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Abstract 
The CASA (Carnegie-Ames-Stanford) ecosystem model based on satellite greenness observations has been used to es-
timate monthly carbon fluxes in terrestrial ecosystems from 2000 to 2009. The CASA model was driven by NASA 
Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation cover properties and large-scale (1-km resolu-
tion) disturbance events detected in biweekly time series data. This modeling framework has been implemented to esti-
mate historical as well as current monthly patterns in plant carbon fixation, living biomass increments, and long-term 
decay of woody (slash) pools before, during, and after land cover disturbance events. Results showed that CASA model 
predictions closely followed the seasonal timing of Ameriflux tower measurements. At a global level, predicting net 
ecosystem production (NEP) flux for atmospheric CO2 from 2000 through 2005 showed a roughly balanced terrestrial 
biosphere carbon cycle. Beginning in 2006, global NEP fluxes became increasingly imbalanced, starting from -0.9 Pg C 
yr-1 to the largest negative (total net terrestrial source) flux of -2.2 Pg C yr-1 in 2009. In addition, the global sum of CO2 
emissions from forest disturbance and biomass burning for 2009 was predicted at 0.51 Pg C yr-1. These results demon-
strate the potential to monitor and validate terrestrial carbon fluxes using NASA satellite data as inputs to ecosystem 
models. 
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1. Introduction 
The emission of CO2 from deforestation and other land 
cover changes is among the most uncertain components 
of the global carbon cycle.  Inconsistent and unverified 
information about global deforestation patterns has sig-
nificant implications for balancing the present-day car-
bon budget and predicting the future evolution of climate 
change.  A number of studies have estimated carbon 
emissions from tropical deforestation [1-7] but the esti-
mates vary greatly and are difficult to be compared due 
to differences in (land cover) data sources, estimated 
regional extents, and carbon computation methodologies. 

A recent review of previous work on estimating carbon 
emissions from vegetation change by Ramankutty et al. 
[8] pointed to the importance of considering ecosystem 
dynamics following land cover conversion, including the 

fluxes from the decay of products and slash pools, and 
the fluxes from either newly established agricultural 
lands or regrowing forest.  This review also suggested 
that accurate carbon-flux estimates should consider his-
torical land-cover changes over at least the previous 20 
years.  Such results can be highly sensitive to estimates 
of the partitioning of cleared carbon into instantaneous 
burning vs. long-time scale dead woody pools. Accord-
ingly, the main objective of the present study was to 
quantify the major controls on carbon flux patterns and 
processes terrestrial ecosystems worldwide, using NASA 
satellite data products to drive models of net ecosystem 
production (NEP) and detect large-scale ecosystem dis-
turbance, leading to detailed estimates of net biome pro-
duction (NBP).  

Terrestrial Ecosystem Carbon Fluxes Predicted  
from MODIS Satellite Data and Large-Scale  

Disturbance Modeling 
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An updated version of the CASA (Carnegie Ames 
Stanford Approach) model [9] was used in this study to 
predict terrestrial ecosystem fluxes using MODIS collec-
tion 5 of the Enhanced Vegetation Index (EVI; [10-11]) 
as inputs at a geographic resolution of 0.5o lati-
tude/longitude.  This model version was developed at 
NASA Ames Research Center [2, 9, 12, 13] to estimate 
monthly patterns in carbon fixation, plant biomass in-
crements, nutrient allocation, litter fall, soil carbon, CO2 
exchange, and soil nutrient mineralization.   

Previously published results from the CASA model 
driven by global satellite observations imply that 
above-average global temperatures are commonly asso-
ciated with an increasing trend in terrestrial ecosystem 
sinks for atmospheric CO2 [12,13].  These predictions 
support the hypothesis that regional climate warming has 
had measurable but relatively small-scale impacts on 
atmospheric CO2 sequestration rates, mainly in northern 
high latitude ecosystems (tundra and boreal forest). A 
main goal of this paper was to re-evaluate this hypothesis 
based on the results of new CASA model reuslts over the 
period 2000 to 2009.   

This study also represents the first global application 
of the CASA model’s [9] predictions of forest biomass 
using MODIS data inputs to infer carbon fluxes from 
land cover change.  As recommended by Ramankutty et 
al. [8], our CASA modeling framework has been de-
signed to estimate historical as well as current monthly 
patterns in plant carbon fixation, living biomass incre-
ments, and long-term decay of slash pools before, during, 
and after land cover disturbance events [7].  The unique 
aspects of our methodology are in the combination of 
MODIS satellite images to first quantify and map stand-
ing vegetation biomass pools across the globe in manner 
consistent with stand age, tree production estimates, and 
soil properties, and second to simulate both the gross and 
net loss of carbon to the atmosphere in a mechanistic 
manner that maps and tracks all the pools of wood and 
herbaceous litter remaining for years following distur-
bance.  In tropical forested areas, we have used MODIS 
data to model the carbon cycle prior to deforestation, and 
then immediately reduce plant carbon uptake to observed 
levels in field-based studies of forest clearing.  All 
model carbon pools (wood, leaf, and root) have been 
altered dynamically in the simulations of clearing and 
burning anywhere and everywhere that land cover 
change has been mapped out.  

2.  Satellite Data Inputs 
 
The launch of NASA's Terra satellite platform in 1999 
with the moderate resolution imaging spectroradiometer 
(MODIS) instrument on-board initiated a new era in re-
mote sensing of the Earth system with promising impli-
cations for carbon cycle research.  Direct input of satel-
lite vegetation index “greenness” data from the MODIS 
sensor into ecosystem simulation models can be used to 
estimate spatial variability in monthly net primary pro-
duction (NPP), biomass accumulation, and litter fall in-
puts to soil carbon pools.  Global NPP of vegetation can 
be predicted using the relationship between leaf reflec-
tance properties and the fraction of absorption of photo-
synthetically active radiation (FPAR), assuming that net 
conversion efficiencies of PAR to plant carbon can be 
approximated for different ecosystems or are nearly con-
stant across all ecosystems.   

Whereas previous versions of the NASA-CASA model 
[9] used a normalized difference vegetation index 
(NDVI) to estimate FPAR, the current model version 
instead relies the EVI time series, which has a higher 
dynamic response across the full range of vegetated 
cover, does not saturate in medium-to-high biomass ar-
eas, and is less susceptible to atmospheric interference 
[10,14,15]. The lower level of saturation of 
low-to-medium range plant production estimated from 
CASA modeling with MODIS EVI inputs (compared to 
MODIS NDVI inputs) will result in lower annual NPP in 
any zones where primary forest has become increasing 
mixed with degraded forest and converted agricultural 
land uses.   

The global 0.5o (latitude/longitude) resolution MODIS 
vegetation index (VI) data sets used as inputs to CASA 
were generated by aggregating monthly 0.05o (~6 km) 
data (MOD13C2 version 005) from the USGS LP 
DAAC.  The VI layer was selected from each 
MOD13C2 spatial composite file and surface water val-
ues are converted to “NoData”.  To aggregate from a 
0.05o cell size to 0.5o resolution, the VI values for each 
pixel block were averaged.  Each monthly layer was 
then multiplied by 0.0001 to scale the data to the stan-
dard MODIS VI value range.  This aggregation proce-
dure provided the greatest assurance of high-quality, 
cloud-free VI inputs to the carbon cycle model. 
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Figure 1. Schematic representation of components in the NASA-CASA model. The soil profile component (a) is 
layered with depth into a surface ponded layer (M0), a surface organic layer (M1), a surface organic-mineral 
layer (M2), and a subsurface mineral layer (M3), showing typical levels of soil water content (shaded) in three 
general vegetation types. The production and decomposition component (b) shows separate pools for carbon cy-
cling among pools of leaf litter, root litter, woody detritus, microbes, and soil organic matter, with dependence on 
litter quality (Lit q). 
 
3. Modeling Methods and Global Drivers 
 
3.1. CASA Ecosystem Carbon Fluxes 
  
As documented in Potter [2] the monthly NPP flux, de-
fined as net fixation of CO2 by vegetation, is computed 
in CASA on the basis of light-use efficiency [16].  
Monthly production of plant biomass is estimated as a 
product of time-varying surface solar irradiance, Sr, and 
EVI from the MODIS satellite, plus a constant light 
utilization efficiency term (emax) that is modified by 
time-varying stress scalar terms for temperature (T) and 
moisture (W) effects (Equation 1). 
 
 NPP = Sr*EVI*emax*T*W    (1)  
 

The emax term is set uniformly at 0.55 g C MJ-1 PAR, a 
value that derives from calibration of predicted annual 
NPP to previous field estimates [12]. This model calibra-
tion has been validated globally by comparing predicted 
annual NPP to more than 1900 field measurements of 
NPP [17,12,13].  Climate drivers for the CASA model 

were from the National Center for Environmental Pre-
diction (NCEP) reanalysis data set (version NCEP/DOE 
II [18]), and land cover settings were aggregated from 
the MODIS global 1-km product (described in Zhao and 
Running, [19]). 

The T stress scalar is computed with reference to deri-
vation of optimal temperatures (Topt) for plant produc-
tion.  The Topt setting will vary by latitude and longi-
tude, ranging from near 0o C in the Arctic to the middle 
thirties in low latitude deserts.  The W stress scalar is 
estimated from monthly water deficits, based on a com-
parison of moisture supply (precipitation and stored soil 
water) to potential evapotranspiration (PET) demand 
using the method of Priestly and Taylor [20]. 

Evapotranspiration is connected to water content in the 
soil profile layers (Figure 1), as estimated using the 
NASA-CASA algorithms described by Potter [2].  The 
soil model design includes three-layer (M1-M3) heat and 
moisture content computations: surface organic matter, 
topsoil (0.3 m), and subsoil to rooting depth (1 to 10 m).  
These layers can differ in soil texture, moisture holding 
capacity, and carbon-nitrogen dynamics.  The setting 
for deep rooting depths (up to 10 meters) in tropical for-

 



 C. POTTER ET AL.  

Copyright © 2011 SciRes.                                                                                 IJG 

est biomes follows the findings from studies of primary 
production seasonality in these regions [21,22,23].  
Water balance in the soil is modeled as the difference 
between precipitation or volumetric percolation inputs, 
monthly estimates of PET, and the drainage output for 
each layer.  Inputs from rainfall can recharge the soil 
layers to field capacity.  Excess water percolates 
through to lower layers and may eventually leave the 
system as seepage and runoff.  Freeze-thaw dynamics 
with soil depth operate according to the empirical de-
gree-day accumulation method [24], as described by 
Bonan [25]. 

Based on plant production as the primary carbon and 
nitrogen cycling source, the NASA-CASA model is de-
signed to couple daily and seasonal patterns in soil nu-
trient mineralization and soil heterotrophic respiration 
(Rh) of CO2 from soils worldwide.  Net ecosystem pro-
duction (NEP) can be computed as NPP minus Rh fluxes, 
excluding the effects of small-scale fires and other local-
ized disturbances or vegetation regrowth patterns on 
carbon fluxes [26].  The NASA-CASA soil model uses 
a set of compartmental difference equations.  
First-order decay equations simulate exchanges of de-
composing plant residue (metabolic and structural frac-
tions) at the soil surface.  The model also simulates 
surface soil organic matter (SOM) fractions that pre-
sumably vary in age and chemical composition.  Turn-
over of active (microbial biomass and labile substrates), 
slow (chemically protected), and passive (physically 
protected) fractions of the SOM are represented.  

 
3.2. Deforestation Carbon Fluxes 
 
The general method used in this study to compute 
biomass burning gas emissions is based on the approach 
described by Potter et al. [27].  To estimate regional 
trace gas emissions from vegetation fires, we apply the 
following equation: 
 

Et  = ∑x  B(x)*CF*ef*A(x,t)      (2) 
 

where Et (Pg; 1 Pg = 1015 g) is the regional emissions 
total at time t (d), B is the biomass subjected to burn at 
location x, CF is the biomass combustion fraction 
associated with a particular plant tissue fraction (leaf 
versus wood), ef is the emission factor (flaming and/or 
smoldering) associated with a particular trace gas, A is 
the area burned (km2) at location x and time t. 

To estimate the B term in Equation (2), maps of 
vegetation biomass can be derived by one of two general 
methods.  The first is by spatial interpolation, using 
what is normally a small number (< 100) of intensive 
field site measurements of aboveground plant mass [28].  

A weakness of any interpolation method is that a small 
number of measurements may not adequately represent 
the variability of biomass growth patterns.  The second 
general method, and the one used in this study, is 
developed through our combination of satellite remote 
sensing and ecosystem carbon flux modeling.  Satellite 
imagery can be transformed using plant production 
models to provide relatively high spatial resolution maps 
of above-ground biomass over a regional area of interest 
[2].  

We adopted default CF values largely from the 
FLAMBE modeling system [29], with several 
modifications.  We used a globally uniform CF value of 
0.95 for leaf material [27].  In tropical rainforest zones, 
we adopted a CF value of 0.45 for wood material, derived 
from Amazon forest slash burning studies [30,31].  
Following the approach of Potter et al. [27], we based 
these estimates for typical CF values on studies that were 
conducted in the Amazon on small-holder properties, 
where all decisions as to which vegetation to burn, size 
of area slashed, location, and the timing of the slash and 
burn process (how to slash, how long to dry, when to 
burn) were entirely left to property owners. The 
estimated CF values used in our analysis are typical of 
those reported in several other studies of tropical 
biomass burning [32]. 

The ef term in Equation (2) is defined as the amount of 
a compound released per amount of fuel consumed (g 
dry matter).  Calculation of this parameter requires 
knowledge of the carbon content of the biomass burned 
and the carbon budget of the fire usually expressed as the 
CF term [33].  Where fuel and residue data at the 
ground level are not available, an overall fuel carbon 
content of 45-50% is commonly assumed [34]. 
  The ef vales we used in Equation (2) were estimated 
by Scholes et al. [35] based on a review of some 70 
publications, a large fraction of which were produced as 
a result of International Geosphere-Biosphere 
Programme (IGBP) Biomass Burning Experiment 
(BIBEX) campaigns.  It appears from this compilation 
of published ef values that adequate data exist for CO2 
emissions for savanna and tropical forest fires.  
Post-disturbance decomposition of residual biomass 
carbon pools in wood and soils followed the methods of 
Potter et al. [7].   

 
3.3. Ecosystem Disturbance Events 
 
In this section, we describe algorithms implemented for 
mapping global land cover change and wildfires based 
on satellite observations from MODIS data by Mithal et 
al. [36].  The new forest cover change algorithms were 
unsupervised in nature and exploit both the temporal and 
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spatial structure in the MODIS data.  Using independent 
wildfire perimeter data sets, we have comprehensively 
evaluated these algorithms, as well as those from 
alternate methods, across different forest climatic zones.  
The framework depends upon the Enhanced Vegetation 
Index (EVI) from MODIS 16-day Level 3 1-km 
Vegetation Indices (MOD13A2) products. 

The following is a brief description of the algorithms 
used in this framework for mapping of global forest 
cover change and wildfires, and subsequently linked to 
CASA forest biomass pools for carbon emission fluxes.  
In this stratified framework for mapping forest 
disturbances, we have employed multiple, 
complementary scoring mechanisms using 1-km MODIS 
EVI time series products. The main assumption behind 
these algorithms is that in mature forests, EVI values for 
future time steps tend to be similar to previous years 
when accounting for seasonal variation.  On the other 
hand, changes like wildfires and deforestation are 
characterized by an abrupt decrease in EVI after the 
event.  The algorithms build a model that is used for 
predicting the expected EVI values for the future years. 
Deviation of the future observations from the predicted 
value indicates a change. A measure that quantities the 
deviation of future observations from the model 
prediction is used to assign the change score.  

The change score should reflect the significance of 
deviations with respect to the natural variation of 
vegetation response for a given forest location.  The 
VID (Vegetation-Independent Yearly Delta) algorithm 
developed by Mithal et al. [36] addressed this 
requirement by including the standard deviation of the 
variability in the change score. It assumed that the 
random fluctuations in mean annual EVI for a particular 
vegetation type are normally distributed for a location 
and estimates the mean (µvar) and standard deviation 
(∂var) of the variability score distribution as the 
maximum likelihood estimates for the distribution.  

The new VID score was computed as Equation 3: 
    
   (Yearly Delta score - µvar) / ∂var     (3) 
 
Mithal et al. [36] examined the performance of the 

new VID forest disturbance algorithm in several regions 
around the world, including the states of California (US) 
and the Yukon (Canada).  Results demonstrated high 
accuracy levels for all major wildfires mapped from 
aerial surveys in these diverse forest regions.  Mithal et 
al. [36] quantitatively showed that the VID forest change 
algorithms perform better than the well-known MODIS 
burned area (BA) framework [37] in the state of 
California (US) and were comparable in results to the 

BA framework for wildfire disturbances in the Yukon 
(Canada).  

 
4. Results 
 
4.1. CASA Validation with Tower Flux 
Measurements 
 
Flux estimates from eddy-correlation analysis were ob-
tained from AmeriFlux tower flux sites that could meet 
certain criteria for CASA model comparisons.  First, at 
least three complete years of site flux measurements 
were required to evaluate model predictions of interan-
nual variations in CASA NEP fluxes.  Second, winter 
(and/or dormant/dry) season NEP fluxes were required 
from a site to evaluate model predictions of soil CO2 
emissions on a year-round basis.  Third, tower sites 
were required to be representative of the predominant 
vegetation class setting in the global land cover data used 
as input to the CASA model. 

For sites meeting all of these criteria, AmeriFlux data 
sets were obtained from the central data repository lo-
cated at the Carbon Dioxide Information Analysis Center 
(CDIAC; public.ornl.gov/ameriflux/dataproducts.shtml).  
Level 4 AmeriFlux records contained gap-filled and 
µstar filtered records, complete with calculated gross 
productivity and total ecosystem respiration terms on 
varying time intervals including hourly, daily, weekly, 
and monthly with flags for the quality of the original and 
gap-filled data.  

CASA monthly NEP predictions from the MOD13C2 
EVI data values closest to the tower location were com-
pared to AmeriFlux eddy-correlation monthly estimates 
of the corresponding NEP fluxes.  We note that the 
monthly MODIS EVI values in practically every grid 
cell of the global CASA model will be influenced by 
periodic land cover disturbances and (some naturally 
occurring) areas of sparse vegetation cover, including 
development, roads, water bodies.  It was expected, 
therefore, that CASA model NEP flux predictions would 
be systematically lower than tower measurements of 
these carbon fluxes, since tower footprints tend to be far 
less affected by wildfire and other disturbances (such as 
logging and forest thinning), compared for instance to 
the surrounding MODIS grid cell area in which they are 
located. 

A total of four Ameriflux tower sites, together report-
ing 196 monthly measurements, were found to meet the 
criteria cited above for comparison to CASA model NEP 
predictions (Figure 2).  CASA model predictions 
closely followed the seasonal timing of Ameriflux tower 
measurements at each site.  The linear regression corre-
lation coefficient between CASA NEP predictions and 
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tower fluxes was estimated at R2 = 0.41 (p < 0.05) for all 
sites combined.  Most of the unexplained variance in this 
model-to-tower flux comparison resulted from the 
Blodgett evergreen needle-leaf forest tower site, which 
showed a sudden shift upwards in NEP (greatly en-
hanced ecosystem carbon sink) after 2001 in the 
Ameriflux data sets, presumably due to stand thinning in 
2000 [38].  We note that Tang et al. [39] reported a 
similar correlation value (R2 = 0.45) in model-to-tower 
NEP flux comparisons at the Blodgett forest location, 
compared to higher correlations (all with R2 > 0.50) at 
seven other Ameriflux forest sites, which implied that 
small-scale forest management at the Blodgett site is an 
unaccounted source of uncertainty in our model flux 
comparisons. 

Figure 2. Comparison of CASA monthly NEP to 
Ameriflux measurements derived from 
eddy-correlation estimates of the corresponding 
monthly fluxes. 
 
4.2. Global Net Primary Production 
 

As previously reported by Potter et al. [13], predicted 
terrestrial NPP for the globe in 2009 was 50.1 Pg C, a 
total carbon flux in the middle of the range of previous 
vegetation NPP predictions of between 44 to 66  Pg C per 
year for the period 1982-1998 [40,41].  We estimate 
that global terrestrial NPP increased by +0.14 Pg C over 
the time period of 2000 to 2009, due almost entirely to a 
strong upward trend in the Northern Hemisphere (Figure 
3).  Annual NPP was predicted to have increased be-
tween the years 2000 and 2007 in the regions of 
high-latitude (> 50o N) North America and Eurasia, and 
also in South Asia, West and Central Africa, and the 
western Amazon.  This upward trend in high-latitude 
NPP was controlled by a combination of rapidly warm-
ing temperatures from 2004 to 2005 and by elevated 
MODIS EVI patterns, which in turn were closely corre-

lated with precipitation amounts [13]. Periodic declines 
in regional NPP levels were predicted for the southern 
Untied States, the southern Amazon, western Europe, 
southern and eastern Africa, and Australia; the timing of 
negative NPP anomalies in each of these regions was 
associated with severe droughts and, in some cases, ex-
treme heat waves [42]. 

Figure 3. Spatial pattern of terrestrial NPP linear 
trends from 2000 through 2009. 
 
4.3. Global Net Ecosystem Production 
 
Subtracting monthly Rh fluxes from monthly NPP fluxes 
yields NEP flux estimates.  Predicted global NEP fluxes 
from 2000 through 2005 showed a roughly balanced ter-
restrial biosphere carbon cycle, with variations less than 
(±) 0.5 Pg C yr-1 (Figure 4).  Nonetheless, beginning in 
2006, global NEP fluxes became increasingly imbal-
anced, starting from -0.9 Pg C yr-1 to the largest negative 
(net terrestrial source) flux of -2.2 Pg C yr-1 in 2009.  
Notable surface temperature warming from 2000-2005 
was significantly associated with positive NEP (net sink) 
fluxes in high northern latitude tundra, grasslands, and 
boreal forest areas, whereas from 2005-2009, major 
drought events were associated with negative NEP (net 
source fluxes) in tropical evergreen forests, temperate 
deciduous forests, croplands, grasslands, and savannas 
worldwide (Figure 5).   

Above average temperatures across the high latitude 
zones of eastern Canada and Eurasia (World Meteoro-
logical Organization, [42]) corresponded to positive NEP 
(net sink fluxes) from the CASA model.  Extreme heat 
waves were reported across Central Asia, the United 
States, and China from 2000 to 2002.  In 2003, much of 
Europe, Canada, Russia, and China experienced summer 
periods of warming temperatures.  From 2004 to 2008, 
parts of Pakistan, Australia, the United States, Canada, 
and Europe continued to experience extreme heat waves.  
On the other hand, extreme cold winter temperatures 

 

 



C. POTTER ET AL. 
 

Copyright © 2011 SciRes.                                                                                 IJG 

were reported repeatedly in Russia, India, and China 
over the period 2000 to 2008.  Large parts of Europe 
experienced unusually cold temperatures in the summer 
of 2001, as did Australia and South Africa in 2007. 

 
 

Figure 4. Interannual variations from 2000 through 
2009 in anomalies of annual total NEP for the CASA 
model for the Northern Hemisphere (NH - green cir-
cles) and the Southern Hemisphere (SH - red circles).  
Units are Pg C yr-1 (1 Pg = 1015 g), with positive val-
ues indicating net ecosystem sink fluxes and negative 
values indicating net ecosystem source fluxes. 
 
 

 
Figure 5. Global predicted NEP fluxes from (a) 2003 
(highest total ecosystem sink flux) and (b) 2009 
(highest total ecosystem source flux). Units are g C 
m-2 yr-1 gridded at 0.5 deg spatial resolution. 
 

There were many instances of severe drought across 
the globe during the period of 2000 to 2008, mainly af-
fecting regions of the central North America, Africa, 
Brazil, and China (World Meteorological Organization, 
[42]).  Beginning with major droughts in Brazil, the 
Horn of Africa, the Middle East, Central and South Asia, 
and China in 2000 and 2001, these events were followed 
by most of North America, southern Africa, and Austra-
lia experiencing record low precipitation amounts in 
2002, 2003, and 2004.  Large areas of Europe, southern 
Africa, Brazil, and Paraguay were affected by severe 
droughts in 2005.  From 2006 though 2008, much of the 
United States, eastern and southern Africa, China, and 
Australia experienced continued deficits of precipitation.  
Strongly negative NEP fluxes were predicted to be asso-
ciated with droughts reported in south Asia, eastern Af-
rica, northern China, and northern and eastern coastal 
South America. Strongly positive NEP fluxes predicted 
by the CASA model were associated with periodically 
heavy rainfall amounts in Eastern Europe, Siberia, Aus-
tralia, West Africa, and southern Africa.  
 

4.4. Ecosystem Disturbance Emissions 
Comparison of areas of disturbed forest land between 
CASA model inputs and national reports from the Food 
and Agriculture Organization [43] of the United Nations 
showed a close match among the 30 leading counties in 
terms of hectares of forest converted (Table 1).  Six of 
the top ten counties ranked by the FAO in terms of an-
nual forest conversion rates (2005-2009) were also 
among the top ten counties mapped for forest lands con-
verted in our CASA model inputs from 2005-2009 
MODIS data.  The notable exceptions in the global 
comparison shown in Table 1 were that of India and 
Papua New Guinea (FAO ranks 3 and 6, respectively).  
These two Asian countries were still ranked among the 
30 leading counties for forest area converted in CASA 
model inputs.  According to the FAO [43], India re-
corded over 25 million hectares of forests as being af-
fected by grazing by domestic animals, a cover change 
that involves the type of gradual forest degradation 
processes that are difficult to detect by satellite remote 
sensing from MODIS. 
  CASA model predictions of CO2 emissions from for-
est disturbance and biomass burning (Fig. 6) were high-
est on a unit area (g C m-2 yr-1) basis in the region of 
Southeast Asia (specifically in the countries of Myan-
mar, Malaysia, Cambodia, Vietnam, and Indonesia).  
Although the CO2 emissions on a unit area basis from 
forest disturbance in the United States and Brazil were 
estimated at less than half of those estimated from 
Southeast Asian countries (Table 2), the total areas of 
forest disturbed annually gave the United States and 
Brazil the highest national totals of carbon lost from 
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biomass burning in 2009.  Forested regions of the Pa-
cific Northwest, the southeastern U. S. and Gulf Coast, 
and the Amazon rainforest were consequently major 
contributors to global biomass emissions to the atmos-
phere (Figure 6).   

 
 

 
 
 

The global sum of CO2 emissions from forest distur-
bance and biomass burning for 2009 alone was predicted 
at 0.51 Pg C yr-1.  Decomposition emissions of residual 
(dead) forest biomass in the CASA model from three 
years (2007 to 2009) of deforestation globally added 0.15 
Pg C yr-1 to the atmosphere. 

 

 
 
 

Table 1. Comparison of area forest disturbed between CASA model inputs and FAO reported statistics by  
country from 2005-2010 (FAO, 2010). 
 
CASA 
Rank 

Country Name CASA disturbed  
forest area in 2009 

(1000 ha yr-1) 

FAO disturbed  
forest area 

(1000 ha yr-1) 

FAO 
Rank 

1 United States 1544 2169 2 
2 Canada 1075 1230 4 
3 Brazil 951 2336 1 
4 Argentina 808 305 7 
5 Russia 749 991 5 
6 Myanmar 708 218 10 
7 Indonesia 601 103 12 
8 Australia 429 39 15 
9 Malaysia 276 NA NA 

10 Paraguay 239 NA NA 
11 Bolivia 170 NA NA 
12 China 158 221 9 
13 Madagascar 149 20 18 
14 Chile 147 16 19 
15 Mongolia 120 280 8 
16 New Zealand 119 NA NA 
17 Vietnam 110 NA NA 
18 Cambodia 105 27 16 
19 South Africa 94 NA NA 
20 Mexico 89 44 14 
21 India 71 1605 3 
22 Laos 57 NA NA 
23 Peru 46 177 11 
24 Venezuela 41 NA NA 
25 Colombia 33 14 20 
26 France 27 25 17 
27 Spain 26 55 13 
28 Papua New Guinea 21 427 6 
29 Sudan 20 11 21 
30 Bangladesh 19 NA NA 
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Table 2.  Countries ranked in terms of carbon emissions from forest disturbance and biomass burning 
from the CASA model in 2009. 
 

Rank Country Name Country Area  
(km2) 

CO2 Emissions 
(tons C km-2 yr-1) 

CO2 Emissions 
Sum (tons C yr-1) 

1 United States 9,470,940 5.7 53,728,900 
2 Brazil 8,523,630 5.6 47,796,000 
3 Myanmar 670,372 53.4 35,767,700 
4 Indonesia 1,890,750 16.8 31,747,500 
5 Argentina 2,787,440 9.8 27,345,200 
6 Canada 9,923,650 2.7 26,385,500 
7 Russia 16,949,100 1.2 20,945,500 
8 Malaysia 330,691 45.2 14,942,200 
9 Paraguay 400,654 32.0 12,802,900 

10 Bolivia 1,092,700 9.1 9,976,240 
11 Australia 7,718,920 1.2 9,131,120 
12 China 9,424,690 0.6 5,855,640 
13 Chile 745,811 7.3 5,478,410 
14 Madagascar 596,099 9.0 5,337,460 
15 New Zealand 268,943 17.5 4,705,580 
16 Cambodia 182,847 24.5 4,475,080 
17 Mexico 1,965,660 2.2 4,318,380 
18 Vietnam 326,086 12.5 4,092,000 
19 South Africa 1,224,590 3.0 3,682,200 
20 Mongolia 1,562,320 2.1 3,204,080 
21 India 3,166,800 0.9 2,892,880 
22 Laos 231,121 12.0 2,763,800 
23 Peru 1,299,030 2.0 2,639,680 
24 Venezuela 916,784 2.1 1,952,460 
25 Colombia 1,142,720 1.5 1,734,090 
26 France 547,871 2.1 1,132,640 
27 Papua New Guinea 465,616 2.4 1,116,740 
28 Thailand 515,247 1.7 869,799 
29 Congo, DRC 2,342,040 0.4 867,590 
30 Spain 506,789 1.4 708,590 
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Figure 6.  Global predicted biomass burning fluxes 
of CO2 in 2009.  Units are g C m-2 yr-1 gridded at 0.5 
degree spatial resolution. 
 

5. Discussion 
A recent study by Zhao and Running [19] reported a de-
creasing trend in global terrestrial NPP from 2000 to 
2009, using MODIS satellite inputs and the same NCEP 
reanalysis data set as in the CASA model for climate 
inputs. On a regional basis, our CASA model results dif-
fered from Zhao and Running [19] which reported that 
NPP in the tropical zones (23.5° S to 23.5° N) explained 
93% of variations in the global NPP.  In contrast, we 
found that NPP in the tropical zones explained only 
50-60% of variations in the global NPP, whereas NPP in 
the latitude zone between 30°N and 60°N could explain 
between 40% and 50% of variations in the global NPP 
[13].  Notwithstanding the difference in the global trend 
of NPP between CASA and the predictions from Zhao 
and Running [19] the overall patterns of interannual 
variations in Northern and Southern Hemisphere NPP 
anomalies were similar between the two model results.  
NPP anomalies in the Northern Hemisphere were nega-
tive from 2000-2003 and then became strongly positive 
from 2004-2008, closely following the 0.1o yr-1 sur-
face-warming trend in the model input data.  NPP 
anomalies in the Southern Hemisphere were positive 
from 2000-2003 and then turned negative between 
2004-2008, with 2005 being the most strongly negative 
anomaly year.  

The more complete CASA model NEP results reported 
in this paper suggest that surface temperature warming 
together with regional droughts (e.g., from 2006 to 2009) 
can drive ecosystem carbon losses to the atmosphere of 
more than 1 Pg C yr-1 in excess of long-term average 
terrestrial NEP fluxes.  These predicted changes in NEP 
fluxes over a decade of model results would have made a 
larger impact on atmospheric CO2 concentrations than 

NPP trends alone, and our results highlight the impor-
tance of including the annual variations in soil Rh de-
composition fluxes from downed and burned plant bio-
mass in global carbon cycle.  Variations in plant pro-
duction alone can account for less than one-third of ter-
restrial ecosystem fluxes in most years. 

The forest fire and land cover change mapping frame-
work presented in this paper has limitations under sev-
eral scenarios. These include situations where (1) the 
vegetation rapidly recovers after a fire or if there are 
multiple fires in rapid succession, (2) the loss in vegeta-
tion green cover associated with land cover conversion is 
insignificant, such as in crop fallow and rotation prac-
tices (3) the vegetation cover has high natural variability 
in seasonal greenness, which is common in mixed 
woodland-grassland ecosystems.  Each of these scenar-
ios poses distinct challenges for our current land cover 
change detection framework that are being addressed in 
future validation studies with extensive ground-truth data 
sets. 

Nevertheless, we have identified numerous relatively 
small-scale patterns throughout the world where terres-
trial carbon fluxes may vary between net annual sources 
and sinks from one year to the next.  We conclude that 
accurately monitoring of NEP for these areas of high 
interannual variability will require further validation of 
carbon model estimates, with a focus on both flux algo-
rithm mechanisms and potential scaling errors to the re-
gional level. 
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