.

9.3 Productization of EPIC by Hewlett-Packard and Intel

Towards the end of 1993, Hewlett-Packard launched a program to productize, design and

manufacture PA-WW microprocessors. A short time later, Hewlett-Packard and Intel

entered into discussions over a partnership to jointly define the follow on architecture for

both the IA-32 and PA-RISC. With the launching of the HP-Intel Alliance in June 1994,

work on PA-WW was discontinued. Instead the two companies started the process of

jointly defining the ISA for the IA-64, using PA-WW as the starting point. The IA-64, for

its part, addresses issues that are specific to its role as the successor to the IA-32 and

contains further innovations that are described in the IA-64 Application Developer's

Architecture Guide [5].

10 Conclusions

The number of specific ISAs that fall within the EPIC style is unlimited. In addition to

choosing whether to include or omit each of the architectural features that we have

discussed, there are the traditional decisions to be made regarding such issues as the

- 74 -

opcode repertoire, the data types supported and the number of registers. Nevertheless,

there is a certain philosophical thread that unites all of these ISAs.

In the final analysis, what makes any given architecure an EPIC architecture is that is

subscribes to the EPIC philosophy, which has three main principles. The first one is the

belief that the compiler should play the key role in designing the plan of execution and, that

being the case, that the compiler be given the requisite architectural support to be able to do

so successfully. The relevant architectural features that we discussed included non-atomic

operations (NUAL and UAL), predicated execution, control and data speculation,

unbundled branches, source and target cache specifiers, and non-binding loads. The

second principle is to provide features that help exploit statistical ILP in the face of compile-

time ambiguities such as which way a conditional branch will go (control speculation), low

probability memory dependences (data speculation and prioritized memory operations), and

variable load latencies in the presence of data caches (source cache specifier). Thirdly,

EPIC provides the ability to communicate the compiler’s plan of execution to the hardware

by providing MultiOp, NUAL, a large number of architectural registers, rotating registers,

and unbundled branches.

The EPIC strategy, of constructing the plan of execution at compile-time, faces three

primary challenges: interrupts and exceptions, object code compatibility and code size

dilation. NUAL-drain and NUAL-freeze provide well-defined semantics for handling

interrupts and exceptions for NUAL operations. Object code compatibility is provided by

the notions of EQ and LEQ semantics (for NUAL operations in the face of varying actual

hardware latencies) and MultiOp-P and MultiOp-S semantics for the interpretation of

MultiOp instructions on processors having different widths. Code size dilation, due to no-

ops in MultiOp instructions, is addressed by either one of two instruction format strategies:

MultiTemplate or VariOp.

During the past decade, the relative merits of VLIW versus superscalar designs have

dominated debate in the ILP research community. Proponents for each side have framed the

debate as a choice between the simplicity and limitations of VLIW versus the complexity

and dynamic capabilities of superscalar. This is a false choice. It is clear that both

approaches have their strong points and that both extremes have little merit. It is now well

understood that the compile-time design of the plan of execution is essential at high levels

of ILP, even for a superscalar processor. It is equally clear that there are ambiguities at

compile-time, that can only be resolved at run-time, and to deal with these ambiguities a

processor requires dynamic mechanisms. EPIC subscribes to both of these positions. The

- 75 -

difference is that EPIC exposes these mechanisms at the architectural level so that the

compiler can control these dynamic mechanisms, using them selectively where appropriate.

This range of control gives the compiler the ability to employ policies of greater optimality

in managing these mechanisms than could a hardwired policy.

The EPIC philosophy—in conjunction with the architectural features that support

it—provides the means to define ILP architectures and processors that can achieve higher

levels of ILP at a reduced level of complexity across diverse application domains. IA-64 is

an example of how the EPIC philosophy can apply to general-purpose computing, a

domain in which object code compatibility is crucial. However, it is our belief that EPIC

stands to play at least as important a role in high-performance embedded computing. In this

domain, the more challenging cost-performance requirements along with a reduced

emphasis on object code compatibility motivate the use of highly customized architectures.

Guided by this belief, the authors and their colleagues at HP Laboratories embarked on the

PICO (Program In, Chip Out) research project four years ago. One of PICO's goals was to

be able to take an embedded application, expressed in standard C, and automatically design

the architecture and micro-architecture of a finely-tuned custom, application-specific, EPIC

processor for that C application. PICO currently has a research prototype system for

architecture synthesis which, amongst other capabilities, can do this [69].

The commercial availability of such EPIC technology for embedded computing is still in the

future. In the meantime, EPIC provides a new lease on life to the luxury that we have all

learned to take for granted—a sustained rate of increase of the performance of general-

purpose microprocessors on our applications, without our having to fundamentally rewrite

them.

11 Acknowledgements

So many individuals have contributed to EPIC and PA-WW, and in so many different

ways, that we must necessarily restrict ourselves here to acknowledging those people who

had a major impact on just one aspect of the entire enterprise: the development and

definition of the EPIC style of architecture. The individuals who made significant

contributions from this viewpoint are Bill Worley, Rajiv Gupta, Vinod Kathail, Alan Karp

and Rick Amerson. Josh Fisher's active support for the EPIC philosophy and feature set

was of great value in architecting PA-WW. The common thread through all of the HP

Labs' activities was Dick Lampman, who in 1988 had the foresight to acquire Cydrome's

- 76 -

intellectual property (at a time when VLIW was popularly viewed as a failed concept) and

to authorize the the FAST project. Subsequently, as the SWS Program Manager, Dick

oversaw the evolution of the research ideas into the definition of PA-WW.

References

1. M. Johnson. Superscalar Microprocessor Design . (Prentice-Hall, Englewood Cliffs,
New Jersey, 1991).

2. R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth and P. K. Rodman. A
VLIW architecture for a trace scheduling compiler. IEEE Transactions on Computers
C-37, 8 (August 1988), 967-979.

3. B. R. Rau, D. W. L. Yen, W. Yen and R. A. Towle. The Cydra 5 departmental
supercomputer: design philosophies, decisions and trade-offs. Computer 22, 1
(January 1989), 12-35.

4. H. Corporaal. Microprocessor architectures: from VLIW to TTA . (John Wiley &
Sons, Chichester, England, 1997).

5. IA-64 Application Developer's Architecture Guide . (Intel Corporation, 1999)

6. M. Schlansker, B. R. Rau, S. Mahlke, V. Kathail, R. Johnson, S. Anik and S. G.
Abraham. Achieving High Levels of Instruction-Level Parallelism with Reduced
Hardware Complexity . HPL Technical Report HPL-96-120. Hewlett-Packard
Laboratories, February 1997.

7. V. Kathail, M. Schlansker and B. R. Rau. HPL-PD Architecture Specification:
Version 1.1 . Technical Report HPL-93-80 (R.1). Hewlett-Packard Laboratories,
February 2000. (Originally published as HPL PlayDoh Architecture Specification:
Version 1.0 ., February 1994.)

8. (Special issue on the System/360 Model 91). IBM Journal of Research and
Development 11, 1 (January 1967).

9. H. Schorr. Design principles for a high-performance system. Proc. Symposium on
Computers and Automata (New York, New York, April 1971), 165-192.

10. B. R. Rau, V. Kathail and S. Aditya. Machine-Description Driven Compilers for
EPIC Processors . HPL Technical Report HPL-98-40. Hewlett-Packard Laboratories,
September 1998.

11. B. R. Rau, V. Kathail and S. Aditya. Machine-description driven compilers for EPIC
and VLIW processors. Design Automation of Embedded Systems 4, 2/3 (1999).

12. R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM
Journal of Research and Development 11, 1 (January 1967), 25-33.

13. B. R. Rau. Iterative modulo scheduling. International Journal of Parallel Processing
24, 1 (February 1996), 3-64.

- 77 -

14. M. Lam. Software pipelining: an effective scheduling technique for VLIW machines.
Proc. ACM SIGPLAN '88 Conference on Programming Language Desig n and
Implementation (June 1988), 318-327.

15. B. R. Rau, M. S. Schlansker and P. P. Tirumalai. Code generation schemas for
modulo scheduled loops. Proc. 25th Annual International Symposium on
Microarchitecture (Portland, Oregon, December 1992), 158-169.

16. C. C. Foster and E. M. Riseman. Percolation of code to enhance parallel dispatching
and execution. IEEE Transactions on Computers C-21, 12 (December 1972), 1411-
1415.

17. E. M. Riseman and C. C. Foster. The inhibition of potential parallelism by
conditional jumps. IEEE Transactions on Computers C-21, 12 (December 1972),
1405-1411.

18. W. W. Hwu and Y. N. Patt. Checkpoint repair for out-of-order execution machines.
IEEE Transactions on Computers C-36, 12 (December 1987), 1496-1514.

19. J. E. Smith. A study of branch prediction strategies. Proc. Eighth Annual
International Symposium on Computer Architecture (May 1981), 135-148.

20. P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix,
J. S. O'Donnell and J. C. Ruttenberg. The Multiflow trace scheduling compiler. The
Journal of Supercomputing 7, 1/2 (May 1993), 51-142.

21. J. A. Fisher and S. M. Freudenberger. Predicting conditional jump directions from
previous runs of a program. Proc. Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (Boston, Mass.,
October 1992), 85-95.

22. W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm and
D. M. Lavery. The superblock: an effective technique for VLIW and superscalar
compilation. The Journal of Supercomputing 7, 1/2 (May 1993), 229-248.

23. G. M. Silberman and K. Ebcioglu. An architectural framework for supporting
heterogeneous instruction-set architectures. Computer 26, 6 (June 1993), 39-56.

24. S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W. W. Hwu, B. R. Rau
and M. S. Schlansker. Sentinel scheduling: a model for compiler-controlled
speculative execution. ACM Transactions on Computer Systems 11, 4 (November
1993), 376-408.

25. A. Nicolau. Percolation scheduling: a parallel compilation technique . Technical
Report TR 85-678. Department of Computer Science, Cornell, May 1985.

26. S.-M. Moon and K. Ebcioglu. An efficient resource-constrained global scheduling
technique for superscalar and VLIW processors. Proc. 25th Annual International
Symposium on Microarchitecture (Portland, Oregon, December 1992).

27. J. A. Fisher. Global Code Generation for Instruction-Level Parallelism: Trace
Scheduling-2 . Technical Report HPL-93-43. Hewlett-Packard Laboratories, June
1993.

- 78 -

28. M. S. Schlansker and V. Kathail. Critical path reduction for scalar programs. Proc.
28th Annual International Symposium on Microarchitecture (Ann Arbor, Michigan,
November 1995), 57-69.

29. S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank and R. A. Bringmann. Effective
compiler support for predicated execution using the hyperblock. Proc. 25th Annual
International Symposium on Microarchitecture (1992), 45-54.

30. S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M. Gallagher
and W. W. Hwu. Characterizing the impact of predicated execution on branch
prediction. Proc. 27th International Symposium on Microarchitecture (San Jose,
California, November 1994), 217-227.

31. W. Y. Chen, S. A. Mahlke, W. W. Hwu, T. Kiyohara and P. P. Chang. Tolerating
data access latency with register preloading. Proc. 1992 International Conference on
Supercomputing (Washington, D. C., July 1992), 104-113.

32. S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau and R. Gupta.
Predictability of load/store instruction latencies. Proc. 26th Annual International
Symposium on Microarchitecture (December 1993), 139-152.

33. S. G. Abraham and B. R. Rau. Predicting Load Latencies Using Cache Profiling .
Technical Report HPL-94-110. Hewlett-Packard Laboratories, November 1994.

34. J. E. Smith and A. R. Pleszkun. Implementing precise interrupts in pipelined
processors. IEEE Transactions on Computers C-37, 5 (May 1988), 562-573.

35. G. R. Beck, D. W. L. Yen and T. L. Anderson. The Cydra 5 mini-supercomputer:
architecture and implementation. The Journal of Supercomputing 7, 1/2 (May 1993),
143-180.

36. K. W. Rudd. Efficient Exception Handling Techniques for High-Performance
Processor Architectures . Technical Report CSL-TR-97-732. Coordinated Science
Laboratory, Stanford University, October 1997.

37. B. R. Rau. Dynamically scheduled VLIW processors. Proc. 26th Annual
International Symposium on Microarchitecture (Austin, Texas, December 1993), 80-
92.

38. D. J. Magenheimer, A. B. Bergh, K. Keilman and J. A. Miller. HP 3000 Emulation
on HP Precision Architecture Computers. Hewlett-Packard Journal (December
1987).

39. B. R. Rau. Levels of representation of programs and the architecture of universal
host machines. Proc. Eleventh Annual Workshop on Microprogramming (November
1978), 67-79.

40. P. Koch. Emulating the 68040 in the PowerPC Macintosh. Proc. Microprocessor
Forum (October 1994).

41. P. Stears. Emulating the x86 and DOS/Windows in RISC environments. Proc.
Microprocessor Forum (October 1994).

42. T. Thompson. Building the better virtual CPU. Byte (August 1995).

- 79 -

43. K. Ebcioglu and E. R. Altman. DAISY: Dynamic Compilation for 100%
Architectural Compatibility . Research Report RC 20538. IBM Research, August
1996.

44. C. Zheng and C. Thompson. PA-RISC to IA-64: Transparent translation at the
application level. Computer 33, 3 (2000).

45. V. Bala, E. Duesterwald and S. Banerjia. Transparent Dynamic Optimization .
Technical Report HPL-1999-77. Hewlett-Packard Laboratories, June 1999.

46. V. Bala, E. Duesterwald and S. Banerjia. Transparent Dynamic Optimization: The
Design and Implementation of Dynamo . Technical Report HPL-1999-78. Hewlett-
Packard Laboratories, June 1999.

47. V. Bala, E. Duesterwald and S. Banerjia. Dynamo: A Transparent Dynamic
Optimization System. Proc. SIGPLAN 2000 Conference on Programming Language
Design and Implementation (Vancouver, British Columbia, to appear 2000).

48. T. M. Conte and S. W. Sathaye. Dynamic rescheduling: a technique for object code
compatibility in VLIW architecture. Proc. 28th Annual International Symposium on
Microarchitecture (Ann Arbor, Michigan, November 1995), 208-218.

49. T. Conte, S. Sathaye and S. Banerjia. A persistent rescheduled-page cache for low
overhead object code compatibility in VLIW architectures. Proc. 29th Annual
International Symposium on Microarchitecture (Paris, France, December 1996), 4-
13.

50. B. C. Le. An out-of-order execution technique for runtime binary translators. Proc.
8th Intern ational Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS VIII) (San Jose, California, October 1998), 151-
158.

51. S. Aditya, B. R. Rau and R. C. Johnson. Automatic Design of VLIW and EPIC
Instruction Formats . HPL Technical Report. Hewlett-Packard Laboratories, (in
preparation) 1999.

52. S. Aditya, S. A. Mahlke and B. R. Rau. Retargetable assembly and code
minimization techniques for custom EPIC / VLIW instruction formats. ACM
Transactions on Design Automation of Electronic Systems (to appear 2000).

53. A. E. Charlesworth. An approach to scientific array processing: the architectural
design of the AP-120B/FPS-164 Family. Computer 14, 9 (1981), 18-27.

54. B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scientific computing. Proc. Fourteenth
Annual Workshop on Microprogramming (October 1981), 183-198.

55. B. R. Rau, C. D. Glaeser and R. L. Picard. Efficient code generation for horizontal
architectures: compiler techniques and architectural support. Proc. Ninth Annual
International Symposium on Computer Architecture (April 1982), 131-139.

56. J. R. Ellis. Bulldog: A Compiler for VLIW Architectures . (The MIT Press,
Cambridge, Massachussetts, 1985).

- 80 -

57. J. A. Fisher. Very long instruction word architectures and the ELI-512. Proc. Tenth
Annual International Symposium on Computer Architecture (Stockholm, Sweden,
June 1983), 140-150.

58. J. A. Fisher. The VLIW machine: a multiprocessor for compiling scientific code.
Computer 17, 7 (July 1984), 45-53.

59. R. P. Colwell, W. E. Hall, C. S. Joshi, D. B. Papworth, P. K. Rodman and J. E.
Tornes. Architecture and implementation of a VLIW supercomputer. Proc.
Supercomputing '90 (1990), 910-919.

60. D. Jaggar. ARM Architecture Reference Manual . (Prentice Hall, 1997).

61. Trimedia TM-1 Media Processor Data Book . (Philips Semiconductors, Trimedia
Product Group, 1997).

62. TMS320C62xx CPU and Instruction Set Reference Guide . (Texas Instruments,
1997).

63. K. Ebcioglu. Some design ideas for a VLIW architecture for sequential-natured
software, in Parallel Processing (Proc. IFIP WG 10.3 Working Conference on
Parallel Processing, Pisa, Italy) , M. Cosnard, M. H. Barton and M. Vanneschi
(Editor). (North Holland, Amsterdam, 1988), 3-21.

64. J. E. Thornton. Parallel operation in the Control Data 6600. Proc. AFIPS Fall Joint
Computer Conference (1964), 33-40.

65. D. W. Anderson, F. J. Sparacio and R. M. Tomasulo. The System/360 Model 91:
machine philosophy and instruction handling. IBM Journal of Research and
Development 11, 1 (January 1967), 8-24.

66. J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S. D. Klinger, C. M. Roszewski, D.
L. Fowler, K. R. Scidmore and J. P. Laudon. The ZS-1 central processor. Proc.
Second International Conference on Architectural Support for Programming
Languages and Operating Systems (Palo Alto, California, October 1987), 199-204.

67. T. Jones. Engineering design of the Convex C2. Computer 22, 1 (January 1989),
36-44.

68. L. Kohn and N. Margulis. Introducing the Intel i860 64-bit microprocessor. IEEE
Micro 9, 4 (August 1989), 15-30.

69. S. Aditya, B. R. Rau and V. Kathail. Automatic architectural synthesis of VLIW and
EPIC processors. Proc. International Symposium on System Synthesis, ISSS'99
(San Jose, California, November 1999), 107-113.

