
Chapter 7

Planar Curve Intersection

Curve intersection involves finding the points at which two planar curves intersect. If the two curves
are parametric, the solution also identifies the parameter values of the intersection points.

7.1 Bezout’s Theorem

Bezout’s theorem states that a planar algebraic curve of degree n and a second planar algebraic
curve of degree m intersect in exactly mn points, if we properly count complex intersections, inter-
sections at infinity, and possible multiple intersections. If they intersect in more than that number
of points, they intersect in infinitely many points. This happens if the two curves are identical, for
example.

The correct accounting of the multiplicity of intersections is essential to properly observe Bezout’s
theorem. If two curves intersect and they are not tangent at the point of intersection (and they
do not self-intersect at that point), the intersection is said to have a multiplicity of one. Such
an intersection is also called a transversal intersection, or a simple intersection. When two curves
are tangent, they intersect twice at the point of tangency. They are also said to intersect with
a multiplicity of two. If, in addition, the two curves have the same curvature, they are said to
intersect with a multiplicity three. If two curves intersect with a multiplicity of n and there are no
self-intersections at that point, the two curves are said to be Gn−1 continuous at that point.

Bezout’s theorem also tells us that two surfaces of degree m and n respectively intersect in an
algebraic space curve of degree mn. Also, a space curve of degree m intersects a surface of degree n
in mn points. In fact, this provides us with a useful definition for the degree of a surface or space
curve. The degree of a surface is the number of times it is intersected by a general line, and the
degree of a space curve is the number of times it intersects a general plane. The phrase “number
of intersections” must be modified by the phrase “properly counted”, which means that complex,
infinite, and multiple intersections require special consideration.

7.1.1 Homogeneous coordinates

Proper counting of intersections at infinity is facilitated through the use of homogeneous coordinates.
A planar algebraic curve of degree n

f(x, y) =
∑
i+j≤n

aijx
iyj = 0

79

80 Bezout’s Theorem

can be expressed in homogeneous form by introducing a homogenizing variable w as follows:

f(X,Y,W) =
∑

i+j+k=n

aijX
iY jW k = 0.

Note that, in the homogeneous equation, the degree of every term is n.
Any homogeneous triple (X,Y,W) corresponds to a point whose Cartesian coordinates (x, y) are

(XW , YW).

7.1.2 Circular Points at Infinity

A circle whose equation is (x− xc)2 + (y − yc)2 − r2 = 0 has the homogeneous representation

(X − xcW)2 + (Y − ycW)2 − r2W 2 = 0. (7.1)

A point whose homogeneous coordinate W = 0 corresponds to a point whose Cartesian coordinates
are at infinity.

An example of the practical use of homogeneous coordinates is that it allows us to observe the
interesting fact that every circle passes through the two points (1, i, 0) and (1,−i, 0). You can easily
verify this by substituting these points into (7.1). The points (1, i, 0) and (1,−i, 0), known as the
circular points at infinity, are both infinite and complex.

Circles are degree two curves, and thus Bezout s theorem requires two distinct circles to intersect
in exactly four points. However, our practical experience with circles suggests that they intersect
in at most two points. Of course, two distinct circles can only intersect in at most two real points.
However, since all circles pass through the two circular points at infinity, we thus account for the
two missing intersection points.

7.1.3 Homogeneous parameters

A unit circle at the origin can be expressed parametrically as

x =
−t2 + 1
t2 + 1

y =
2t

t2 + 1
. (7.2)

A circle can also be expressed in terms of homogeneous parameters (T,U) where t = T
U :

x =
−T 2 + U2

T 2 + U2
y =

2TU
T 2 + U2

. (7.3)

To plot the entire circle using equation (7.2), t would have to range from negative to positive infinity.
An advantage to the homogeneous parameters is that the entire circle can be swept out with finite
parameter values. This is done as follows:

• First Quadrant: 0 ≤ T ≤ 1, U = 1

• Second Quadrant: T = 1, 1 ≥ U ≥ 0

• Third Quadrant: T = −1, 0 ≤ U ≤ 1

• Fourth Quadrant: −1 ≤ T ≤ 0, U = 1

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

The Intersection of Two Lines 81

7.1.4 The Fundamental Theorem of Algebra

The fundamental theorem of algebra can be thought of as a special case of Bezout’s theorem. It
states that a univariate polynomial of degree n has exactly n roots. That is, for f(t) = a0 + a1t +
· · · + ant

n there exist exactly n values of t for which f(t) = 0, if we count complex roots and possible
multiple roots. If the ai are all real, then any complex roots must occur in conjugate pairs. In other
words, if the complex number b+ ci is a root of the real polynomial f(t), then so also is b− ci.

7.2 The Intersection of Two Lines

A line is a degree one curve, so according to Bezout’s theorem, two lines generally intersect in one
point; if they intersect in more than one point, the two lines are identical. Several solutions to the
problem of finding the point at which two lines intersect are presented in junior high school algebra
courses. We present here an elegant solution involving homogeneous representation that is not found
in junior high school algebra courses, and that properly accounts for intersections at infinity.

7.2.1 Homogeneous Points and Lines

We will denote by
P(X,Y,W)

the point whose homogeneous coordinates are (X,Y,W) and whose Cartesian coordinates are (x, y) =
(X/W,Y/W). Likewise, we denote by

L(a, b, c)

the line whose equation is ax+ by + c = aX + bY + cW = 0.
The projection operator converts a point from homogeneous to Cartesian coordinates: Π(P(X,Y,W)) =

(XW , YW).
The point P(X,Y, 0) lies at infinity, in the direction (X,Y). The line L(0, 0, 1) is called the line

at infinite, and it includes all points at infinity.
Since points and lines can both be represented by triples of numbers, we now ask what role is

played by the conventional operations of cross product

(a, b, c)× (d, e, f) = (bf − ec, dc− af, ae− db)

and dot product
(a, b, c) · (d, e, f) = ad+ be+ cf

are defined. The dot product determines incidence: point P(X,Y,W) lies on a line L(a, b, c) if and
only if

P · L = aX + bY + cW = 0.

The cross product has two applications: The line L containing two points P1 and P2 is given by
L = P1 × P2 and the point P at which two lines L1 and L2 intersect is given by P = L1 × L2.
This is an example of the principle of duality which, loosely speaking, means that general statements
involving points and lines can be expressed in a reciprocal way. For example, “A unique line passes
through two distinct points” has a dual expression, “A unique point lies at the intersection of two
distinct lines”.
Example The points P(2, 3, 1) and P(3, 1, 1) define a line (2, 3, 1) × (3, 1, 1) = L(2, 1,−7). The
points P(2, 3, 1) and P(1, 4, 1) define a line (2, 3, 1)× (1, 4, 1) = L(−1,−1, 5). The lines L(2, 1,−7)

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

82 Intersection of a Parametric Curve and an Implicit Curve

and L(−1,−1, 5) intersect in a point (2, 1,−7)×(−1,−1, 5) = P(−2,−3,−1). Note that Π(2, 3, 1) =
Π(−2,−3,−1) = (2, 3).

We noted that Bezout’s theorem requires that we properly account for complex, infinite, and
multiple intersections, and that homogeneous equations allow us to deal with points at infinity. We
now illustrate. Students in junior high school algebra courses are taught that there is no solution
for two equations representing the intersection of parallel lines, such as

3x+ 4y + 2 = 0, 3x+ 4y + 3 = 0.

However, using homogeneous representation, we see that the intersection is given by

L(3, 4, 2)× L(3, 4, 3) = P(−4, 3, 0)

which is the point at infinity in the direction (−4, 3).

7.3 Intersection of a Parametric Curve and an Implicit Curve

The points at which a parametric curve (x(t), y(t)) intersects an implicit curve f(x, y) = 0 can be
found as follows. Let g(t) = f(x(t), y(t)). Then the roots of g(t) = 0 are the parameter values at
which the parametric curve intersects the implicit curve. For example, let

x(t) = 2t− 1, y(t) = 8t2 − 9t+ 1

and
f(x, y) = x2 + y2 − 1

Then
g(t) = f(x(t), y(t)) = 64t4 − 144t3 + 101t2 − 22t+ 1

The roots of g(t) = 0 are t = 0.06118, t = 0.28147, t = 0.90735, and t = 1.0. The Cartesian
coordinates of the intersection points can then be found by evaluating the parametric curve at those
values of t: (−0.8776, 0.47932), (−0.43706,−0.89943), (0.814696,−0.5799), (1, 0).

If the parametric curve is rational,

x =
a(t)
c(t)

, y =
b(t)
c(t)

it is more simple to work in homogeneous form:

X = a(t), Y = b(t), W = c(t).

For example, to intersect the curves

x =
t2 + t

t2 + 1
, y =

2t
t2 + 1

and
f(x, y) = x2 + 2x+ y + 1 = 0

we homogenize the implicit curve

f(X,Y,W) = X2 + 2XW + YW +W 2 = 0

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

Intersection of a Parametric Curve and an Implicit Curve 83

and the parametric curve

X(t) = t2 + t, Y (t) = 2t, W (t) = t2 + 1

and make the substitution

g(t) = f(X(t), Y (t),W (t)) = 4t4 + 6t3 + 5t2 + 4t+ 1

In this case, g(t) has two real roots at t = 1 and t = 0.3576 and two complex roots.
This method is very efficient because it reduces the intersection problem to a polynomial root

finding problem. If both curves are parametric, it is possible to convert one of them to implicit
form using implicitization. The implicitization curve intersection algorithm is briefly sketched in
section 17.8. A curve intersection algorithm based on implicitization is very fast, although it has
some limitations. For example, if the degree of the two curves is large, the method is slow and
experiences significant floating point error propagation. For numerical stability, if the computations
are to be performed in floating points, one should implicitize in the Bernstein basis as discussed in
section 17.6. But even this does not adequately reduce floating point error if two two curves are,
say, degree ten.

7.3.1 Order of Contact

Given a degree m parametric curve

P(t) = (X(t), Y (t),W (t))

and a degree n implicit curve
f(X,Y,W) = 0

the polynomial g(t) = f(X(t), Y (t),W (t)) is degree mn and, according to the fundamental theorem
of algebra, it will have mn roots. This is a substantiation of Bezout’s theorem.

A point on the curve f(X,Y,W) = 0 is a singular point if fX = fY = fW = 0. A point that is
not singular is called a simple point.

If g(τ) = 0, then P(τ) is a point of intersection and g(t) can be factored into g(t) = (1− τ)kg̃(t)
where k is the order of contact between the two curves. If P(τ) is a simple point on f(X,Y,W) = 0,
then the two curves are Gk−1 continuous at P(τ).

Example The intersection between the line X(t) = −t + 1, Y (t) = t, W (t) = 1 and the curve
X2 + Y 2 −W 2 = 0 yields g(t) = 2t2 − 2t, so there are two intersections, at t = 0 and t = 1. The
Cartesian coordinates of the intersection points are (1, 0) and (0, 1).

Example The intersection between the line X(t) = 1 + t2, Y (t) = t, W (t) = 1 and the curve
X2 + Y 2 −W 2 = 0 yields g(t) = t2, so there is an intersection at t = 0 with order of contact of 2.
These two curves are tangent at (1, 0).

Example The intersection between the line X(t) = 1 − t2, Y (t) = t + t2, W (t) = 1 and the
curve X2 + Y 2 −W 2 = 0 yields g(t) = 4t3 + 3t4, so there is an intersection at t = 0 with order of
contact of 3, plus an intersection at t = − 4

3 with order of contact 1. These two curves are curvature
continuous at (1, 0).

The order-of-contact concept gives a powerful way to analyze curvature: The osculating circle is
the unique circle that intersects P(t) with an order of contact of three.
Example f(X,Y,W) = X2 + Y 2 − 2ρYW = 0 is a circle of radius ρ with a center at (0, ρ). What
is the curvature of the curve X(t) = x1t + x2t

2, Y (t) = y2t
2, W (t) = w0 + w1t + w2t

2? For these
two curves,

g(t) = (x2
1 − 2ρw0y2)t2 + (2x1x2 − 2ρw1y2)t3 + (x2

2 − 2ρw2y2 + y2
2)t4

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

84 Computing the Intersection of Two Bézier Curves

For any value of ρ these two curves are tangent continuous. They are curvature continuous if
x2

1 − 2ρw0y2 = 0, which happens if

ρ =
x2

1

2w0y2

Therefore, the curvature of P(t) at t = 0 is

κ =
2w0y2
x2

1

.

7.4 Computing the Intersection of Two Bézier Curves

Several algorithms address the problem of computing the points at which two Bézier curves in-
tersect. Predominant approaches are the Bézier subdivision algorithm [LR80], the interval subdi-
vision method adapted by Koparkar and Mudur [KM83], implicitization [SP86a], and Bézier clip-
ping [SN90].

7.4.1 Timing Comparisons

A few sample timing comparisons for these four methods are presented in [SN90]. Comparative
algorithm timings can of course change somewhat as the implementations are fine tuned, if tests are
run on different computers, or even if different compilers are used. These timing tests were run on
a Macintosh II using double precision arithmetic, computing the answers to eight decimal digits of
accuracy.

The columns in Table 7.1 indicate the relative execution time for the algorithms clip = Bézier
clipping algorithm, Impl. = implicitization, Int = Koparkar’s interval algorithm and Sub = the
conventional Bézier subdivision algorithm. In general, the implicitization intersection algorithm is

Example Degree Clip Impl. Int Sub.
1 3 2.5 1 10 15
2 3 1.8 1 5 6
3 5 1 1.7 3 5
4 10 1 na 2 4

Table 7.1: Relative computation times

only reliable for curves of degree up to five using double precision arithmetic. For higher degrees,
it is possible for the polynomial condition to degrade so that no significant digits are obtained in
the answers. For curves of degree less than five, the implicitization algorithm is typically 1-3 times
faster than the Bézier clip algorithm, which in turn is typically 2-10 times faster than the other two
algorithms. For curves of degree higher than four, the Bézier clipping algorithm generally wins.

A brief discussion of these curve intersection methods follows.

7.5 Bézier subdivision

The Bézier subdivision curve intersection algorithm relies on the convex hull property and the de
Casteljau algorithm. Though we overview it in terms of Bézier curves, it will work for any curve

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

Interval subdivision 85

which obeys the convex hull property. Figure 7.1 shows the convex hull of a single Bézier curve, and
the convex hulls after subdividing into two and four pieces.

Figure 7.1: Convex Hulls

The intersection algorithm proceeds by comparing the convex hulls of the two curves. If they
do not overlap, the curves do not intersect. If they do overlap, the curves are subdivided and the
two halves of one curve are checked for overlap against the two halves of the other curve. As this
procedure continues, each iteration rejects regions of curves which do not contain intersection points.
Figure 7.2 shows three iterations.

Figure 7.2: Three iterations of Bézier subdivision

Once a pair of curves has been subdivided enough that they can each be approximated by a line
segment to within a tolerance ε (as given in equation 10.4), the intersection of the two approximating
line segments is found.

Since convex hulls are rather expensive to compute and to determine overlap, in practice one
normally just uses the x− y bounding boxes.

7.6 Interval subdivision

The interval subdivision algorithm method is similar in spirit to the Bézier subdivision method. In
this case, each curve is preprocessed to determine its vertical and horizontal tangents, and divided
into “intervals” which have such tangents only at endpoints, if at all. Note that within any such
interval, a rectangle whose diagonal is defined by any two points on the curve completely bounds
the curve between those two endpoints. The power of this method lies in the fact that subdivision
can now be performed by merely evaluating the curve (using Horner’s method instead of the more

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

86 Bézier Clipping method

expensive de Casteljau algorithm) and that the bounding box is trivial to determine. Figure 7.3
illustrates this bounding box strategy.

Figure 7.3: Interval preprocess and subdivision

7.7 Bézier Clipping method

The method of Bézier clipping has many applications, such as ray tracing trimmed rational surface
patches [NSK90], algebraic curve intersection [Sed89], and tangent intersection computation [SN90].
It can be viewed as kind of an interval Newton’s method, because it has quadratic convergence, but
robustly finds all intersections. Since it is such a powerful tool, and since it is based on some ideas
that haven’t been discussed previously in these notes, the majority of this chapter is devoted to this
method.

7.7.1 Fat Lines

Define a fat line as the region between two parallel lines. Our curve intersection algorithm begins by
computing a fat line which bounds one of the two Bézier curves. Similar bounds have been suggested
in references [Bal81, SWZ89].

Denote by L̄ the line P0 −Pn. We choose a fat line parallel to L̄ as shown in Figure 7.4. If L̄ is

L
_

dmax

dmin

Figure 7.4: Fat line bounding a quartic curve

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

Bézier Clipping method 87

defined in its normalized implicit equation

ax+ by + c = 0 (a2 + b2 = 1) (7.4)

then, the distance d(x, y) from any point (x, y) to L̄ is

d(x, y) = ax+ by + c (7.5)

Denote by di = d(xi, yi) the signed distance from control point Pi = (xi, yi) to L̄. By the convex
hull property, a fat line bounding a given rational Bézier curve with non-negative weights can be
defined as the fat line parallel to L̄ which most tightly encloses the Bézier control points:

{(x, y)|dmin ≤ d(x, y) ≤ dmax} (7.6)

where
dmin = min{d0, . . . , dn}, dmax = max{d0, . . . , dn}. (7.7)

7.7.2 Bézier Clipping

Figure 7.5 shows two polynomial cubic Bézier curves P(t) and Q(u), and a fat line L which bounds
Q(u). In this section, we discuss how to identify intervals of t for which P(t) lies outside of L, and
hence for which P(t) does not intersect Q(u).

Q(u)

P(t)

dmin
 = 1

dmax =
 -2

d0 =
 -5d1 =

 -1

d2 =
 2

d3 =
 3

Figure 7.5: Bézier curve/fat line intersection

P is defined by its parametric equation

P(t) =
n∑
i=0

PiB
n
i (t) (7.8)

where Pi = (xi, yi) are the Bézier control points, and Bni (t) =
(
n
i

)
(1− t)n−iti denote the Bernstein

basis functions. If the line L̄ through Q0 −Qn is defined by

ax+ by + c = 0 (a2 + b2 = 1), (7.9)

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

88 Bézier Clipping method

then the distance d(t) from any point P(t) to L̄ can be found by substituting equation 7.8 into
equation 7.9:

d(t) =
n∑
i=0

diB
n
i (t), di = axi + byi + c. (7.10)

Note that d(t) = 0 for all values of t at which P intersects L̄. Also, di is the distance from Pi to L̄
(as shown in Figure 7.5).

The function d(t) is a polynomial in Bernstein form, and can be represented as an explicit Bézier
curve (Section 2.14) as follows:

D(t) = (t, d(t)) =
n∑
i=0

DiB
n
i (t). (7.11)

Figure 7.6 shows the curve D(t) which corresponds to Figure 7.5.

d

1
0

-2

(0,-5)

(1
3 ,-1)

(2
3 ,2)

(1,3)

t=0.25 t=0.75

t

Figure 7.6: Explicit Bézier curve

Values of t for which P(t) lies outside of L correspond to values of t for which D(t) lies above
d = dmax or below d = dmin. We can identify parameter ranges of t for which P(t) is guaranteed
to lie outside of L by identifying ranges of t for which the convex hull of D(t) lies above d = dmax
or below d = dmin. In this example, we are assured that P(t) lies outside of L for parameter values
t < 0.25 and for t > 0.75.

Bézier clipping is completed by subdividing P twice using the de Casteljau algorithm, such that
portions of P over parameter values t < 0.25 and t > 0.75 are removed.

Figure 7.6 shows how to clip against a fat line using a single explicit Bézier curve. This approach
only works for polynomial Bézier curves. For rational Bézier curves, the explicit Bézier curves
generated for each of the two lines are not simple translations of each other, so we must clip against
each of the two lines separately. This is illustrated in Sections 7.7.7 and 7.7.8

7.7.3 Iterating

We have just discussed the notion of Bézier clipping in the context of curve intersection: regions
of one curve which are guaranteed to not intersect a second curve can be identified and subdivided

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

Bézier Clipping method 89

away. Our Bézier clipping curve intersection algorithm proceeds by iteratively applying the Bézier
clipping procedure.

Figure 7.7 shows curves P(t) and Q(u) from Figure 7.5 after the first Bézier clipping step in
which regions t < 0.25 and t > 0.75 have been clipped away from P(t). The clipped portions of P(t)
are shown in fine pen width, and a fat line is shown which bounds P(t), 0.25 ≤ t ≤ 0.75. The next
step in the curve intersection algorithm is to perform a Bézier clip of Q(u), clipping away regions
of Q(u) which are guaranteed to lie outside the fat line bounding P(t). Proceeding as before, we

Q(u)

P(t)

L

Figure 7.7: After first Bézier clip

define an explicit Bézier curve which expresses the distance from L̄ in Figure 7.7 to the curve Q(u),
from which we conclude that it is safe to clip off regions of Q(u) for which u < .42 and u > .63.

Next, P(t) is again clipped against Q(u), and so forth. After three Bézier clips on each curve,
the intersection is computed to within six digits of accuracy (see Table 7.2).

Step tmin tmax umin umax

0 0 1 0 1
1 0.25 0.75 0.4188 0.6303
2 0.3747 0.4105 0.5121 0.5143
3 0.382079 0.382079 0.512967 0.512967

Table 7.2: Parameter ranges for P(t) and Q(u).

7.7.4 Clipping to other fat lines

The fat line defined in section 7.7.1 provides a nearly optimal Bézier clip in most cases, especially
after a few iterations. However, it is clear that any pair of parallel lines which bound the curve can
serve as a fatline. In some cases, a fat line perpendicular to line P0 − Pn provides a larger Bézier
clip than the fat line parallel to line P0 −Pn. We suggest that in general it works best to examine
both fat lines to determine which one provides the largest clip. Experience has shown this extra
overhead to reap a slightly lower average execution time.

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

90 Bézier Clipping method

7.7.5 Multiple Intersections

Figure 7.8 shows a case where two intersection points exist. In such cases, iterated Bézier clipping

Figure 7.8: Two intersections

cannot converge to a single intersection point. The remedy is to split one of the curves in half and
to compute the intersections of each half with the other curve, as suggested in Figure 7.9. A stack

Figure 7.9: Two intersections, after a split

data structure is used to store pairs of curve segments, as in the conventional divide-and-conquer
intersection algorithm [LR80].

Experimentation suggests the following heuristic. If a Bézier clip fails to reduce the parameter
range of either curve by at least 20%, subdivide the “longest” curve (largest remaining parameter
interval) and intersect the shorter curve respectively with the two halves of the longer curve. This
heuristic, applied recursively if needed, allows computation of arbitrary numbers of intersections.

7.7.6 Rational Curves

If P is a rational Bézier curve

P(t) =
∑n
i=0 wiPiB

n
i (t)∑n

i=0 wiB
n
i (t)

(7.12)

with control point coordinates Pi = (xi, yi) and corresponding non-negative weights wi, the Bézier
clip computation is modified as follows. Substituting equation 7.12 into equation 7.9 and clearing
the denominator yields:

d(t) =
n∑
i=0

diB
n
i (t), di = wi(axi + byi + c).

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

Bézier Clipping method 91

The equation d(t) = 0 expresses the intersection of P(t) with a line ax+ by+ c = 0. However, unlike
the non-rational case, the intersection of P(t) with a fat line cannot be represented as {(x, y) =
P(t)|dmin ≤ d(t) ≤ dmax}. Instead, P must be clipped independently against each of the two lines
bounding the fat line. Thus, we identify ranges of t for which

n∑
i=0

wi(axi + byi + c− dmax)Bni (t) > 0

or for which
n∑
i=0

wi(axi + byi + c+ dmin)Bni (t) < 0.

These ranges are identified using the Bézier clipping technique as previously outlined.

7.7.7 Example of Finding a Fat Line

We now run through an example of how to compute a fat line and perform a Bézier clip on a pair
of rational Bézier curves. We use the notation for points and lines as triple of numbers, presented
in Section 7.2. This leads to an elegant solution.

Figure 7.10.a shows a rational Bézier curve of degree n = 4. The control points are written in
homogeneous form: Pi = wi ∗ (xi, yi, 1). For example, the notation P1 = 3 ∗ (4, 6, 1) means that the
Cartesian coordinates are (4, 6) and the weight is 3.

P0=(2,3,1)

P4=(10,9,1)

L
_
=P0XP4=(-6,8,-12)

(a) Rational Bézier Curve. Line L̄ = P0 ×P4.

P1=3*(4,6,1)

L
_
=P0XP4=(-6,8,-12)

L1=(-6,8,-24)

(b) Line L1.

P2=(4,8,1)

L
_
=P0XP4=(-6,8,-12)

L2=(-6,8,-40)

(c) Line L1.

P3=4*(8,5,1)

L
_
=(-6,8,-12) L3=(-6,8,8)

(d) Line L1.

Figure 7.10: Example of how to find fat lines.

To compute a fat line that bounds this curve, begin by computing the base line L̄ = P0 ×Pn =
(−6, 8,−12). Then, compute the lines Li, i = 1, . . . , n − 1 that are parallel to L̄ and that pass
through Pi. In general, if L̄ = (a, b, c), then Li = (a, b, ci). Thus, we must solve for ci such that

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

92 Bézier Clipping method

(a, b, ci) ·Pi = 0. Thus,
ci = −axi − byi.

Call the line with the smallest value of ci Lmin and the line with the largest value of ci Lmax.
We want the curve to lie in the positive half space of each bounding line. It can be shown that this
will happen if we scale Lmin by −1.

Thus, in our example, we have

Lmin = −L2 = (6,−8, 40), Lmax = L3 = (−6, 8, 8). (7.13)

7.7.8 Example of Clipping to a Fat Line

P0=1*(0,10,1)

P1=1*(0,12,1)

P2=2*(5,10,1)

P3=3*(8,7,1)

P4=3*(11,1,1)
Lmax=(-6,8,8)Lmin=(6,-8,40)

(a) Curve and fat line.

X=L(0,1,0)

L01

L02

L04 L03

V2V3V4

E0 E1
E2

E3

E4

(b) Explicit Bézier Curve for Clipping against Lmin.

Figure 7.11: Clipping to a fat line.

Figure 7.11.a shows a rational Bézier curve to be clipped against the fat line (7.13). Figure 7.11.b
shows the resulting explicit Bézier curve where

Ei = (
i

n
, Lmin ·Pi, 1).

In this example,

E0 = (0,−40, 1), E1 = (
1
4
,−56, 1), E2 = (

1
2
,−20, 1), E3 = (

3
4
, 96, 1), E4 = (1, 294, 1)

Note that we only want to clip away the portions of P(t) that lie in the negative half space of
Lmin. That half space corresponds to the values of t for which the explicit curve is < 0. Therefore,
we can clip away the “left” portion of the curve if and only if E0 lies below the x-axis and we can
clip away the “right” portion of the curve if and only if En lies below the x-axis. So in this example,
we can compute a clip value at the “left” end of the curve, but not the “right” end.

To compute the clip value, we first compute the lines

L0,i = E0 × Ei

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

Bézier Clipping method 93

and the points
L0,i ×X = Vi = (ai, 0, ci)

where X = (0, 1, 0) is the line corresponding to the x-axis (y = 0). In our example,

L01 = (16,
1
4
, 10), L02 = (−20,

1
2
, 20), L03 = (−136,

3
4
, 30), L04 = (−334, 1, 40)

and

V1 = (−10, 0, 16), V2 = (−20, 0,−20), V3 = (−30, 0,−136), V4 = (−40, 0,−334).

Our “clip” value will be the x-coordinate of the left-most Vi that is to the right of the origin. To
determine this, we must project the homogeneous points Vi to their corresponding Cartesian points
vi which yields:

v1 = (−5
8
, 0), v2 = (1, 0), v3 = (

30
136

, 0) ≈ (.2206, 0), v4 = (
40
334

, 0) ≈ (.1198, 0).

So the desired t value at which to clip against Lmin is .1198, and we can eliminate the domain
t ∈ [0, 0.1198).

We now clip against line Lmax. The explicit Bézier curve is shown in Figure 7.12, for which

Ei = (
i

n
, Lmax ·Pi, 1).

In this example,

E0 = (0, 88, 1), E1 = (
1
4
, 104, 1), E2 = (

1
2
, 116, 1), E3 = (

3
4
, 48, 1), E4 = (1,−150, 1)

X=L(0,1,0)
L40

L42 L43

V3V0

E0
E1 E2

E3

E4

Figure 7.12: Clipping to Lmax.

Since E0 is above the x-axis and E4 is below the x-axis, we can clip the right side of the curve
but not the left. We have

L40 = (−238,−1, 88), L41 = (−254,−3
4
, 141.5), L42 = (−266,−1

2
, 191), L43 = (−198,−1

4
, 160.5)

and

V0 = (−88, 0,−238), V1 = (−141.5, 0,−254), V2 = (−191, 0,−266), V3 = (−160.5, 0,−198).

Projecting the homogeneous points Vi to their corresponding Cartesian points vi yields

v0 ≈ (.3697, 0), v1 ≈ (.5571, 0), v2 ≈ (.7180, 0), v3 ≈ (.8106, 0).

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

94 Bézier Clipping method

HV1

E0

E1

E4

Figure 7.13: Clipping example.

When clipping away the right end of the curve, we need to identify the right-most Vi that is to the
left of (1, 0), which in this example is V3. Thus, we can clip away t ∈ (.8106, 1].

Note that we are not computing the exact intersection between the convex hull and the x-axis,
as illustrated in Figure 7.13, where the algorithm described in this section would compute a clip
value corresponding to V1, whereas the convex hull crosses the x-axis at H. In our experiments, the
method described here runs faster than the method where we compute the exact intersection with
the convex hull because in most cases the two values are the same and the method described here is
more simple.

E0

E1

E2 E3

E4

(a) Clip away everything.

E0

E1

E2
E3

E4

(b) Clip away nothing.

V01 V34

E0

E1

E2
E3

E4

(c) Clip to the left of V01 and to
the right of V34.

Figure 7.14: Additional examples.

A few additional examples are illustrated in Figure 7.14. In Figure 7.14.a, all control points lie
below the x-axis. In this case, there is no intersection. In Figure 7.14.b, E0 and En lie above the
x-axis. In this case, no clipping is performed. In Figure 7.14.c, clipping values are computed for
both the left and right sides of the curve.

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 23, 2012

