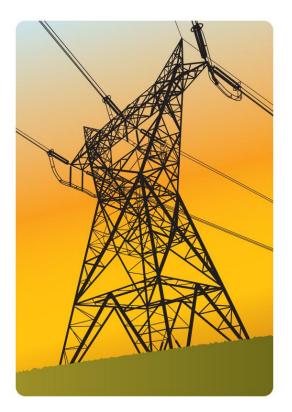


Eos Energy Storage

Public | February 2013

Executive Summary

- Eos has developed a safe, reliable, non-toxic, non-combustible, low cost zinc energy storage system for the electric grid that can be sold for \$160/kWh, rechargeable over 10,000 cycles (30 years)
- Eos is scaling up battery prototypes in 2013 in preparation for manufacturing and delivery of MW scale systems to customers in 2014
- Eos will develop 100s of MW of energy storage projects through its **Genesis Program** and through strategic partnership with **Convergent Energy + Power**
- While Eos will emphasize grid storage with its Aurora product, Eos seeks to create partnerships to develop automotive and light industrial batteries using Eos technology


Eos: Energy Storage Solutions Provider

Mission:	Providing the utility and transportation industries with safe, reliable, low-cost energy and power storage
Eos Aurora Grid Product:	 1MW/6MWH energy storage system for the electric grid (1 MW optimal power for 6 hours, with surge capability) Safe, non-toxic, stable, reliable, low capital and operating cost Battery price for major orders: \$1000/kW, \$160/kWh 30 year life, 10,000 full cycles* Scaling up battery prototypes (5kW/30kWh units) for initial manufacturing in 2013 and delivery of MW scale systems to first customers in 2014
Vehicle Product:	 70kWh battery capable of >350 km range for \$10,000
Value Proposition:	 Cost competitive with incumbent technology: gas-fired turbines for additional generation capacity and gasoline powered vehicles
Customers:	 Development cooperation with Convergent Energy & Power Eos Genesis Program for utility early adopters and strategic industry partners

The Challenge: Adapting to the Future Grid

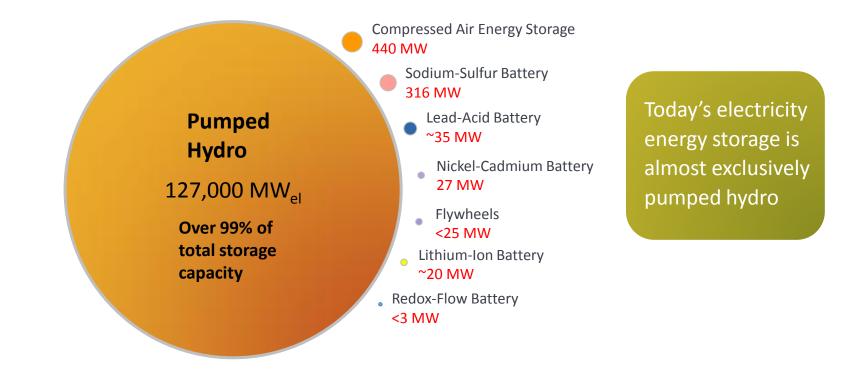
- Energy demand growing projected to grow globally by 36% from 2010 to 2035, including energy efficiency increases ¹
- Aging generating capacity needs to be replaced by 2025, most coal-fired plants and by 2030, most nuclear plants, will need to be rebuilt or retired ²
- Need for new transmission and distribution \$180B of planned US transmission projects ³
- Infrastructure driven by peak demand 25% of distribution and 10% of generation and transmission assets used less than 400 hours per year ⁴
- Growing renewable generation that is intermittent leads to grid instability and—in some cases—curtailment or negative pricing ⁵

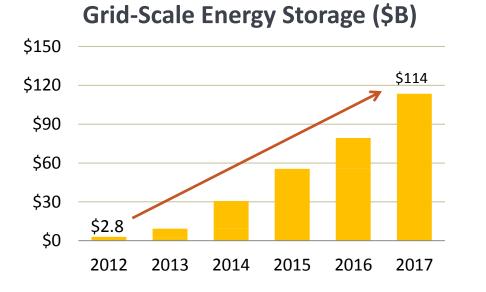
The Largest Supply Chain in the World Has No Storage

Total Annual Electricity Consumption = 20,000,000 GWh

> Energy Storage = 1,270 GWh (.0064%)

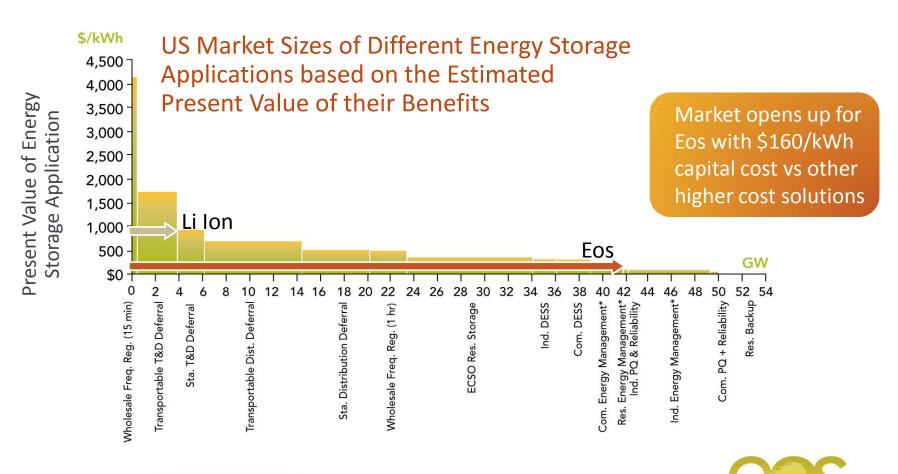
Total Annual Crude Oil Production = 4,748,067,825 m³


Oil Storage = 600,000,000 m³ (12.6%)


Oil storage = 46 days Electricity Storage = 33 minutes A 2000X differential

o://www.eia.gov/forecasts/ieo/electricity.cfm, o://www.investorideas.com/Research/PDFs/Top_10_Global_Oil_and_Chemicals.pd

Current World Electric Energy Storage Capacity


Energy Storage Market Potential

- Lux Research \$114 B by 2017
- Piper Jaffrey \$600 B market over 10-12 years
- Boston Consulting Group \$400 B market by 2020
- EPRI/DOE annual savings of \$50 billion/year via energy storage

Plenty of market <u>potential</u>... for the right product at the right <u>price</u>

Eos Low Capital Cost Opens US Grid Market

EPRI, Electricity Energy Storage Technology Options, 2010. Eos projections for Li Ion and Eos cost points

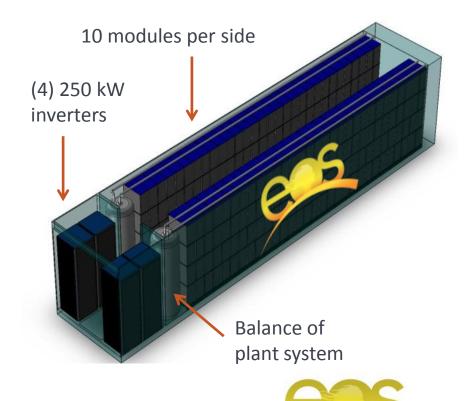
Eos Application Overview

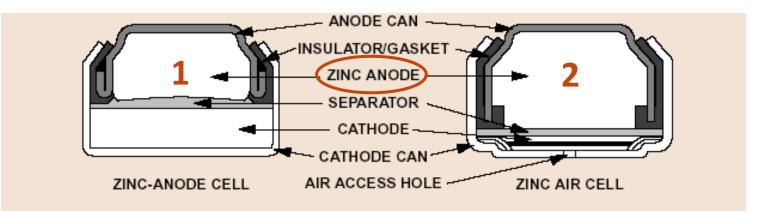
Value is created by energy storage that is less expensive than incumbent solutions

De-link supply and demand to reduce peak infrastructure

Enhance profitability & adoption of renewable generation

Empower electricity consumers to reduce costs


Enable electric vehicles that are cost competitive


Eos Aurora 1000 | 6000

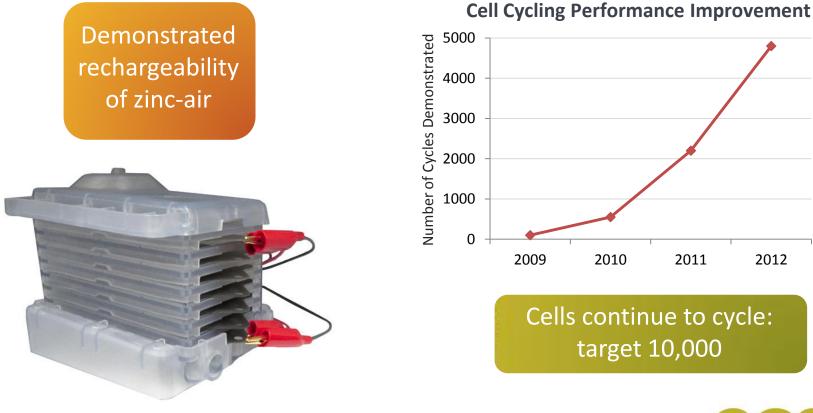
Targeted applications define technology characteristics required for profitability

Technology Attributes				
Low-Cost	\$1,000/kW or \$160/kWh			
Long Life	10,000 cycles (30 years)			
Ample Storage	1 MW for 6 hours = 6MWh in a 40' ISO shipping container			
Efficient	75% round-trip efficiency			
100% Safe	Non-toxic, non-combustible, no risk of catastrophic failure			

Why Zinc-Air Batteries?

- Increased amount of anode material in the Zinc-air cell enables greater capacity and energy density at lower cost
- Zinc-air batteries use ambient air as the active cathode material eliminating material that would normally be carried within the battery

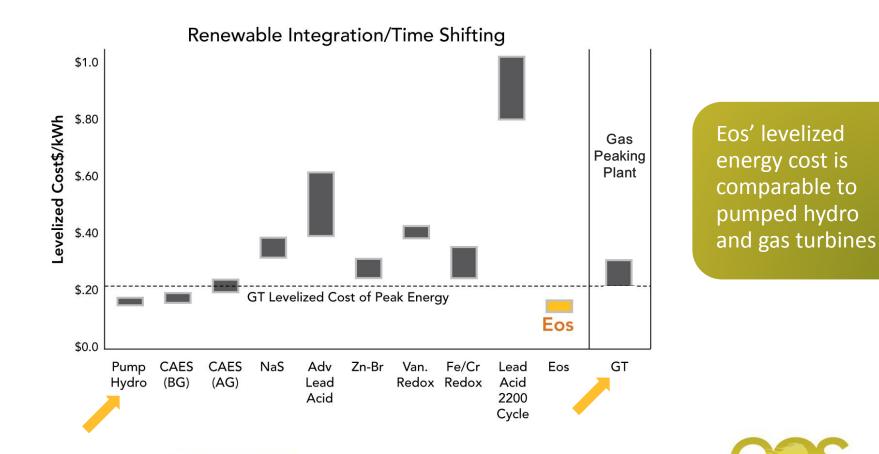
Vs



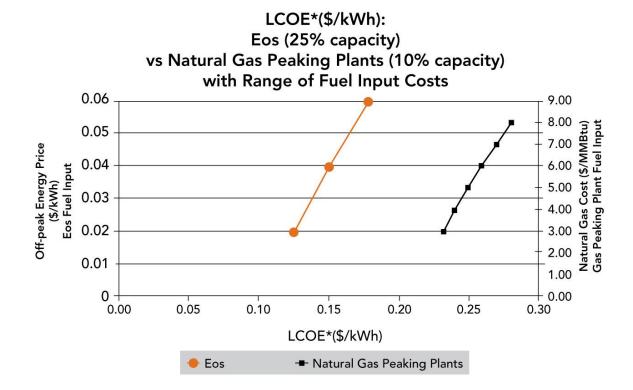
Eos' Technology Solutions

The Historic Problem	Eos Solution
 Air electrode clogging due to CO2 absorption 	 Novel aqueous electrolyte with near neutral pH
 Rupture of ion-selective membrane due to dendrite 	 No membrane, non-dendritic electrolyte
 Electrolyte drying out over time as oxygen enters 	 Self-healing electrolyte management system
 Zinc electrode changes shape 	Inert non-zinc current collector
 Materials degradation/corrosion over time 	 Treatment of metals for conductivity and corrosion
 Poor efficiency and kinetics 	 Hybrid reactions with 95% cell efficiency
Limited power	 Enhanced system with surge capability

Eos Progress to Date: >5000 Cycles with No Degradation



Competition


- Peak load reduction via energy efficiency and demand response
- Capacity additions from gas peaking plants
- New transmission and distribution spending
- Distributed generators (i.e., fuel cells, diesel gen)
- Other energy storage providers

Eos Levelized Cost of Peak Energy vs Leaders

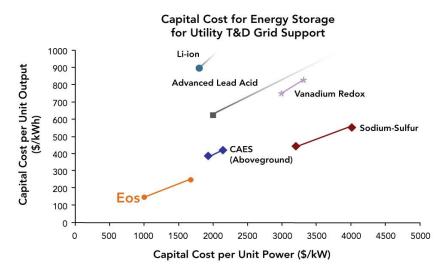
* Non-Eos data source: EPRI, Electricity Energy Storage Technology Options, 2010. Natural gas fuel cost range: \$6.5 -8/MMBtu. Levelized cost of energy includes cap. fix, and var. costs. Gas peaking cost estimate from Lazard, 2009, midpoint of est. range; assumes: 150MW facility, Capital cost \$1,125/MW, Heat rate 10.5 MMBtu/MWh, Cap. factor 10%, Facility Life 35 years, Construction time 25 months. Eos: 2MW plant, 25% cap. factor (6hrs of energy production), Roundtrip efficiency of 75%, Cap. cost for entire system with Eos battery \$1.7/watt, 0&M costs: \$20,000/year for a 2MW/12MWh operating costs, Facility Life 30

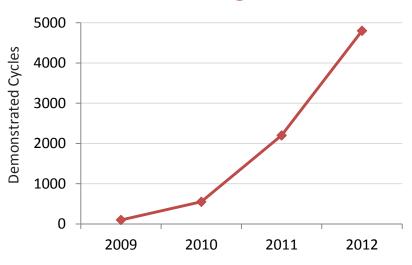
Eos Superior to Gas Peaking Plants

Eos utility scale energy storage systems can be cheaper than gas peaking plants when compared at realistic operating conditions

* Chart Notes: Levelized Cost of Energy included cap. fix, and var. costs. Gas peaking cost estimate from Lazard, 2009, midpoint of est. range. Assump: 150MW facility, Capital cost \$1,125/MW, Heat rate 10.5 MMBtu/MWh, Cap. factor 10%, Facility Life 35 years, Construction time 25 months. Eos: 2MW plant, 25% cap. factor (6hrs of energy production), Round-trip efficiency of 75%, Cap. cost for entire system with Eos battery \$1.7/watt, O&M costs: \$20,000/year for a 2MW/12MWh operating costs, Facility Life 30 years.

Eos Levelized Cost of Peak Energy vs Leaders


 = Good = Medium = Poor 	Eos	Pumpe	, Hand Che . Re	Jon Ground	solution solution	within back	A Part of the	ed les hid	ion timesto	ine varaburn
Low capital cost/kWh	•	•	•	0	0	0	ο	0	ο	0
Large volume of energy storage capacity	•	•	•	•	•	0	0	0	•	
Long life (high # of life-cycles)	•	•	•	•	ο	0	ο	ο	ο	ο
Quick response time (milliseconds)	•	0	0	0	•	•	•	•	ο	ο
Safe (non-toxic, non combustible)	•	•	•	ο	0	0	0	0	0	0
Flexible to locate (in cities)	•	0	0	0	0	ο	0	ο	ο	ο
Low O&M costs	•	•	•	0	ο	ο	0	0	ο	ο
In commercial production	0	•		0	•		0	0	0	0

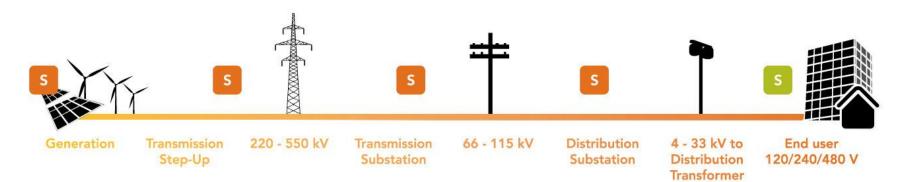


Eos Competitive Advantages

Low Cost

Long life

Energy dense



Value Proposition: Grid and Load Centers

Grid/Utility Benefits

- Electricity peak shifting (arbitrage)
- Supply of flexible, distributable capacity
- Ancillary services
 - * Load following
 - * Frequency regulation
 - * Voltage support
- Transmission congestion relief / upgrade deferral
- Renewable energy integration support via supply firming and time shift

End User Benefits

- Time of Use (TOU) Energy management (arbitrage)
- Demand charge reduction
- Electricity supply reliability improvement (backup)
- Electricity supply quality improvement

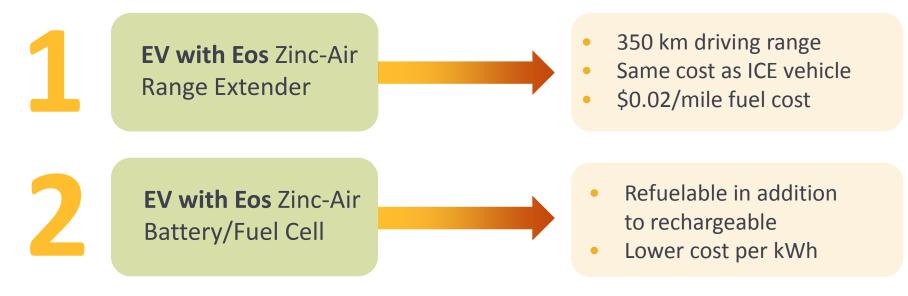
Eos provides overlapping revenue streams

Eos Aurora Milestones

2013 Focus: Continue improving cell performance while scaling up sub-module prototyping efforts in preparation for delivery of MW-scale systems in 2014.

Grid-Scale Market Entry Strategy

eosgenesis Early Adopter Program		CONVERGENT ENERGY + POWER Asset Development Co.
Development partnership with 5 major utilities and end-users	WHAT	Fully integrated asset developer with evaluation, EPC, financing & operations
Large utilities and end users with strong R&D, interest in early market entry	WHO?	Utilities or end-users that want benefits of storage without risk or investment
2014 pilots followed by full deployment	WHEN	Immediate with 1 st deployments using existing battery technology in 2012
Product customization, preferred pricing, priority access, after-market support	WHY?	Provides value while mitigating tech, construction, and operating risk
Match product to high value applications	HOW?	"Pay-for-performance" service



Electric Vehicle Challenges

Mobile Energy Storage Solutions

Potential EV Configurations:

"These are magical distances. To buy a car that will cost \$20,000 to \$25,000 without a subsidy where you can go 350 miles is our goal." - US Energy Secretary, Steven Chu

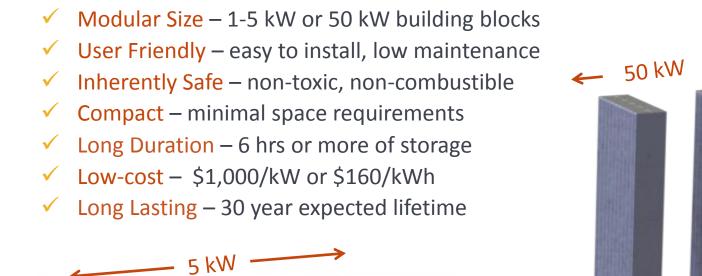
Gasoline Car vs Li-ion EV vs Eos EV

	Toyota Camry	EV with Li-ion (Nissan Leaf)*	EV with Eos Zinc-Air Range Extender	EV with Eos Zinc-Air Battery/ Fuel-Cell
Capital Cost of Car	\$25,000	\$33,000	\$25,000	\$25,000
Propulsion System	Internal Combustion Engine	24 kwh Li-ion battery 80 kw motor	Eos Zinc-Air 'range extender' battery paired with Li-ion	Eos Zinc-Air battery/fuel-cell paired with Li-ion
Range (km)	640	120-160	350	350+
Refueling Time	3 mins	5-7 hrs with 220-240V charger	6 hours	3 mins
Cost of fuel/mile at \$4/gal gas	.20	.03	.02	.02
HP (peak)	179 hp	107 hp	175 hp	175 hp

Eos EV Strategy

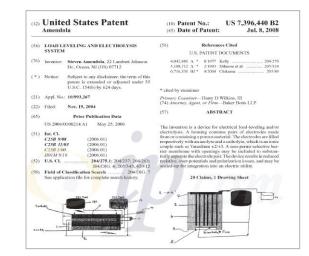
Partner with EV industry players					
Goal:	 Work with existing EV players to jointly develop technology 				
Eos Offering:	 IP for two battery configurations that can enable >350 km driving range at \$10,000/70kwh 1. Eos zinc-air range extender 2. Eos refuelable zinc-air battery/fuel-cell 				
Potential Partners:	 Battery companies, Tier 1 suppliers, OEMs 				
Time-frame	 With right partner, EV battery could be available for prototyping within 24 months 				

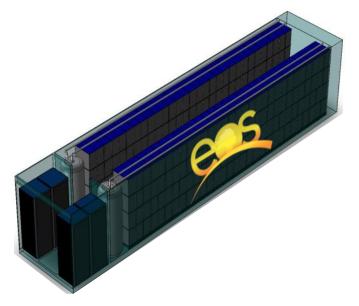
Eos White Goods Strategy


Development/Manufacturing PartnershipGoal:Address market for smaller scale white
goods product (1-100 kW)Applications:• Energy management
• Back-up power
• Uninterruptible power supply (UPS)
• On-site renewable integrationCustomer:Commercial, industrial, residential

Time-frame: 24 months

Eos is looking for a strategic retail and manufacturing partner to lead white goods product development


White Goods Product Characterization


Eos IP Protection

- Eos has obtained and applied for multilayer patent protection on key intellectual property
 - Cell configuration and architecture
 - Cathode design, materials and catalysts
 - Electrolyte and additives
 - * System configuration and electrolyte system
- Seven major patents registered and pending in the US and abroad with ~400 separate claims

Summary

- The Eos Aurora will be a safe, reliable, non-toxic, non-combustible, low-cost zincair energy storage system for the electric grid that can be sold for \$160/kWh, rechargeable over 10,000 cycles (30 years)
- Superior value proposition to incumbent technology: e.g., gas-fired turbines
- Scaling up battery prototypes in 2013 in preparation for manufacturing and delivery of MW scale systems 2014
- Establishing partnerships for market entry
- Collaboration opportunities for EV and white goods product

www.eosenergystorage.com

Corporate Background

- Offices in Edison, NJ and NY, NY
- Incorporated in DE (2008)

- Key invention in 2004
- Employees: >28

Management Team

Michael Oster, CEO, Co-Founder, Eos Investor

- >20 years experience as an entrepreneur in renewable energy, real estate, and emerging markets
- enXco, Aspect Enterprise Solutions, ATT Pension Fund, AT Kearney, IBM

Steve Hellman, President, Eos Investor

- Founded and built 14 successful companies in energy, shipping, real estate and media
- Energy Advisor to US State Department

George Adamson, VP Research and Development

- >17years experience moving 5 products into manufacturing
- Developed zinc-air and lithium batteries for Zpower, Vitric, Valence, Zinc Air
- Holds 9 patents

Steve Amendola, CTO, Inventor, Co-founder

- Inventor of Eos' patented technology in 2004
- Founder and CTO of RSI (solar grade silicon) and Millennium Cell (sodium borohydride fuel cell)
- >20 US patents in batteries, energy storage, new fuels, turbines, diesel, hydrogen production, silicon manufacture, electrochemistry

Phil Black, VP of Engineering, Eos Investor

- 20 years experience in industrial design, product engineering and manufacturing;
- 2 patents issued
- Six Sigma Manufacturing Green Belt
- PA State Industrial Design Advisory Panel

Expert Opinions of Eos

"(Eos') novel non-flow design offers elegant approach to management of prior zinc-air issues."

- Electric Power Research Institute

"Zinc Air batteries have the highest specific energy and lowest cost of an electric vehicle rechargeable battery technology..."

- Meridian International Research

"Metal-air batteries contain high energy metals and literally breathe oxygen from the air, giving them the ability to store extreme amounts of energy."

- US Energy Secretary, Steven Chu

"Metal air batteries... have the potential to be lower-power, long-duration energy storage devices..."

- SCE, 2011*

"I think that EOS is one of the most exciting and promising early-stage ventures in the space,"

- Steven Minnihan, Lux Research

"Eos has developed a number of improvements for the conventional zinc-air battery to become a viable secondary battery."

- KEMA Energy Consultants

 SCE, Rittershausen J and McKonah, Moving Energy Storage from Concept to Reality, 2011.

Ehe New York Times

"(Eos') zinc-air batteries will be able to store energy for half the cost of additional generation from natural gas — the method currently used to meet peak power demands.."

About Eos Energy Storage

"(Eos is) developing a zinc-air flow battery for use in electric vehicles, which ... will extend EV range to over 500 kilometres and can be recharged for less than 2 cents per kilometre."

"With the right pricing and performance, zinc air batteries may compete not only against other energy storage systems but also grid technologies such as gas turbine plants. The company has an impressive list of product benefits, and investors have been responsive."

"Eos Energy is on a mission to develop a low-cost, high-energy rechargeable zinc-air battery for utility and transportation applications."

technology review

Published by MIT

"Unlike conventional batteries, in which all reactants are packaged within the battery, zinc-air cells draw in oxygen from the air to generate current. Drawing on outside air gives the batteries a higher capacity-tovolume ratio and lowers the material costs. The battery's water-based chemistry also means it isn't prone to catching fire, unlike lithium-ion batteries."

CNESA 全国工商联新能源商会储能专业委员会 CHINA ENERGY STORAGE ALLIANCE

"...the zinc air batteries being developed by Eos Energy Storage stand apart"

greentechgrid

"...besides being cheap, zinc also packs a wallop of power."

Watt Now

"...zinc-air batteries demonstrate tremendous promise because they have a high energy storage capacity and are relatively inexpensive to produce."

"...energy storage giant of the not-too-distant future."

Torque News

"The proposed zinc-air battery tech of EOS Energy Storage would have a much longer range than lithium-ion within the same battery volume..." 33