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It is commonly believed that influenza epidemics arise through the
incremental accumulation of viral mutations, culminating in a novel
antigenic type that is able to escape host immunity. Successive
epidemic strains therefore become increasingly antigenically distant
from a founding strain. Here, we present an alternative explanation
where, because of functional constraints on the defining epitopes,
the virus population is characterized by a limited set of antigenic
types, all of which may be continuously generated by mutation from
preexisting strains and other processes. Under these circumstances,
influenza outbreaks arise as a consequence of host immune selection
in a manner that is independent of the mode and tempo of viral
mutation. By contrast with existing paradigms, antigenic distance
between epidemic strains does not necessarily accumulate with time
in our model, and it is the changing profile of host population
immunity that creates the conditions for the emergence of the next
influenza strain rather than the mutational capabilities of the virus.

evolution � population dynamics � infectious disease � epidemic � immunity

The human influenza virus has been shown to be capable of
evading population-level host immunity by altering its sur-

face glycoproteins, hemagglutinin (HA) and neuraminidase
(NA). Pandemic influenza is thought to involve the introduction
of genetically divergent HA and NA sequences into human
influenza populations, achieved by the reassortment of viral
genomic segments during coinfection with other influenza vi-
ruses (termed ‘‘antigenic shift’’). By contrast, annual seasonal
outbreaks of interpandemic influenza are believed to rely on the
process of ‘‘antigenic drift,’’ whereby the gradual accumulation
of mutations in HA (and to a lesser extent NA) eventually gives
rise to a viral strain that is sufficiently antigenically distinct to be
no longer vulnerable to preexisting host immunity (1).

The prevailing view of interpandemic influenza evolution (which
informs influenza vaccine composition) conceptualises the virus
population as being driven by the appearance, spread, and accu-
mulation of mutations, through a largely unoccupied ‘‘antigenic
space’’ in a directional and usually irreversible fashion (2–12).
However, mathematical models (4–10) reveal that such a process
can lead to observed epidemic patterns of influenza only under
certain specific conditions. The crux of the problem is that each
influenza epidemic appears to comprise a virus population of very
limited genetic diversity. Quantitative models based on the above
paradigm must therefore impose some check on the evolutionary
process to avoid a multiplicity of viral types simultaneously breach-
ing the barriers of existing herd immunity. This is achieved by either
restricting the mode of mutation (for example to ‘‘nearest neigh-
bors’’ within a one-dimensional linear or circular antigenic space)
or by invoking some form of short-term suppression of viral
transmission. It has been shown that short-term strain-transcending
immunity can, in a spatially heterogeneous model, result in a single
strain giving rise to an epidemic within the window of opportunity
created by the rapid decay of cross-immunity and its rapid rees-
tablishment upon reinfection (7). A recent alternative model (10)
plausibly argues that such periods of suppression arise from the

relationship between the virus’ genotype and its phenotype. The
model posits that influenza does not incrementally acquire the
ability to evade population-level immunity; rather, a number of
antigenically neutral mutations are required before this can be
achieved, thereby extending the period that host cross-immunity is
effective. Such models, which explictly represent mutation as a
process with many degrees of freedom, are, by nature, nonetheless
required to make assumptions about the manner and rate at which
viral genetic diversity is generated.

Here, we propose a model that requires none of these assump-
tions and yet reliably generates single-strain epidemics through the
agency of long-term epitope-specific host immunity acting on a
limited set of antigenic types. The ‘‘antigenic space’’ of our model
is explicitly defined by all combinations of possible epitopes, and no
restrictions are placed on the rate at which antigenic types are
generated by mutation from preexisting types, by genetic exchange,
or by gene flow and immigration. Thus, we demonstrate that the
successive emergence of unique antigenic types can occur within a
simple framework in a manner that does not rely on the mode and
tempo of mutation and that these results can be applied in the
context of empirical data to provide an alternative perspective on
the evolutionary dynamics of influenza.

Results and Discussion
Single-Strain Emergence Within Multiepitope Models. We first estab-
lish the conditions under which single antigenic types can succes-
sively emerge within a general multiepitope model that (i) incor-
porates variation in the number of alleles encoding the dominant
epitope regions (hereafter designated loci), and (ii) allows cross-
immunity to accumulate as hosts experience the different variants
(or alleles) that define a particular antigenic type. Fig. 1 captures the
essential features of our model for a two-locus system with two
alleles (a and b) at one locus and two alleles (x and y) at the other.
Each antigenic type is designated as ‘‘ij’’ by virtue of containing
allele i at one locus and allele j at the other. Within our model,
compartment zij represents the fraction of the population that has
been exposed to pathogen type ij and is now either infected or
recovered; this model compartment can overlap with others, as
illustrated in Fig. 1 in the context of an antigenic type ax. Fig. 1
Upper Left shows the proportion of the population, wax, that has
been exposed to any antigenic type that shares alleles with ax (and
includes ax itself), whereas the compartment xa (shown in Fig. 1
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Upper Right) includes only those hosts that have been exposed to
types sharing allele a. Fig. 1 Lower Left shows exactly the proportion
of the host population, �ax , that has been subjected to one of the
alleles contained in ax but not to both alleles. We assume that these
individuals have a lower probability (1 � �) of becoming infectious
than those who have never been in contact with ax or with any types
that share alleles with ax. In Fig. 1 Lower Right, we indicate another
subset, �ax, which contains individuals that have been in contact
both with types sharing allele a and with types sharing allele x, but
have never been exposed to ax itself. These individuals benefit from
an additional reduction in the risk of becoming infectious, (1 � �),
because of the combined exposure to alleles that define ax.

The two key immunological parameters involved are thus, � and
�. The first, �, is a measure of the cross-immunity that results from
previous exposure to at least one allele contained within an
antigenic type. The second parameter, �, is a measure of the
additional cross-immunity arising from accumulated exposure to
more than one allele.

We ran this model for various numbers of alleles (n � m) at two
loci to determine the occurrence of single strain (antigenic type)
epidemics within the (�, �) parameter space as indicated by the
following measure:

� �
1
P �

i�1

P ymax
i � ysub

i

ymax
i ,

where P � number of peaks in some defined time interval,
ymax � the prevalence of peaking strain, and ysub � the prevalence
of the strain with second-highest peak.

Fig. 2 records the measure of single-strain dominance (�) for
various (n � m) combinations. We find, in line with previous
observations (13), that at low levels of cross-immunity, �, all strains
coexist at a common level of prevalence, a state of no strain
structure (NSS). This state generates no score on the � scale and
corresponds to the white areas on the left hand side of each Fig. 2
plot. A second steady-state involves the stable dominance of a
subset of strains (13), referred to as discrete strain structure (DSS),
and occurs in regions where either � or � is high (top and right-hand

white areas of each Fig. 2 plot). Separating NSS and DSS is a region
of chaotic or cyclical strain structure (CSS) where dominant types
are periodically replaced. Within this region, we identified a central
core of chaotic behavior that frequently exhibits sharp epidemics
dominated by a single strain (see Fig. 3a). For asymmetric n � m
systems (where n is not a multiple of m) the region of single-strain
dominance is extended by a number of other behaviors, such as the
ordered, alternating appearance of antigenic types of the form ax
3 by 3 cz 3 aw 3 bx 3 cy in a periodic (see Fig. 3b) or
quasi-periodic (see Fig. 3c) manner. See supporting information
(SI) for futher information on the dynamical behavior of the model.

Antigenic Evolution of Influenza. We believe that this model can
provide a more comprehensive explanation of influenza dynamics
than the prevailing conceptual frameworks described above (2–12).
It has been proposed that host immunity structure may play an
important role in influenza epidemiology (12) but that such models
would still need to incorporate continuous incremental antigenic
change. Here, we show that a dynamic network of host immune
responses against a small number of functionally constrained
epitopes can provide an alternative explanation to this type of
model of antigenic drift. Our results demonstrate that single-strain
epidemic outbreaks can occur across a broad range of conditions
describing the degree of immunological cross-protection conferred
by previous exposure (defined by parameters � and �). These
dynamics are most likely to be observed when cross-protection is
not complete, and the additive effects of further exposure are low.
That � is likely to take intermediate values for influenza is indicated
by the levels of cross-reactivity observed among different strains
(14) as well as reinfection patterns (15). Also, the phenomenon of
‘‘original antigenic sin’’ observed in influenza, whereby current
exposure selectively boosts the immune response to an earlier
infecting antigenic type (16), would reinforce these dynamics by
reducing �.

The observation that amino acid changes within a set of HA
codons are associated with influenza isolates that give rise to
epidemics in subsequent years (2, 3) is currently interpreted as
support for the prevailing antigenic drift paradigm. However,
mutation at these highly evolutionarily constrained sites (see SI)
could as easily lead to the regeneration of antigenic types within an
influenza subtype (such as H3N2), which then emerge epidemically
as a result of variant-specific cross-protection. Pleiotropic effects of
viral mutations (17) are likely to further restrict the variety of
possible epitopes within the HA gene, thus justifying its represen-
tation as multilocus system with a limited number of alleles at each
locus. Crucially, antigenic distances between successive epidemics
(which are determined by only a few nucleotide sites) may contract
or remain static while the overall genetic divergence of influenza
continues to accumulate linearly through time.

And there is indeed empirical evidence that antigenic
distances between inf luenza epidemics do not always increase
with time. The antigenic distances among inf luenza A H3N2
isolates have recently been measured by using hemagglutina-
tion inhibition (HI) assays (18). When these data are trans-
formed onto a two-dimensional antigenic space by using
multivariate statistics, the H3N2 population displays a zig-
zagging, not linear, trajectory (18) (Fig. 4c) whose changes in
direction cannot be explained by the current antigenic drift
paradigm. Furthermore, comparison with our model suggests
that the linear component of this movement is, at least in part,
due to use of censored data in the multivariate analysis (18)
and not to the sequential accumulation of antigenic distance
across epidemics. Specifically, we used a five-locus, two-allele
system (2 � 2 � 2 � 2 � 2; Fig. 4a) to compare the antigenic
dynamics of our model with inf luenza A. Mathematically,
the antigenic space of our model is a 5-hypercube whose nodes
represent the 32 possible antigenic types. However, if our
model population is subjected to the same sampling scheme

Fig. 1. Model structure and relevant variables are shown with respect to the
antigenic type ax within a system with two alleles (a and b) at one locus and
two alleles (x and y) at another (see model description in text for explanation).
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and multivariate analysis that was applied to empirical inf lu-
enza data (see Methods), then we obtain a very similar
zig-zagging trajectory in a two-dimensional antigenic space
(Fig. 4b). The dynamical switching among antigenic types (i.e.,
among the 32 vertices of the 5-hypercube) can be clearly seen
but now appears to proceed temporally along the vertical axis
of the antigenic space. This behavior is due to the fact that, to
replicate the structure of the HI data matrix used in ref. 18,
antigenic distances between isolates from nonadjacent time
points were replaced by censored distances. Our model pre-
dicts that this temporal trend would not be observed if accurate
distance measures were available for all of the elements of the
HI data matrix. We note that a recent HI checkerboard study
on subtype 1 (H1) swine inf luenza viruses (19) from the U.S.
that does not contain censored data exhibits marked contrac-
tions in antigenic distance over long periods of time in a
manner consistent with our model predictions (see SI). In

addition, antigenic analysis of recent H5N1 isolates from Asia
(20) also demonstrates discordances in cross-reactivity that do
not sit comfortably with the continual accrual of antigenic
distance through time, these data show strong immunological
recognition between a reference chicken isolate from Penn-
sylvania collected in 1983 with Asian viruses collected between
1999 and 2005, suggesting the reemergence of antigenic types.

Indirect evidence for contraction of antigenic distance may
be obtained also from epidemiological studies. For example,
the reinfection rate for a particular H3N2 variant that caused
an epidemic in 1984–85 in Texas was, paradoxically, twice as
high among individuals who were infected in 1982–83 with
H3N2 than among those who had been infected in 1980–81
(21). Such studies however typically focus on clinical immunity
(i.e., how many people had symptoms) rather than the degree
of immunological inhibition of previously circulating strains
among individuals. The latter can be reliably documented only

Fig. 2. The intensity of single-strain dominance, �, is shown for a variety of combinations of numbers of alleles (n � m) at two loci within the (�, �) parameter
space. See model description in text for definitions of � and �. Other model parameters used were � � 0.02, b � 40, and s � 10. The number of peaks, P, varied
according to the convergence rate of �.
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by use of a combination of serological assays within commu-
nities that are regularly naturally challenged with inf luenza
and for whom archived inf luenza samples are available; we
hope that the testable hypotheses generated by our model will
encourage more activity in this area.

Genetic Diversity of Influenza. Our model also helps clarify the
often misunderstood relationships among inf luenza genetic
diversity, phylogenetic tree shape, and antigenic diversity.
Because our model does not explicitly model the mutational
process, it demonstrates that the dynamic processes that
generate cyclical epidemics and antigenic type switching can
be uncoupled from those that generate genetic diversity and

divergence at the vast majority of sites; such sites are genet-
ically linked to antigenically selected sites but are not them-
selves under immune selection. There is therefore no reason to
equate the linear accrual of overall genetic distance through
time with a hypothesized accumulation of antigenic diver-
gence. Hence, a phylogeny estimated from full-length HA gene
sequences will accurately represent the shared ancestry among
the sampled sequences but not necessarily their antigenic
relationships. In the context of a different model Koelle et al.
(10) make a similar point but go even further in suggesting that
sites that can contribute to antigenic change sometimes evolve
neutrally as a result of the network structure that maps HA
genotype to antigenic phenotype. In both cases, the pattern of
shared ancestry among the sampled sequences (i.e., the shape
of the estimated phylogeny) will depend on the population
dynamics of each antigenic type, which in turn depend on the
dynamics of host cross-immunity. For our model, this situation
can be formally represented by a population-genetics model in
which the epidemic is represented as a metapopulation struc-
tured by antigenic type, with the population dynamics of each
subpopulation determined by the network of host immune
responses and by the parameters � and � (i.e., a structured
coalescent process (22, 23) generalized to nonequilibrium
deme sizes); mutation and recombination among antigenic
types is exactly represented by the movement of sampled
lineages among subpopulations. Work remains to be done on
the implementation of this framework to establish whether our
model can produce the same level of restriction of viral genetic
diversity as achieved by selective sweeps that accompany
‘‘cluster’’ transitions within the neutral network model of
Koelle et al. (10) or by short-term strain-transcending immu-
nity as suggested by the results of Ferguson et al. (7). As
mentioned, our model has the advantage of being robust to
rate of generation of genetic diversity [whether by mutation,
gene f low, or the reassortment of genomic segments (24)] and
thus has the potential to generate the characteristic phyloge-
netic tree shape of type A inf luenza under a minimum of
assumptions.

Pathogenicity and Vaccine Development. For pathogens among
which only certain antigenic types cause disease (that is, if
certain antigens are determinants of virulence or are geneti-
cally linked to such), our model can easily explain why certain
pathogenic forms emerge at irregular intervals, as illustrated
in Fig. 3 by the highlighting of a particular antigenic type
through time. There is ample evidence that the HA molecule
of the H5 subtype qualifies as a virulence determinant in its
avian hosts (25, 26). It is therefore tempting to speculate that
the particular H5N1 strain that is currently causing deaths
within humans is a hypervirulent member of a larger network
of H5N1 antigenic types circulating in avian populations that
has recently risen in frequency and may, as shown in Fig. 3,
undergo a natural decline. Infection of humans by H5N1 Avian
inf luenza is clearly rare (27), although in certain transmission
settings, such as among poultry market workers, seropositivity
may be as high as 10% (28, 29). Importantly, the observation
that the latter are mainly asymptomatic suggests that prior
exposure to other H5 antigenic types may confer protection
from severe disease. Cross-protection from illness and death
after lethal challenges with a heterologous H5N1 virus has also
been demonstrated in ferrets immunized with A/Duck/
Singapore/3/97 H5N3 (30) and also among mice vaccinated
with A/Duck/Pottsdam/1042–6/86 H5N2 (31). These results
give hope that the effects of a newly emergent pandemic H5N1
strain may be mitigated by vaccination even if the vaccine
strain is not antigenically identical to the pandemic strain.

Partial cross-protection against disease is also clearly a
feature of human inf luenza types (14, 15) and constitutes an

Fig. 3. Changes in the proportions of hosts that are infectious for the 12
different strains within a (3 � 4) system for various values of (�, �). (a) � � 0.75,
� � 0.2. (b) � � 0.6, � � 0.0. (c) � � 0.58, � � 0.4. Model parameters used were
� � 0.02, b � 40, and s � 10. In each case, the black line tracks the fate of one
particular (possibly hypervirulent) strain.
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important option in the prevention of such serious conse-
quences as the mortality imposed by the 1918 H1N1 strain,
should this, or any other, highly virulent strain reemerge. With
regard to current epidemic influenza, our model suggests that
the prediction of future antigenic types is not feasible because of
the chaotic nature of their emergence, even though they may be

retrospectively seen to arise in a manner that locally maximizes
antigenic distance (2, 11). On the other hand, the fact that the
actual set of antigenic types is limited affords the possibility of
comprehensive vaccine coverage against all variants. However,
as with other antigenically diverse pathogens, the boosting of
host responses against more conserved, and less naturally im-
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Fig. 4. Antigenic map of influenza. (a) Changes in the proportions of hosts that are infectious for the 32 different strains within a (2 � 2 � 2 � 2 � 2) system
with � � 0 and � � 0.8. Other model parameters used were � � 0.014, b � 400, and s � 100. The superimposed time series are not labeled by strain; however,
this information is provided in SI. Twenty-five infected individuals were randomly sampled from the model population at 15 time points, corresponding to the
peaks of 15 successive epidemics (dotted lines). Circles highlight the relative frequencies of the strains that were sampled at each time point. (b) The antigenic
map of the sampled isolates, calculated by using multivariate analysis (see Methods for further details). Each circle represents one of the 375 sampled infected
individuals, colored and labeled by time point. Each point was subjected to a small amount of random noise to simulate measurement error. (c) The antigenic
map of human influenza A isolates sampled between 1968 and 2002 (adapted from ref. 18 with permission), calculated by using the same multivariate statistical
analysis (see Methods).
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munogenic, determinants (14, 32) remains the more promising
strategy.

Methods
Transmission Dynamics. The two-locus model is governed by the
following set of coupled differential equations for each antigenic
type ij (defined as allele i at one locus and allele j at the other):

dzij

dt
� �ij�1 � zij� � �zij, @i � �a, b, c, . . .	 � j � �x, y, z, . . .	

dwij

dt
� ��

k

�ik � �
l

�lj � �ij��1 � wij� � �wij

dxi

dt
� �

k

�ik�1 � xi� � �xi

dxj

dt
� �

l

�lj�1 � xj� � �xj

dyij

dt
� �ij�
ij � �1 � ���ij � �1 � ���1 � ���ij� � 	yij.

In the above, zij is the fraction of the population that has been
exposed to pathogen type ij and is now either infected or
recovered; yij is the proportion of the population currently
infectious with type ij, consequently, �ij (� 
yij) is the force of
infection; wij denotes the proportion of the population that has
been exposed to any antigenic type that share alleles with ij (and

includes ij itself), whereas xi and xj includes only those that have
been exposed to types sharing either allele i or allele j, respec-
tively; the average life expectancy is given by 1/�.

Individuals who have never been in contact with type ij or any
types that share alleles with ij, here given as 
ij: � 1 � wij, have
no protection and become infectious. Those individuals that
have been exposed to antigenic types sharing alleles at one or the
other locus, here denoted as

�ij � �k�i, j �wij � xk�,

have a lower probability (1 � �) of becoming infectious; and
individuals that have been in contact both with types sharing
allele i and types sharing allele j, but have never been exposed
to ij itself, denoted as �ij (� wij � zij � �ij) benefit from an
additional reduction in the risk of becoming infectious, (1 � �),
because of the combined exposure to alleles that define ij.

Antigenic Map. Infected individuals were sampled from our model
population at the peaks of successive epidemics in proportion to
the relative frequency of their respective antigenic types. Anti-
genic distances among these sampled individuals were calculated
as the number of loci at which they differed. Distances were
mapped onto a two-dimensional Euclidean space by using the
same multidimensional scaling method developed by Smith et al.
(18) (available from www.antigenic-cartography.org; best-fit re-
sult of 25 runs is shown).
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