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Abstract

During the past few years virtualization has strongly reemerged from the
shadow of the mainframe generation as a promising technology for the new
generation of computers. Both the research and industry communities have
recently looked at virtualization as a solution for security and reliability.
With the increased usage and dependence on this technology, security is-
sues of virtualization are becoming more and more relevant. This thesis
looks at the challenge of securing Xen, a popular open source virtualiza-
tion technology. We analyze security properties of the Xen architecture,
propose and implement different security schemes including authenticated
hypercalls, hypercall access table and hypercall stack trace verification to
secure Xen hypercalls (which are analogous to system calls in the OS world).
The security analysis shows that hypercall attacks could be a real threat to
the Xen virtualization architecture (i.e., hypercalls could be exploited to
inject malicious code into the virtual machine monitor (VMM) by a com-
promised guest OS), and effective hypercall protection measures can prevent
this threat. The initial performance analysis shows that our security mea-
sures are efficient in terms of execution time and space.
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Chapter 1

Introduction

In the last few years, virtualization technology has been becoming increas-
ingly popular. Virtualization platforms such as Xen and VmWare are widely
used by both research and industry communities for a variety of applications.
With the increased usage and dependence on this technology, its security is-
sues become more and more relevant.

Virtualization merits such as isolation and security are usually taken for
granted. There is a tendency to assume that given a much narrower low-level
interface compared to that of conventional operating systems, virtualization
platforms are inherently more secure. Although such an assumption seems
plausible, recent studies [17, 47] show that the virtualization interface can be
vulnerable to randomized attacks and is potentially exposed to other attacks.

Enhancing security for a virtualization is a practical need to make this
technology more robust. For instance, a more secured Xen is beneficial
for a variety of services built on top of Xen and would improve both its
reliability and usability. There are several aspects regarding to security of
Xen. Among these the security of the Xen hypercall interface is critically
important because of its role as a sole means to communicate to the VMM.
Securing Xen hypercalls would prevent certain kinds of attacks against the
virtualization environment; thus enhance its security overall.

1.1 Virtual Machine Monitors and Xen Overview

Virtual machine monitors (also known as hypervisors) are often used by
IBM, HP, and others on mainframes and large servers. They are also used
by Internet hosting service companies to provide virtual dedicated servers.
The primary benefits of virtualization are consolidation, increased utiliza-
tion, an ability of rapid provision of a virtual machine, and increased ability
to dynamically respond to faults by re-booting a virtual machine or moving
a virtual machine to different hardware [51]. Moreover, virtualization also
can separate virtual operating systems, and is able to support legacy soft-
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1.2. Virtualization and Security

ware as well as new OS instances on the same computer.

Although modern computers are sufficiently powerful to use virtualiza-
tion, there are several challenges to successfully virtualize a machine hard-
ware to support the concurrent execution of multiple operating systems.
First of all, virtual machines must be safely isolated from one another. It is
unacceptable for the execution of one to adversely affect the performance or
security of another, especially when virtual machines are owned by mutually
untrusted users. In addition, it is necessary to support a variety of different
operating systems to accommodate the heterogeneity of popular applica-
tions. Finally, the performance overhead introduced by virtualization must
be small [19].

Xen is an open-source software virtual machine monitor supporting IA-
32, IA-64 and PowerPC architectures. It runs on bare hardware and provides
hardware virtualization so that several guest operating systems can run on
top of Xen on the same computer hardware at the same time. Modified
versions of Linux and NetBSD can be used as hosts. Several modified Unix-
like operating systems may be employed as guests. On certain hardware,
unmodified versions of Microsoft Windows and other proprietary operating
systems can also be used as guests [19]. Xen’s major strengths are the ability
to provide close-to-native performance and its support for efficient virtual
machine live migration.

1.2 Virtualization and Security

The VMM or hypervisor can fully mediate all interactions between guest
operating systems and underlying hardware, thus allowing strong isolation
between virtual machines and supporting the multiplexing of many guests
on a single hardware platform. This property is valuable for security. Ac-
cording to Rosenblum [51], VMMs offer the potential to restructure existing
software systems to provide greater security, while also facilitating new ap-
proaches to building secure systems.

Current operating systems provide poor isolation, leaving host-based se-
curity mechanisms subject to attack. Moving these capabilities outside a
guest so that they run alongside the guest OS but are isolated from it offers
the same functionality but with much stronger resistance to attack. One
popular example of such system is ReVirt [20], which uses the VMM layer
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1.3. Xen VMM and Security

to analyze the damage hackers might have caused during the break-in. It
not only gains greater attack resistance from operating outside the virtual
machine, but also benefit from the ability to interpose and monitor the sys-
tem inside the virtual machine at a hardware level.

Placing security outside a virtual machine also provides an attractive way
to quarantine the network limiting a virtual machine’s access to a network
to ensure that it is neither malicious nor vulnerable to attack. In addition,
virtual machines are also particularly well suited as a building block for
constructing high-assurance systems. The US National Security Adminis-
tration’s NetTop architecture, for example, uses VMware’s VMM to isolate
multiple environments, each of which has access to separate networks with
varying security classifications [51].

One interesting feature of VMMs is that they support the ability to run
multiple software stacks with different security levels. The ability to specify
the software stack from the hardware up and specify an application’s com-
plete software stack simplifies reasoning about its security. In contrast, it
is almost impossible to reason about the security of a single application in
today’s operating systems because processes are poorly isolated from one
another. Hence, an application’s security depends on the security of every
other application on the machine. The VMM also can authenticate software
running inside a virtual machine to remote parties, in a process called at-
testation. Systems such as Terra [24] utilize these capabilities demonstrate
that VMMs are particularly well suited for building trusted computing.

These capabilities are promising for improving system security. However,
providing secure isolation requires that the VMM be free of bugs in both
design and implementation that attackers could use to subvert the system.
A VMM subversion is likely damaging to all virtual machines running on
the system and creating even more complicated security issues.

1.3 Xen VMM and Security

The Xen VMM or hypervisor is designed to achieve security. According to
its design goal, Xen should be a relatively simple program compared to the
conventional OS kernel, with a very narrow, stable and well-defined interface
to the software running above it. For instance, Xen has only 35 hypercalls
compared to 324 syscalls of the current Linux 2.6.22 kernel. Unlike tradi-
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tional operating systems, which must support file systems, network stacks,
etc., a VMM only needs to present relatively simple abstractions, such as a
virtual CPU and memory. As a result of these properties, Xen (and other
VMMs in general) have been widely considered as an architecture for build-
ing secure operating systems [51].

Unlike the cases of VMMs for mainframe computing and the IBM zSeries
whose isolation properties have have received intense scrutiny or been cer-
tified as conforming to the common criteria requirements for assurance [3],
the security property of Xen has not been verified yet despite the fact that
the Xen VMM is a critical security component in Xen vitalization.

1.4 Hypercalls Security Model

1.4.1 Hypercalls

Guest OSes communicate with Xen and make resource requests via the XEN
API or hypercalls. The hypercall interface serves as the sole mechanism for
cross-layer interaction between VMs and Xen. The role of hypercalls in the
Xen VMM is similar to the role of system calls in an OS. Basically, a hy-
percall is a software trap from a domain or virtual machine to Xen, just as
a syscall is a software trap from an application to the kernel. A hypercall
transfers control to a more privileged state in the VMM. Domains use hyper-
calls to request high privileged operations like low-level memory requests.
Like a syscall, the hypercall is synchronous, but the return path from Xen
to the domain uses event channels [19].

1.4.2 Hypercall Security Model

Given the similarity with the syscall interface, the Xen hypercall interface
plays a very important role to Xen security. In the OS world, the low level
OS API (aka. system calls or syscalls) are well-known attack targets; in fact,
most security incidents happen in operating systems that involved syscalls
either directly or indirectly. It is plausible to conjecture that hypercalls
could be easy targets for similar attacks. Attackers could exploit hyper-
calls to open new attack vectors and create new challenges for the security
community. Some recent studies suggest that the hypercall interface can be
exploited to inject malicious code into the VMM. Works of Cully [17] and
Omandy [47] shows that randomized hypercall attacks can corrupt the vir-
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tualization platform in certain fixed intervals which prompts security issues
that need to be resolved.

A typical scenario of hypercall attack could happen in the following
steps: 1) first, the attacker compromises one of the applications on a guest
OS. This is possible even if the guest started in a clean state because guest
applications communicate with the outside world, they could be infected
with malware; 2) upon the success of the first step, the attacker would esca-
late his privilege by common syscall attack methods; 3) when the attacker
can get inside the guest kernel (equivalent to the escalation to the ring 1
privilege in the x86 protection ring architecture), he can launch attacks to
the hypervisor via hypercalls.

Hypercall attacks could be in any form known for syscall attacks such
as argument hijacking or mimicry. Since hypercalls are highly privileged,
this attack can be very effective. Some security objectives of the attacker
could be denying services to certain guests, introducing low-level malware
or rootkits that are beyond scanning capability of the current tools to sniff
guest’s private information or corrupting the entire virtualization system.

1.5 Approach to Prevent Hypercall Attacks

We first study in depth various aspects of the hypercall interface such as
implementation, operation and security. Due to the similarity to system
calls, we next analyze the syscall attacks and defenses. Finally, based on
our analysis, we would select appropriate defense methods and adapt their
implementations on Xen.

Our objective is to prevent intrusion via hypercalls from compromised
guests in order to protect the VMM and to maintain normal services for
other guests. To achieve that objective, we propose a set of comprehensive
approaches to authenticate hypercalls. Authentication of hypercalls is car-
ried out by a cryptographic method in which each hypercall has a Message
Authentication Code (MAC) added as a parameter to ensure its authen-
ticity and correctness. Alternatively, a caching technique, hypercall access
table (HAT), is deployed to achieve some level of security with better per-
formance. Finally, we study the utilization of the existing information from
hypercall invocations such as call stack traces as an alternative method to
verify the authenticity of hypercalls.
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1.6 Challenges

• Cost: while enhancing security, we need to make sure that perfor-
mance overhead added by security measures reasonable

• Simplicity and Stability: changes must be minimal and do not
affect other components especially guest applications. Modifications
should not impede future changes on other parts of the virtualization
architecture

• Correctness: since hypercalls are highly privileged, correctness should
be guaranteed, i.e., no (or minimal) false negatives or false positives

1.7 Constraints

• Protecting against a well-behaved guest OS which may be compro-
mised and used as a platform to launch attacks to the VMM and
other guest OSes

• Protecting by detecting (monitoring) to catch potentially malicious
hypercalls and proactively blocking them to protect the virtualization
assets

1.8 Contributions

This thesis has two main contributions

• The first is an analysis of security threats via hypercalls and the eval-
uation of security measures which can counter those threats

• The second is the proof-of-concept working implementation prototypes
of the two approaches MAC and HAT

1.9 Summary of The Thesis

This thesis studies different approaches to enhance the security of Xen hyper-
calls. These approaches include hypercall authentication, hypercall access
table, and hypercall stack chain analysis. These security measures help to
prevent certain attacks on Xen by injecting malicious hypercalls. Benefits of
these protection mechanisms are mainly simplicity, performance and trans-
parency to guests. Our initial evaluation shows that these can effectively
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protect against some imminent hypercall threats to Xen. Our research ap-
proaches include performing a security analysis of Xen and studying the
existing techniques in the OS world to apply into the virtualization world
with Xen as an implementation platform.
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Chapter 2

Background

2.1 Virtualization Overview

Virtualization of the hardware allows the physical hardware of a single com-
puter to be shared between multiple OSes in a transparent manner. Vir-
tualization is performed by the special host software namely the virtual
machine monitor (VMM) or hypervisor which provides virtualization capa-
bilities and virtual resources such as processor, memory, IOs, and storage
for each virtualized OS. This technology offers a number of benefits such as
cost saving, resource isolation and security. Virtualization products such as
VmWare and Xen are widely used by a wide range of users. New hardware
techniques such as Intel Vanderpool and AMD Pacifia designed to support
virtualization have improved the virtualizability of commodity hardware,
thus making it increasingly popular for both the research and industry com-
munities.

2.1.1 The Development of Hardware Virtualization

From a high level viewpoint, an operating system provides the first level
of virtualization which regulates and facilitates the interaction between the
hardware architecture and the software architecture. Figure 2.1 shows the
prevailing non-virtualized hardware/software architecture.

A certain hardware architecture provides resources such as processor,
memory, hard disks and devices. An OS manages accesses to the hardware

Applications

Native Operating System

Hardware

Figure 2.1: Non-virtualized Architecture
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Virtual Machine Monitor (VMM)

Hardware

Guest 1 Guest 2 Guest 3

Guest1 OS

Hardware
Virtualized

Applications
Guest 1

Guest2 OS

Hardware
Virtualized

Applications
Guest 2

Guest3 OS

Hardware
Virtualized

Applications
Guest 3

Figure 2.2: Virtualized Architecture

resources, and abstracts the hardware for applications. Except poor appli-
cation isolation, this abstraction brings many benefits. Firstly, security and
reliability are increased because the OS can prevent insecure or damaging
access to hardware. Hardware issues such as flaws or version differences can
be masked and hidden from applications. Secondly, the OS allows applica-
tions to share hardware resources in a concurrent and coordinated fashion.
Finally, applications can access hardware resources through the common OS
application programming interface.

In the traditional non-virtualized system architecture, only one OS may
execute on the hardware platform at a time. This means only applications
compatible with the particular OS version can be executed on a piece of
hardware. Virtualization of hardware resources overcomes this limitation
and allows multiple OSes running on the same hardware by adding another
software layer to abstract the hardware. Figure 2.2 illustrates the compo-
nents of a virtualized architecture, and introduces the central concepts of
virtualization. In a virtualized architecture, access to physical hardware
and provision of virtual hardware is managed by a virtual machine monitor
(VMM). As such a virtual machine (VM) (or guest) is provided a virtualized
view of hardware to run a guest OS.

Figure 2.3 illustrates the two generic models of hardware virtualization.
In these models, the guest OS and applications interacts with virtualized
hardware. The virtual machine monitor (VMM) performs a similar role to
an OS by providing services for guest OSes. There are several kinds of VMM;
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2.1. Virtualization Overview

two basic ones are type 1 and type 2 VMMs. A type 1 VMM is implemented
directly on top of hardware, in which case the term hypervisor is often used.
A type 2 VMM is implemented on top of another OS (or the host OS ), as
is the case with VMWare. The term VMM covers both approaches.

2.1.2 Virtualization Architectures

All virtualization architectures essentially provide the same services: (1)
concurrent sharing of hardware resources between guests, (2) provision of
virtual resources based on real resources, and (3) abstraction of hardware
details from guests.

Full Virtualization Full virtualization is the traditional virtualization
architecture. Guests are provided a view of virtual hardware modeled after
actual hardware used by the host. In particular, they are unaware of any
virtualization and ideally, recursive virtualization, where a guest provides
its own virtual machine monitor, should be possible.

The primary benefit of full virtualization is that existing OSes can run
as guests without modification. Although performance appears to be an
issue, it can be enhanced by eliminating excessive virtualization operations.
In addition, the benefit of not having to modify guest OSes often overrides
performance considerations in certain cases. Also, despite the apparent per-
formance disadvantage of full virtualization compared to paravirtualization,
full virtualization products such as VmWare have acceptable performance.

Paravirtualization In paravirtualization the guest OS is aware of virtu-
alization and interacts with the VMM through the VMM API. Virtualized
resources, such as virtual network and storage devices, can be accessed di-
rectly without the need for virtual device drivers. During the process of
virtualizing the guest OS, features such as memory management, schedul-
ing, and other core OS features can be designed to work with the support
from the VMM.

The primary benefit of paravirtualization is low virtualization overhead.
Without the additional overhead of virtualizing certain hardware devices,
close-to-native performance is possible even on architectures lacking a full
virtualizable instruction set such as the basic x86. The primary drawback
of paravirtualization is the need to modify the guest OS kernel. Modifica-
tions are required for each supported VM and possibly different versions of
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Guest Applications

Guest operating system

The Virtual Machine Monitor
                (VMM)

Guest Applications

Guest operating system

The Virtual Machine Monitor
                (VMM)

  Hardware Interfaces Operating System API

Host Operating System

  Hardware Interfaces

Physical hardware

Virtualized hardware interface Virtualized hardware interface

Physical hardware

Type I virtualization

Type II virtualization

Figure 2.3: Types of Virtualization
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each guest OS. To overcome the excessive need of modifying guests, systems
like Xen adopt a hybrid approach in which sections critical to performance
are paravirtualized manually, while other sections are emulated using trap-
driven full virtualization [19].

2.2 Xen

2.2.1 Overview

Xen is a type 1 VMM for paravirtualization and it also supports full virtual-
ization on hardware supported by VTx or Pacifica. Xen paravirtualization
exposes idealized virtual hardware for guest OSes i.e., from the view of a
guest OS, Xen is simply a normal hardware architecture. The main goals of
the Xen architecture are: (1) secure isolation of resources; (2) support for
a wide variety of commodity OSes; (3) very low performance overhead of
virtualization; and (4) support a large number (>100) of virtual machines
on modern hardware [19].

2.2.2 Design

The Xen design was motivated by the desire for high performance virtualiza-
tion of commodity OSes. Xen strikes a balance between high performance,
accurate hardware virtualization, and compatibility with existing software.
Although guest OSes need to be modified to run on Xen, guest applications
compiled for a specific Application Binary Interface(ABI) continue to work
unmodified [19].

As illustrated in Figure 2.4, the Xen VMM runs with full x86 privileges
(ring 0), guarding access to all privileged operations and hardware resources.
Guest OSes are modified to run with less privilege (ring 1) without direct
access to ring 0. Instead, guest OSes request access to privileged operations
through Xen. Xen performs checking of all requests to maintain the desired
isolation property. The VMM also handles all interfacing with host hardware
and device drivers. Xen strives for separation of policy and mechanism: a
control domain (namely domain 0 ) manages virtualization policies, while
the Xen VMM (or Xen) provides the low level mechanisms implementing
these policies.

CPU Virtualization: uses direct execution, which is possible because
all guest code executes at x86 ring 1 or lower without access to critical

12
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instructions. All attempts to access such critical instructions are trapped
and control transferred to Xen. Guests are modified to request privileged
services from Xen through hypercalls, and Xen performs appropriate security
checks before providing services. To minimize context switch overhead of
hypercalls, multiple hypercall operations may be batched and executed using
one hypercall [19].

Memory Virtualization: Since guest kernels run in ring 1, all low level
memory operations must go through Xen. This allows Xen to partition and
manage the memory for guest domains. Xen manages the operations for
paging and segmentation. As a result, the guest kernel cannot directly edit
the page tables, global descriptor tables (GDT) or local descriptor tables
(LDT) because doing so could potentially crash other domains on the same
system. These operations must all be requested through hypercalls and
mediated by Xen.

Three different types of addresses in Xen virtualization are machine ad-
dresses, pseudo-physical addresses and virtual addresses.

• Machine addresses are memory addresses on physical memory.

• Pseudo-Physical addresses are addresses in which the first 20 bits spec-
ify a page in the page table, and the last 12 indicate an offset.

• Virtual addresses are offsets within a segment. They must be added to
the segment base, then looked up in the page table before the machine
address can be found.

Xen provides a domain with a list of machine frames during bootstrap-
ping, and it is the guest kernel’s responsibility to create the pseudo-physical
address space from this. Finally, it also supports memory ballooning as a
measure to minimize guest footprints.

Virtual Resources: provided by Xen are virtual network interfaces (VIFs)
and virtual block devices (VBDs), each visible to a guest through an ide-
alized interface. A shared memory producer-consumer ring is used for each
direction of data transmission. Each entry in the ring contains metadata
related to the operation and a reference to page(s) containing related data.
The producer entries notifies the consumer of new data through a lightweight
asynchronous notification mechanism. Because the notification mechanism
is asynchronous and can be used independently of placing data on the ring,
efficient batching is possible and happens automatically during high load.
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Further, ring entries can be handled out of order by the consumer, which
enables class-of-service disciplines to be applied.

2.2.3 Control and Driver Domains

To leverage existing drivers, Xen offloads hardware device drivers to the
control domain domain 0 and optionally trusted driver domains. Existing
drivers from well tested systems like Linux can then be leveraged, improving
Xen’s functionality and portability. In addition, by using dedicated driver
domains, hardware and device failures can often be contained within the
trusted driver domain. This domain can also be restarted when the failure
has been detected, with only slight impact on other guest domains.

Domain 0 (Dom0) is a trusted paravirtualized domain. It manages vir-
tualization through the VMM APIs and typically provides hardware device
drivers and other functionalities supporting device back-ends. Dom0 cov-
ers most aspects of virtualization management such as providing control
tools for starting and stopping guests, building initial guest memory images
from disk images, and managing virtual networking by bridging virtual and
physical network interfaces.

2.2.4 Xen Hypercall Internals

Hypercalls are identified by their numbers defined in xen\include\public
\xen.h. For instance the number of the call sched op is HYPERVISOR sched op,
defined as 29 in xen.h. Often, the Xen routine that handles the hypercall
acm op is called do acm op. One can find the association between numbers
and names in the hypercall table in arch\x86\x86 32\entry.S.

For the subroutine or hypercall handler of the hypercall HYPERVISOR xxx,
usually it is do xxx. For example, the handler of HYPERVISOR sched op
should be do sched op. The do xxx routines are entries of the hypercall table
defined in xen\arch\x86\x86 {32,64}\entry.S.

A guest domain invokes an entry in the hypercall page to issue a hyper-
call. The hypercall page is initialized in hypercall page initialise(void *hy-
percall page) at the time when the control domain creates the guest domain.
Hypercall page is actually a code page containing 32 hypercall entries. Every
entry includes two instructions:

"mov $__HYPERVISOR_xxx,%eax
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int $0x82 "

The assembler instruction INT 0x82 causes an exception which triggers
a hypercall entry in entry.S which then indexes the hypercall table based on
the hypercall number passed the %eax register to invoke the corresponding
hypercall handler.

As is the case for syscalls, the arguments are passed by fastcall (in reg-
isters rather than on the stack): the hypercall number is in %eax, and up to
ve arguments (depending on the hypercall) may be passed in %ebx, %ecx,
%edx, %esi and %edi. Xen ensures that the interupt discriptor table (IDT)
only allows the interrupt to be executed from within ring 1, so that guest
kernels can make hypercalls but guest userspace applications cannot. Most
hypercalls return sensible error codes as dened in errno.h.

2.2.5 Hypercall Invocation

Figure 2.5 shows the hypercall invocation trace.

2.3 A Security Model for Xen

Virtualization security can be considered from two perspectives. The first
(also more common) regards to how virtualization can improve security of
a system. Several projects take advantage of the isolation and supervising
properties of the VMM to improve security of operating systems. On the
other hand, the presence of the virtualization layer also opens new attack
vectors which do not exist in the conventional OS. Since the focal point
of this thesis is to improve the security of a virtualization platform, we
only focus on the second perspective. Specifically, potential security threats
and existing security measures in the context of Xen virtualization Xen will
be analyzed. The analysis results form a basis for us to identify security
problems and to suggest defense measures.

2.3.1 Xen Security Model Overview

Figure 2.6 illustrates the generic model for Xen security. The virtualization
platform consists of the following components:

• Host hardware

• The virtual machine monitor
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• Trusted or privileged domains providing control and management soft-
ware and/or hardware drivers (i.e., domain 0 and other driver do-
mains)

• Normal (untrusted) guest domains which use virtualized resources and
services provided by the VMM and other trusted domains

2.3.2 Security Boundary and Points of Attack

In our security model, entities inside the security boundary (dashed line in
Figure 2.6) are trusted and their correct and secure functioning is critical
to the overall system security. Trusted entities inside the security boundary
include host hardware, the VMM, privileged domains and virtualization
management and control software. A compromise of any of these entities
is unacceptable for Xen security. Although there may be file servers and
external management hosts in some Xen systems, we do not consider them
in our model. Given this, there are four relevant points of attack:

• VMM interface

• Device drivers

• Network traffic

• Hardware

VMM Interface The Xen VMM interface provides entry points where
guests can interact with Xen and other guests. A guest usually consists of a
normal kernel and software applications. We cannot make any assumption
about the security of the kernel and its application codes. As in a normal OS
context, an attacker may have full control over both guest kernel and guest
application codes, thus being able to attack the VMM and other domains
through the VMM interface. The Xen VMM interface available to guests
includes virtual resources represented by front-ends and hypercalls.

The front-ends include memory-mapped devices, devices residing in the
x86 I/O space, or devices accessed through a virtual bus such as PCI or USB.
The back-ends are typically provided by privileged domains. Virtual storage
may be represented as a file in the domain file system, and a virtual net-
work device may be represented by a virtual back-end network device which
is connected to the physical device in the control domain. A guest may also
be granted direct hardware access to devices. In such cases the VMM is still
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involved and it may hide devices from the guest, or attempts to control DMA
parameters (or use an IOMMU) from an unsafe DMA initiated by the guest.

Xen also provides explicit VMM services for domains through hypercalls
with details mentioned in the above sections. Hypercalls are used by both
trusted and untrusted domains for critical and highly privileged requests
such as memory management requests. Xen typically performs sanity checks
on such requests.

Network Traffic Although, this thesis does not worry about network at-
tacks, it worths to put security threats coming from network traffic into
perspective. In theory, an attacker is able to intercept, modify, discard and
generate traffic unless specific protection measures like physical protection
are taken. The attacker may also be able to break the virtual network infras-
tructure. There have been research about how to protect virtual network
such as [44].

2.3.3 Assets to Protect

Assets are defined from the viewpoint of the administrator and the users or
groups on non-hostile guests running on Xen. Assets are defined only if they
may be damaged by attacks using the identified points of attack. Categories
to protect include confidentiality, integrity and availability.

Virtualization Metadata: Virtualization metadata consist of all types
of data required to run guests and maintain the virtualization system such
as:

• The VMM configuration information and its operational data struc-
tures.

• The virtual storage and file systems

• Global and per-guest configuration data for the virtualization mecha-
nism

• Cryptographic keys and other relevant security data for external com-
munication for management, with other VMMs and external storage

• Virtualization snapshots and replay logs for storage, execution, and
memory state
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• Event logs related to virtualization

Both confidentiality and integrity are important for virtualization meta-
data, but their relative importance depends on the type of metadata. For in-
stance, integrity breaches of configuration data are potentially catastrophic,
while integrity breaches of event logs cannot typically be used to escalate
privileges. Management of cryptographic keys, on the other hand, requires
both strong confidentiality and integrity.

Availability of Services and Management: The primary purpose of
a virtualization platform is to provide services for guest users. This implies
availability of all relevant resources such as CPU time, memory, storage and
network bandwidth. Although there may not be a strictly guaranteed service
level agreement, guest users would expect some level of availability. From an
administrator viewpoint, he needs to be able to manage the virtualization
platform at all times.

Guest Data: Guest data consists of storage contents and the current exe-
cution states of the guest including memory footprints and the current CPU
state. From a guest user viewpoint, guest data includes all data controlled
and owned by the user. Both confidentiality and integrity of guest data are
important. Integrity breaches of guest data are not as serious as for meta-
data under the assumption that a guest is potentially hostile, and trust the
VMM to combat any attempts to escalate privileges.

Hardware: Host hardware includes the motherboard and all directly con-
nected peripherals. It is possible to damage host hardware through software.
Details about host hardware should be minimized to the attacker. Both con-
fidentiality and integrity of host hardware are important.

2.3.4 Specific Threats:

Specific threats mentioned here cannot be exhaustive, but they support a
high level view of threats to the identified assets.

Attack Virtualized Memory: Although the guest kernel cannot directly
modify memory data structures such as page tables, global descriptor tables
or local descriptor tables. These operations can be requested through hy-
percalls. If an attacker could tamper with hypercalls, he potentially can
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cause some damages such as elevation of access rights to pages not intended
for this guest. Then he can access memory pages of other guests, or over-
write the VMM code. An attacker could also cause memory DoS against
legitimate VM users.

Attack Front-ends and Back-ends: Both virtual resource front-ends
and back-ends may be vulnerable. The front-end interface can be quite
complex because it represents a real hardware device such as a network
interface. For performance efficiency, the front-end interacts with back-ends
using low-level memory mechanisms such as page flipping. Although a guest
cannot access back-ends directly, the guest may be able to force specific back-
end operations to occur by using the front-end in a certain manner. The
goal in such attacks is to exploit flaws in the back-end software, and, for
instance, to get access to protected information or to execute arbitrary code
in the context of the backend device.

Attack Hypercalls: As mentioned above hypercalls are similar to na-
tive syscalls, with potentially equivalent flaws. From a security viewpoint,
the hypercall interface is a convenient vehicle for an attacker to carry other
attacks. If an attacker can compromise a guest OS to launch malicious
hypercalls, he can cause serious security problems to the entire virtualiza-
tion system. In a full virtualzation system such as VMWare, there is also
the concept of VMM API in the form of virtualization shortcuts for guest
domains. Flaws in such shortcuts can potentially open security breaches
similar to Xen hypercalls.

Other Possible Exploits:

DMA Access: In basic x86 hardware, DMA (Direct Memory Access)
initiated by a hardware device cannot be filtered. A guest domain can take
advantage of DMA to perform attacks from below. To protect against such
attacks, the VMM needs to be able to filter access to hardware, control and
eliminate malicious hardware access. Fortunately, the modern x86 hardware
architecture includes an IOMMU for controlling DMA accesses.

Compromise Cryptosystems: Replaying a virtual machine may useful
for diagnosis or recovery but this may create problems for some crypto-
graphic algorithms. For instance, it is required that the nonce value of a
a stream cipher should never be reused. If the VM is reset to a previous
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state, it may repeat such values. An attacker may exploit this property to
perform attacks against the current cryptosystems.

Side Channel Attacks: Virtualization of CPU and other resources may
reveal information about timing, memory usage and computation speed.
Such information can be exploited by the attacker to establish side channels
or covert channels. The fact that multiple VMs shares the same hardware
makes side channel or covert channel attacks easier. Without explicit hard-
ware support for elimination of timing side channels, hardware sharing is
unsafe. Fundamentally, a virtualization architecture may minimize band-
width of side channels, or avoid their impact by ensuring that side channels
only exist between mutually trusting entities by access control policies such
as Xen MAC [44].

Migration Threats: As a VM is migrated from one host to another,
its data such as the kernel, file system and memory images are sent over a
potentially unprotected network. Compromising either the confidentiality or
integrity of such data is a security problem. In addition, after migration the
execution environment of the VM may have changed in several components
such as processor, memory and device drivers. Such changes can be detected
to some extent and they may affect guest behaviors in performance and
computation. A sneaky attacker may be able to observe these subtle changes
to carry out some side-channel attacks.

2.3.5 Current Security Mechanisms in Xen

In this section, we discuss specific security mechanisms available to counter
threats to virtualization assets. These measures provide concrete examples
of approaches for improving virtualization security. The role of a security
mechanism is to diminish the possibility or impact of specific threats, thus
making them less appealing for an attacker.

Processor Privilege Levels: Processor privilege levels provide basic pro-
tection against guest attempts to escape isolation or escalate privilege. In
the x86 architecture, there are four privilege rings, from ring 0 to ring 3.
Ring 0 has the most privileges, and can access all instructions and memory
addresses. The operating system usually runs in ring 0. Ring 1 and 2 have
less privileges and are used for operating system services. Ring 3 has the
least privileges and is used for user applications.
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Xen exploits these privilege rings to allow multiple operating systems to
run at the same time. Xen itself runs in ring 0. The guest kernels run in
ring 1. Any calls which would previously have required ring 0 to operate are
replaced with hypercalls to Xen. Guest applications still run unmodified in
ring 3.

Hardware Support for Containment: Hardware may provide mech-
anisms for enforcing containment. Modern x86 hardware has an IOMMU
which allows hardware DMA to be contained, thus preventing attack from
below attempts. Intel LaGrande (LT) and AMD Secure Execution Mode
(SEM) also provide hardware support for containment purposes.

Cryptographic Protocols and Secure Networking: Management, VMM,
and storage traffic may be protected using a packet-based encryption sys-
tem, such as, IPsec, or a stream-based encryption system such as TLS or
SSH. Individual data elements inside management and VMM protocols can
be protected using an application level mechanism like PGP. Xen virtual
networks security could be enhanced by common mechanisms such as fire-
walling, VLANS or services classification.

Mandatory Access Control: Mandatory access control (MAC) mech-
anisms can help to minimize the possibility of configuration errors, which
lead to an unintentional violation of isolation goals. For example, a MAC
policy may state that VMs with different security labels cannot share any
resources. Mandatory access control does not necessarily provide any new
security or isolation mechanisms, but it helps ensuring that existing mecha-
nisms are used with minimal risk of human errors. The IBM sHype project
has developed mandatory access control within the context of Xen [44].

Trusted Platform Module (TPM): The Trusted Platform Module (TPM)
enables new security models and may enhance existing ones by offering facil-
ities for the secure generation of cryptographic keys. It also includes capa-
bilities such as remote attestation and sealed storage [24]. TPM can provide
better authentication between VMs and between virtualization platforms.
Projects such as Terra [24] utilize the concept of TPM to build a trusted
VMM (TVMM) which partitions tamper-resistant hardware platform into
multiple, isolated virtual machines (VM) providing the appearance of multi-
ple boxes on a single, general-purpose platform. In this model, the software
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stack in each guest VM can be tailored from the hardware interface up to
meet the security requirements of its applications.

2.3.6 Discussion about Protecting Xen

We can observe that the threats coming from exploiting the VMM APIs
or hypercalls appear to be real and imminent. Other threats are either
very hard to carry out (i.e., covert channel attacks) or can be protected
against by the current security mechanisms (i.e., cryptographic encryption
and securing networking can protect virtualization data and network traffic;
MAC may prevent denial of service attacks). On the other hand, existing
security measures can not be directly applied to protect hypercalls. For
instance, both MAC and TPM can greatly enhance security for inter-VM
interactions but do not protect the VMM against internal hypercalls attacks
from guest VMs. This motivates us to look for different measures to protect
potential hypercall attacks.
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Chapter 3

Related works

Hypercalls in the virtualization world are similar to system calls in the OS
world not only in terms of semantics but also in terms of implementation.
While security incidents of hypercalls are still rare in the public, there is a
plethora of publications related to syscall attacks and syscall defenses. This
chapter covers a literature survey of the security of syscalls from both attack
and defense perspectives. This survey gives us insights into the issues and
the approaches to protect hypercalls.

3.1 System Calls

System calls (syscalls) are the sole mechanism to access kernel resources
and the sole means for cross-layer communication from user mode to kernel
mode. Syscalls are convenient entries where an attacker can exploit to invoke
malicious attempts on the host OS. According to recent CERT advisories
[1], most OS security violations involve the invocation of system calls at
some point. Consequently, syscall attacks pose an immense threat to OSes.

3.2 Syscall Attack Overview

What Is a Syscall Attack? A syscall attack is characterized by an ex-
plicit attempt to invoke syscalls to cause damage to the host OS. In these
attacks, the invocations of syscalls can be either direct or indirect. Syscalls
are essential intermediate means to carry out malicious objectives. An at-
tacker can use syscalls to hijack the program’s flow of control, to gather
critical system information of resources, usurping and escalating the current
privilege, or opening doors for subsequent attacks. The intuition that most
attacks could cause real damage to the system by exploiting system calls
makes this interface an ideal point to detect or prevent these attacks.

How a Syscall Attack Is Carried Out? A syscall attack is generally
carried out in three phases. First, an attacker finds a suitable software bug
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to enter a system. These software bugs are usually memory-safety-related
(i.e., buffer overflow, heap corruption, integer overflow and format string
problems) which lead to certain parts of memory of the victim process sus-
ceptible to be overwritten. Subsequently, the attacker tries to take over the
program’s control logic by overwriting a certain code pointer or a specific
memory location, making it point to malicious code of the attacker’s choos-
ing. This code is either malicious shell code that has been injected into
the victim process’ memory, or existing functions in the standard libraries
(i.e., libc) or elsewhere in the program code. Finally, the attacker is able
to compromise the victim process by illegally executing system calls and
potentially gains control of the system.

3.3 Classes of Syscall Attacks

Syscall attacks can be classified based on attack targets and exploitation
strategies.

3.3.1 Attack Targets:

attack targets are where the attacker can cause memory corruption or to
compromise the control logic of the program. There are two kinds of attack
targets: control-data (or code pointers) and non-control data.

Control Data Attacks: the attacker targets control data - data which
are loaded into the program counter during program execution such as re-
turn addresses and jump pointers. Because control data are transition points
where a change of control flow are possible, most syscall attacks try to alter
the target program’s control data in order to execute injected shell code
or out-of-context library code. Subsequently, syscalls are invoked with the
privilege of the victim process. Examples of control-data attacks include
stack pointers, old base pointer, function pointers and longjmp pointers [65].

A survey of the CERT/US-CERT security advisories [1][58] and the Mi-
crosoft Security Bulletins [11] shows that control-data attacks are usually
considered to be the most critical security threats. According to [2], despite
the facts that control-data attacks are well known and even well-studied,
new attack instances are continuously crafted to bypass existing defense
techniques.
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Non-control Data: Non-control data attacks target other types of data
instead of code pointers to achieve their malicious objectives. Studies in
[14],[57],[60], [67] show that non-control data such as configuration data,
user input, user identity data, decision-making data can be exploited to
compromise the system. Chen’s study [53] provides experimental evidence
to prove that non-control-data attacks are realistic and can generally target
real-world applications.

Examples in [53] include demonstrated attacks which exploit buffer over-
flow, heap corruption, format string, and integer overflow vulnerabilities
without injecting any new attack code or altering the program control flow.
All the non-control-data attacks constructed there resulted in security com-
promises as severe as those due to traditional control-data attacks.

3.3.2 Exploitation Strategies Based on Modification of
Control Flow:

Direct Modification: the most straightforward and commonly utilized
approach for the malicious code is to directly invoke syscalls by itself. In
these attacks, shellcode usually presets syscall number and arguments and
then executes the instruction that raises a software interrupt for system calls.
These attacks are simple and does not require much skills. Early types of
code injection attacks [8] belong to this category.

Since these attacks directly overwrite control pointers and directly alter
the control flow of the program, they can be easily prevented or detected
by simple techniques to protect the return address such as StackGuard [15],
PointGuard [14] or to make the stack non-executable [66].

Indirect Modification: another approach is to jump into code available
in the targeted software to launch an attack. The two most common are
return-into-library and return-into-the Process Linkage Table (PLT) attacks.
In return-to-library attacks, the injected code jumps to an important func-
tion provided by a standard library (e.g., libc), it can then obtain access
to services of the OS kernel since these library function indirectly lead to
system calls.
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The attacker can also target returning into the Process Linkage Table
(PLT) [41, 46] since the PLT is used to resolve libc and other function ad-
dresses automatically. Return-to-library attacks can defeat non-executable
memory protection and return-into-PLT can defeat the randomization of
the base address. It should be noted that it is much more difficult to carry
out these attacks because they require specific understanding of the system
and libraries. However, it is also harder to detect and defend against these
attacks compared to direct control flow modification.

In general, attacks involving control flow modification (even indirect
attacks) will cause certain anomalous behaviors for the running program.
Hence, they give away some clues for detection systems based on control
flow integrity.

Non-modification: this type of attack produces a legitimate sequence of
system calls while performing malicious actions. The attacker usually inter-
leaves the real attacking code with innocuous code, thereby impersonating
a legitimate sequence of actions. Mimicry attacks [62] are typical examples
of this class.

Mimicry attacks can be further divided into global mimicry attacks and
local mimicry attacks considering the minimum set of system calls necessary
for the functionality of an application function. The system call sequence
in a global mimicry attack combines the legal system calls of multiple func-
tions, while a local mimicry attack uses the legal system calls of only the
running function.

Mimicry attacks are the current challenges of the research community.
The major problem is that system-call-based intrusion detection systems are
not designed to prevent attacks from occurring. Instead, these systems rely
on the assumption that any activity by the attacker appears as an anomaly
that can be detected. While the ability to invoke system calls might be
significantly limited, arbitrary code can be executed. This includes the pos-
sibility to access and modify all writable memory segments.

In general, mimicry attacks require very comprehensive policies which
include not only the sequence of system calls but also also many other addi-
tional information such as function arguments, program counters and run-
time call stacks, to detect and to respond. However, although additional
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information undoubtedly complicates the task of the intruder, the extent
to which the attack becomes more complicated is not clear. In addition, it
is usually not practical to include all of this information in the detection
reference model for performance and complexity reasons.

3.4 Syscall Defense Challenges

The seriousness of syscall attacks with an increased frequency is evident.
The research community also has proposed different defense mechanisms
to combat syscall attacks. Although many solutions have been developed,
the problem is hardly solved. There are several factors that hinder the
development of effective solutions for syscall defense:

Lack of Type-safe Properties Enforcement: most software exploita-
tions violate the type-safety property of programming languages. Software
would be undoubtedly much less vulnerable if type-safe languages can be en-
forced. Unfortunately, type-safe languages and compiler techniques, such as
CCured [45], Cyclone [33], and SAFECode [18], are designed to achieve type
safety through reimplementing software or recompiling legacy programs.
However, rebuilding existing software with type-safety techniques requires
a tremendous amount of effort. In addition, type-safety of an application is
usually achieved by hiding type-unsafe behaviors in low-level software com-
ponents, such as the Java VM, C library, and OS kernel. These components
themselves are not free of memory bugs.

Preventing Transferring in The Program’s Control Flow Is Not
Possible: many entities participate in transferring control in a program
execution. Compilers, linkers, loaders, runtime systems, and even hand-
crafted assembly code all have legitimate reasons to transfer control. Pro-
gram addresses are credibly manipulated by most of these entities, e.g.,
dynamic loaders patch shared object functions; dynamic linkers update re-
location tables; and language runtime systems modify dynamic dispatch
tables. Generally, these program addresses are intermingled with and in-
distinguishable from data. In such an environment, preventing a control
transfer by malicious code by stopping illegal memory writes is hard.

Existing Solutions Are Only Created to Partially Solve The Prob-
lem: previous sections indicate that the attacker can indeed compromise
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many real world applications with or without breaking their control flow
integrity with variety of different techniques. In addition, an attacker can
exploit a vulnerability that gives him random write access to arbitrary ad-
dresses in the program address space. Detection and prevention techniques
based on the flow integrity simply fail to deal with mimicry or some of the
non-control data attacks [50].

Difficulties in Adopting The Existing Solutions: barriers in imple-
mentation and deployment, compatibility, performance overhead, complex-
ity, false positives and false negatives are all issues that hinder the devel-
opment and adoption of a good solution. It is very difficult to devise a
satisfactory scheme that can meet all sometimes conflicting requirements.

3.4.1 Classification of Syscall Defenses

Syscall defenses can be classified as proactive and reactive mechanisms.

Proactive mechanisms attempt either to eliminate the possibility of syscall
attacks or to limit the scopes of such attacks. A proactive approach can never
be 100% effective. However, effectively preventing certainly decreases the
frequency and strength of attacks. Moreover, proactive defense is inherently
complementary to or compatible with other defense approaches. Proac-
tive mechanisms can be grouped into proactive preventions of: code pointer
overwriting, the execution of injected malicious code and the spreading of
attacks.

Reactive mechanisms strive to alleviate impacts of syscall attacks on the
system. To attain this goal, reactive methods need to detect and respond
to attacks. The primary focus is to detect every attempted syscall attack
as early as possible with a low degree of false positives/ negatives. Then
the attack patterns are characterized and response measures are taken. The
detection process requires actively monitoring the system. Since detection
is the main focus of most reactive approaches, we use detection methods as
criteria to classify reactive defense. In terms of detection mechanisms, there
are misuse detection and anomaly detection.
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3.4.2 Proactive Mechanisms

i) Protecting Against Code Pointers Overwriting

Overwriting code pointers to alter the control flow is an common step in
traditional syscall attacks. The preventive methods used to protect the
integrity of control information data can be classified into static prevention
and dynamic prevention.

Static Prevention: Static preventive methods try to remove security-
related bugs in the source code by using static analysis tools. Removing all
security bugs from a program is considered infeasible. Nevertheless, remov-
ing notable bugs such as those causing buffer overflow could significantly
reduce the number of known attacks.

Dynamic Prevention: Dynamic (run-time) preventive methods aim to
change the run-time environment or the system functionalities to make vul-
nerable programs harmless, or at least less vulnerable. This means that in
an ordinary environment the program would still be vulnerable and security
bugs may still exist. However, those vulnerabilities cannot be exploited in
run-time environment because it is being protected by these dynamic pre-
ventive methods.

In this class, compiler techniques are used to prevent attacks by verifying
and enforcing type safety or by setting extra protection for code pointers.
Examples of most popular compiler techniques include StackGuard [15],
StackGhost [23], PointGuard [14], safe C compilers such as CCured [45] and
[34, 45, 52, 68], Libsafe [59], LibsafePlus [7].

Perhaps the earliest method of control pointer protection comes from
StackGuard [15]. It encrypts control information in a stack by XOR-ing it
with a random number. StackGuard causes malicious control information
to be decrypted into meaningless values, resulting in the failure of the at-
tackers attempt to acquire control of vulnerable software. Several attempts
to bypass StackGuard are suggested in [50] and since then several more so-
phisticated methods have been proposed in StackGhost [23] and PointGuard
[14].
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ii) Memory Randomization

The principal goal of memory randomization techniques is to rearrange the
memory layout so that the actual addresses of program data are different
in each execution of the program. Address Space Layout Randomization
(ASLR) is a popular randomization technique which involves arranging the
positions of key data areas, usually including the base of the executable and
position of libraries, heap, and stack, randomly in a process’s address space.
ASLR relies on the low chance of an attacker guessing where randomly
placed areas are located. Security is thus increased by the increase of the
search space. Other examples of memory layout randomization are [6, 10,
12].

Preventing of The Execution of Injected Malicious Codes Typi-
cally, techniques to prevent the execution of injected malicious codes include
randomized instruction sets, non-executable pages, and program address ob-
fuscation. In addition, there are also techniques to prevent the direct in-
vocation of system calls and techniques to prevent library injection such as
return-into-library or return-to-PLT attacks.

Randomized Instruction Sets: creates process-specific randomized in-
struction sets (e.g., machine instructions) of the system installed potentially
vulnerable software. By randomizing the underlying system’s instructions,
foreign code introduced by an attack would fail to execute correctly, regard-
less of the injection approach. Examples of instruction sets randomization
techniques can be found in [15, 36].

iii) Containing Scopes of Attacks

Process sandboxing is perhaps the best understood and widely researched
area of containing bad code or containing the scope of attacks. User-
level sandboxing systems such as Janus [28], Consh [5], Mapbox [4] and
OpenBSD’s systrace [48] operate at user-level and confine applications by
filtering access to system calls. To accomplish this, they rely on ptrace(2),
the /proc file system, and/or special shared libraries. Another category is
kernel-level sandboxing systems such as Tron [9], SubDomain [16] and others
[23, 25, 42, 61]. These systems intercept system calls inside the kernel, and
use policy engines to decide whether to permit them or not.
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The main problem is that the attack is not prevented in these system.
Rather, they try to limit the damage such code can do. Thus, the system
does not protect against attacks that use the compromised process’ privileges
to bypass application specific access control checks (e.g., read all the pages
a web server has access to), nor does it protect against attacks that simply
use the subverted program as a stepping stone, as is the case with network
worms.

3.4.3 Reactive Mechanisms

Reactive mechanisms attempt to detect and respond to attacks. Generally
speaking, the detection phase is more important and is the main focus of
most research. In this section, we only summarize research on the detection
techniques.

i) Misuse Detection

Misuse detection techniques model attacks on a system in specific patterns
or signatures, then systematically scan for the occurrences of these patterns.
The modeling process involves a specific encoding of previous behaviors and
actions that were deemed intrusive or malicious. Misuse detection can be
classified by signature-based and specification-based techniques.

Signature-based it is assumed that intrusive events exhibit certain dis-
tinguishing patterns from normal events. These patterns form signatures
for the intrusive events. These signatures can be derived by studying past
attack activities. One of the limitations of signature-based approaches is
that they can only detect known attacks but fail to recognize new attacks.
In addition, signatures for some attacks may be too difficult to formalize.
Examples of signature-based misuse detection approaches include expert
systems [13, 40], model-based reasoning [26, 39], state transition analysis
and keystroke dynamics monitoring [30, 31]. The strength of this approach
is that it incurs no false positive.

Specification-based similarly to the signature-based approach, data about
the system’ previous activities are collected and analyzed to detect any devi-
ation from the expected system behaviors. System abnormal behaviors will
then be specified. These specifications do not need to be exact matches but
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rather approximate definition of attack patterns to distinguish between the
benign and the malicious. Ko et al. [37, 38] have designed a program policy
specification language based on predicate logic and regular expressions to
describe the expected behaviors of privileged programs. Misuse is detected
by any deviation from these specifications. Although specification-based
systems can detect unknown attacks slightly deviating from the previous
attacks, runtime detection demands efficient execution of specifications, and
efficiency has been an issue for specification language design.

ii) Anomaly Detection

Anomaly detection schemes focus on normalcy and first try to character-
ize a profile of normal behavior. They can directly address the problem of
detecting novel attacks against systems. This is possible because anomaly
detection techniques do not scan for specific patterns, but instead compare
current activities against statistical models of past behaviors. Any activity
sufficiently deviant from the model will be flagged as anomalous, and hence
considered as a possible attack. Anomaly detection schemes are based on
actual user histories and system data to create its internal models rather
than predefined patterns. In addition, these statistical models of past nor-
mal behavior are computed at run-time which is the key difference between
anomaly detection schemes and specification-based ones.

Early syscall anomaly detection methods only model syscall traces or the
invocations of syscalls. Typically, the N-gram method characterizes program
behavior using fixed-length syscall sequences [22, 29]; data mining based ap-
proaches generate rules from syscall sequences [40]; Hidden Markov Model
(HMM) and Neural Networks were used in [54, 63]; algorithms originally de-
veloped for computational biology were also introduced into this area. We-
spi builds variable-length syscall patterns based on the Teiresias algorithm
which is originally developed for discovering rigid patterns in unaligned bi-
ological sequences [64]. However, there has not been much improvement on
modeling syscall traces based methods recently in part because system calls
themselves only provide limited amount of information. Invoking syscalls is
only one aspect of program behavior.

Other methods use the program counter (PC) to construct states. The
PC indicates the current execution point of a program, because each instruc-
tion of a program corresponds to a distinct PC, this location information
is useful for intrusion detection. The call graph model Wagner et al. pro-
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posed models the expected syscall traces using static analysis of the program
code [60]. The global control-flow graph is naturally transformed to a non-
deterministic finite automaton (NDFA). The NDFA can then be used to
monitor the program execution online. If all the non-deterministic paths
are blocked at some point, there is an anomaly. Gifn et al. refined the
ideas behind the above model [27]. Their approach applies static analysis
on binary executables and uses null calls to avoid non-determinism. Instead
of statically analyzing the source code or binary, Sekar et al [56] proposes
a method to generate a deterministic finite state automata (FSA) by moni-
toring the normal program executions at runtime.

In addition to the current PC, recent methods also use the call stack and
call sites. A lot of information can be obtained about the current status and
the history or future of program execution from the call stack, particularly
in the form of return addresses. The VtPath method [21] utilizes the return
addresses to generate the abstract execution path between two program ex-
ecution points, and decides whether this path is valid based the normal runs
of the program. Gaugav further extends this idea to build an effectively
non-executable stack and heap to prevent libc-based code injection attacks
[35]. Rajagopalan and Linn utilize binary rewriting tools to embed cryp-
tographic information to protect call sites and call arguments to effectively
prevent code injection attacks [43, 49].

All the methods above have advantages and disadvantages. Modeling
syscall traces based on AI approaches can provide more exhaustive range of
protection as well as capture new attacks. However, they are complicated
to build, incur high performance overhead and produce high false alarm
rate. Other methods avoiding using complex modeling may have better
performance and less false alarm rate but ineffective against certain new
attacks and provide less protection coverage.

3.5 Syscalls vs. Hypercalls

From a security viewpoint, hypercalls offer some similarities to syscalls from
both attack and defense standpoints. For an attacker, when he can tamper
with applications and guest OSes, it is his goal to reach to a higher privilege
level to be able to cause some real damage to the system. Both hypercalls
and syscalls are convenient entries where privilege escalation may happen.
Specifically, a syscall can be exploited to jump from the application level to
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the OS level and a hypercall can be used to change from the guest OS level
to the VMM level. For a defender, comparably to syscalls, hypercall inter-
face is the ideal place to detect and to respond to an ongoing attack because
when there is a hypercall attack, hypercalls are the most likely place where
control transfer may happen or where the attacker may reveal his malicious
traces. As a result, a study of syscall attack and defense offers insights and
necessary background to build hypercall protection mechanisms.

There are differences between protecting syscall attacks and hypercalls
attacks however. For syscall attack, a tampered application is the standpoint
from which an attacker can launch syscall attempt. Whereas, for hypercall
attack a compromised guest OS is where an attacker can launch an attack.
Compared to an application, a guest OS in the virtual world is a different
and more autonomous entity. For instance, an application does not have
the privilege to reboot itself without being noticed. Conversely, a guest OS
has the capability to reboot (e.g., rebooting considered as one of the OS
normal update mechanisms). The rebooting process when all protection
measures are turned off may offer a golden opportunity for malicious code
e.g. starting a new module which is inactive otherwise or executing a snippet
of code to gain control over a certain part of the system...etc. In short,
conventional wisdoms in protecting compromised applications may not work
for a compromised guest OS.
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Chapter 4

Prototype Design and
Implementation

4.0.1 Hypercall Protection Considerations

According to our analysis in the previous chapter, we took into consideration
the following points:

• We would apply reactive approaches to hypercall protection. These
approaches include detecting and responding to hypercall attacks.

• Although misuse detection methods in general have lower false alarm
rate and better performance, we are not aware of any specific real-
scenario hypercall attack, therefore misuse-based detections would not
be useful. Anomaly detection methods appear to be more helpful to
detect the unknown attacks and hence they are more appropriate for
hypercall protection.

• Modeling hypercall traces may not be as useful as modeling syscall
traces. We observe that popular syscall anomaly detection approaches
modeling syscall traces such as N-gram methods [22, 29] or other AI-
related ones [40, 54, 63] are based on the concept of a sequence in
which an attacker has to perform a series of syscalls to carry out a
successful attack (e.g., obtain the handle, open the file, write to the
file ..., etc.). Such a sequence concept may not apply in the case of
hypercalls since a hypercall does not necessarily exhibit any pattern
of sequence or an attacker may need only one hypercall to mount a
successful attack.

• We observe that approaches utilizing existing information such as call
sites and call stack to protect against syscall attacks [35, 43, 49] can be
useful for hypercall protection and they are simpler to adapt. These
approaches are simple yet powerful enough to satisfy our requirements
for simplicity, performance and portability.
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4.1 High Level Overview

We focus on protecting hypercalls at the VMM level. Our assumption is that
all guests initially start with clean kernels - they are infected with malware
which can launch malicious hypercalls. We aim to protect against the secu-
rity incident in which a well-behaved guest OS is compromised and used as
a platform to launch hypercall attacks to the VMM and other guests. Our
protection measures would prevent such an incident from happening.

Our protection measures do not improve the current security conditions
of guests. Guest applications are not necessarily more secure with our pro-
tection measures, but they would be less secure to run on the virtualization
platform without being protected. In another words, the security measures
are designed to prevent the current status from getting worse. This approach
essentially provides security by detection and prevention; that is catching
the bad guys and proactively blocking them to protect the assets.

Based on our analysis in the previous chapter, we adopt two different
approaches to protect against hypercall attacks. They are authenticated
hypercalls (MAC) and hypercall access table (HAT). The implementation
of these approaches typically involves three steps: instrumentation of guest
kernels and/or the VMM, hypercall interposition and authentication of hy-
percalls. We first describe the authenticated hypercalls and the hypercall
access table. Then we detail the steps of implementation. Finally, for an
analytical purpose, the stack trace walk technique is analyzed and explored
as an alternative way to authenticate hypercall with information extracted
from the call stack of the hypercall invocation.

4.2 Authenticated Hypercalls and Hypercall
Access Table

4.2.1 Authenticated Hypercalls

Authenticated hypercalls are used for detecting and containing compromised
guest OSes. An authenticated hypercall is a hypercall augmented with extra
arguments that specify the policy for that call and a cryptographic message
authentication code (MAC ) that guarantees the integrity of the policy and
the hypercall arguments. Xen uses this extra information to authenticate
the hypercall.
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Policies: a policy is defined as a set of verifiable properties of a hypercall
request. Our current prototype enforces hypercall policies which include the
hypercall number, the call site and constant parameters (e.g., integer con-
stants). If a policy does not give a value for a parameter, then this parameter
is unconstrained and any value is allowed. These policies are as expressive
as those used by Rajagopalan [49] to protect syscalls and reasonably expres-
sive enough compared with policies published by most well-known syscall
monitoring systems such as Systrace which includes only the call site and
the syscall number.

Policies examples: our current prototype enforces hypercall policies
of the following form:

Permit HYPERVISOR_update_descriptor from location 0xc0101347

This policy says that a guest OS can invoke the HYPERVISOR update descriptor
hypercall from a call site at memory address 0xc0101347 inside the guest
OS kernel.

Policy Descriptors: the policy descriptor is a single 32-bit integer value
that describes what parts of the hypercall are protected by the MAC.

MAC Computation: the MAC is computed over the encoded policy, i.e.,
a byte string that is a self-contained representation of the policy. The en-
coded policy is built by concatenating the hypercall number, the address of
the call site and the policy descriptor. For example, for the policy

Permit HYPERVISOR_update_descriptor from location 0xc0101347

the encoded policy byte string would be computed as:

000a 00000001 c0101347 0000000

Here 000a is the hypercall number of HYPERVISOR update descriptor,
00000001 is the 32-bit number that says that the call site is constrained but
all the parameters should be unconstrained, and c0101347 is the call site.
We computed a MAC over this byte string using the AES-CBC-OMAC mes-
sage authentication code, which produces a 32-bit code [32].
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The MAC is then added as an additional argument to the hypercall. The
result is an authenticated hypercall, with two more arguments (the encoded
policy string and the MAC) than the original hypercall.

Note that with this encoded policy byte string, we can also extend the
policy to protect hypercall arguments. In particular, for each original argu-
ment of the hypercall, it can encode whether the argument is unconstrained
or constrained to be a constant value. In our prototype, we do not imple-
ment this feature since among those hypercalls we experiment with there
are none with constant arguments. However, it would be straightforward to
incorporate this protection into our model.

4.2.2 Transformation of a Guest Kernel

The transformation process is to transform a normal guest OS kernel imple-
menting regular hypercalls with a blessed kernel in which regular hypercalls
are replaced by authenticated hypercalls.

It is ideal to have an automatic installer program that reads the kernel
binary, uses static analysis to generate policies, and then rewrites the binary
with the authenticated calls. Although static analysis and binary rewriting
tools such as PLTO [49] are available for binary applications, such equiv-
alent tools which can perform similar functions on the whole Linux kernel
binary are not available to the public or are currently under development
[55].

Since developing such tools is beyond the scope of our research, we took
a manual approach to generate the policy for a guest OS, and to produce
an executable guest OS kernel image that contains authenticated hypercalls.
Specifically, this approach requires 3 steps to replace the regular HYPER-
VISOR xxx with the authenticated one:

1. Use objdump to identify the call site of the HYPERVISOR xxx.

2. Manually search for any constant argument; generate encoded policies
by hand based on the gathered information; and compute the MAC
based on the encoded policies.

3. Finally, we create a dummy HYPERVISOR xxx dummy hypercall which
carries the original arguments and two additional arguments, the en-
coded policy and the MAC. The original HYPERVISOR xxx invokes

41



4.2. Authenticated Hypercalls and Hypercall Access Table

the HYPERVISOR xxx dummy which in turn invokes the hypercallx()
asssembly stub. Note that this hypercallx() asssembly stub also has
two more arguments than the one invoked by the original hypercall.
We then recompile the guest kernel to generate a blessed guest kernel.
Because hypercall handlers in the Xen VMM look at the hypercall
number (which is intact) to extract the right number of arguments, so
there is no need to modify them.

With this approach, if the original hypercall has 3 arguments, the au-
thenticated one must carry 5 arguments, which are the maximum number
of arguments that a hypercallx() asssembly stub can handle due to the
fact that hypercalls pass arguments through registers (there are 6 registers
technically, but one is reserved to carry the hypercall number).

4.2.3 Hypercall Address Table

There are some weaknesses with authenticated hypercalls. Firstly, the pro-
cess of constructing policies and transforming the guest OS kernels is com-
plicated, especially when all the necessary tools are not available. Secondly,
cryptographic MAC computation and verification can be computationally
expensive. In addition, we cannot cover all the hypercalls because of the
argument constraints and the coverage issues.

We explored a slightly weaker but less extensive approach to verify hy-
percalls using a Hypercall Access Table (HAT). HAT is embedded into the
Xen VMM and it identifies the call sites of legitimate hypercalls; hypercalls
from other locations are treated as intrusions. The modifications we propose
are transparent to the guest OSes that do not wish to use them.

Our goal is to distinguish hypercalls invoked illegally by attack code
from those invoked legally as part of a guest OS’s normal execution. We
begin with the simple observation that this objective can be achieved by
examining the address (call site) of the hypercall instruction: if this is not
any of the known locations from which the guest OS can possibly trap into
the VMM, then it must be within attack code.

This approach is not as comprehensive as the MAC approach but it can
offer a certain level of security with minimal cost. Without the cost of MAC
computation, clearly performance can be improved. In addition, HAT can
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have full coverage over all hypercalls.

4.2.4 Constructing Hypercall Address Table

We analyzed the guest OS binary image to identify addresses (call-sites) of
hypercalls in the guest kernel. These addresses are then recorded into a
database called Hypercall Address Table (HAT) stored in the VMM. The
information in the HAT consists of three values for each hypercall instruc-
tion found in the guest OS: (1) the address of the instruction immediately
following the hypercall instruction; (2) the hypercall number associated with
it and (3) the guest domain ID. Notice that there is enough information in
the HAT entries that the hypercall numbers passed into the VMM by the hy-
percall now become redundant: the VMM could use the address pushed on
the stack by the hypercall instruction to obtain the corresponding hypercall
number from the HAT. However, this feature can be useful for performance
reason.

When a guest is started, the Xen VMM will check to see whether its
hypercall addresses are present in a HAT, if they are not, its hypercalls are
executed without any of the checks described in the next section. When
a hypercall instruction occurs during the execution of a guest, the kernel
checks that the address pushed on the stack by the hypercall appears in the
HAT entries for that guest. A hypercall from an address found in the HAT
is allowed to proceed; otherwise, a possible intrusion is signalled.

4.3 Hypercall Verification

4.3.1 Verifying Authenticated Hypercalls

Enforcement of a guest OS’s authenticated policies is done at run time by
a small module implemented in the Xen VMM. When a hypercall occurs,
the verification module intercepts it and obtain its arguments which include
the hypercall number, the arguments to the original unmodified call, the
policy descriptor, and the MAC. Furthermore, the verification module also
determines the call site based on the return address of the caller.

Using the information captured by interception, the verification module
performs the following computation to validate that the actual hypercall
complies with the specified policy. It first constructs an encoding of the pol-
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icy by concatenating the hypercall number, the call site, the policy descrip-
tor, and those argument values that are specified in the policy descriptor.
Then it computes a MAC over this encoding using the same key used dur-
ing the transformation process, and checks that the result matches the MAC
passed in as an argument. If the two MACs match, the hypercall is passed
on to the right hypercall handler and it is served normally; otherwise, the
verification module refuses to pass on the hypercall to the hypercall handler
and logs the violated hypercall.

Hypercall verification is designed so that MAC matching fails if a guest
OS has been compromised. Since the arguments to the authenticated hyper-
call are under the control of the compromised guest OS, the attacker might
have tampered with any of them, including the policy descriptor and the
MAC, or he might have even tried to construct a new authenticated hyper-
call somewhere in the guest memory. However, any change to the hypercall
number, call site, policy descriptor, or values of the arguments constrained
by the policy would result in a change to the encoded policy that is con-
structed by verification module. This in turn would change the MAC needed
to pass the verification process. Our cryptographic assumption is that it is
infeasible for the adversary to construct a matching MAC for its changes
without access to the key, hence, any attempt by the guest OS to change
the hypercall which violates the policy will fail.

4.3.2 Checking Hypercall Address Table

Similar to the MAC approach, hypercall verification for the HAT approach
can start with intercepting the hypercall and calculating the return address
to identify the hypercall call-site. Then the verification module will perform
an HAT look-up to see if the address matches with one of the entries on
the table corresponding to the guest ID and the hypercall number. If it
is, the hypercall is passed on to be served by the hypercall service routine;
otherwise, it is blocked and logged. The failed hypercall log can be used
later for analysis purposes.

4.4 Hypercall Chain Verification

With the previous approaches, hypercall integrity and authenticity are pro-
tected to a certain degree. For instance, the attacker will fail if he tries to
directly inject a malicious hypercall into a protected guest kernel or when
he tries to tamper with some parameters under coverage of the protection
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policy. However, the attacker is still able to launch an attack indirectly by
invoking a another function which in turn invokes functions that lead to
hypercalls (in a manner similar to LIBC syscall attacks in OSs).

In our prototype, we aim to protect the hypercalls at lowest level in the
MAC approach, we cannot protect against the case when the attacker tries
to inject the malicious code from the higher levels. In the HAT approach,
even though in theory we could build a table with extended entries to cover
more or all call sites, but building that complete call-graph is a challenging
task, especially without binary rewriting tools. In addition, in case Xen
supports a large number of guests, this could result in a very big database
created in the Xen VMM which undesirable for the purpose of keeping the
VMM codebase small.

4.5 Discussion

In terms of space, in the MAC approach, we cannot accommodate a hy-
percall with more than 5 arguments given the limitations of our current
implementation approach. If we use the binary rewriting method, the size
of the binary will increase by a constant number which is negligible.

In the HAT approach, the size of the table will increase when we have
an increased number of guest OSes. This may be undesirable as the design
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concept of Xen is to keep the VMM small. One approach is to store the
database in a separate special guest and establish a trusted path to that
guest.

4.5.1 Remaining Issues

We did not address the dynamic loadable module (LKM) issue in this thesis.
Whether we modified the guest kernel source or binary, an attacker can
inject code by LKM and a guest kernel has legitimate reasons to load a kernel
module. We do not fully know that if any of possible loadable kernel modules
contains hypercalls. In theory we can set up policies to prevent LKM at run-
time or accommodate latest research in the field to deal separately with this
issue.

Given the incompleteness of our implementation prototype, we did not
go far enough to address the more complicated attacks such as mimicry or
attacks that result in impossible path i.e., injected in one place and return to
another. We believe that with appropriate tools and additional/complimentary
techniques we could extend our models to cope with these attacks.
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Chapter 5

Evaluation

5.1 Security Evaluation

5.1.1 Experimental Setup

Our experiments were run on the system of 1.7 GHz Pentium 4 processor
with 512M RAM running Fedora Core 4. All Xen modifications necessary
for this hypercall-based intrusion detection and prevention system were im-
plemented in the Xen-unstable kernel. All guests run the modified Linux
2.6.17 kernel. The changes required to Xen were minimal, spanning only a
handful of source files including the file containing hypercall assembly entry
codes and the files containing the hypercall service routines; adding hyper-
call verification functionality. On the guest domain kernel, we modified the
file containing hypercall stubs and the files containing the routines which
invoke hypercalls.

5.1.2 Attack Experimental Issues

We have some difficulties to fully evaluate the efficacy of our hypercall pro-
tection measures. One common approach to evaluating a security measure
would be subjecting it to currently known viruses/worms. In our case, how-
ever, this approach is not applicable. Firstly, known attack codes on Xen
virtualization are not available. Even if they do exist, they may be specific
to certain kinds of VMM vulnerabilities and do not represent the variety of
vulnerabilities in reality. Secondly, this approach may ignore attacks that
are possible in principle but which have not yet been identified. Finally,
our implementation prototype is not robust and complete enough to be sub-
jected to a real security scenario.

Instead, we focus the security evaluation on making sure that our pro-
tection measures are effective for what they are designed to be effective
against. It means that our security measures should be able to detect and
record injected hypercalls or hypercalls which are not in the protected guest
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originally or hypercalls with an invalid number of arguments.

We used a loadable kernel module (LKM) on one of the guest OSes as
a simple way to inject non-protected hypercall into the system. We assume
that such an LKM could be successfully injected into a guest OS through
common OS security breaches in the real world. This LKM would attempt
to either try to execute a dummy hypercall which is a new hypercall and is
deliberately left out when we compute MAC or HAT, or try to execute an
existing hypercall with a different number of arguments. We can then verify
that when the LKM tries to execute that new dummy hypercall which is not
in our protection coverage, it got caught by both MAC and HAT protection.
When the LKM tries to execute one existing hypercall with a different set
of arguments it is caught by the MAC protection since the MAC for that
call does not match.

This simple experiment is very specific and even quite contrived, but it
serves the purpose of verifying the correctness of our prototype nevertheless.
For a full security analysis, we need to do more experiments to cover all
hypercalls.

5.2 Performance

There are two aspects to the cost of the underlying hypercall protection
mechanisms: the incremental cost for an individual hypercall, and the im-
pact on the overall performance of applications on guest OSes.

5.2.1 Micro Benchmark

We measure the performance impact of the implemented methods on in-
dividual hypercalls. To measure relatively accurate overhead requires to
repeatedly execute a hypercall for a number of times. It would be ideal to
have a complete coverage of all hypercalls. However, for some hypercalls
it is hard to repeat their execution without changing the system state. As
such, we only selected five hypercalls which are relatively more convenient
to be measured than the others: fpu task switch, memory op, mmuext op,
update va mapping, acm op.

We used a simple kernel module to make hypercalls repeatedly and we
also measured overhead of these same hypercalls during the start-up and
shut-down of guest domains. We used the rtdscl system utility to measure
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the system time to invoke each hypercall (directly corresponding to the
hypercall) LIMIT times in a loop (LIMIT == 50). We then divided the
total time by the LIMIT to get the mean execution time per invocation.
Such value is collected from 10 runs, we discard the highest and lowest
values, and average the remaining 8 values.

The results in Table 5.1 show that for the HAT approach, the overhead
ranged from 8.07% to 58.94%. It ranged from 57.84% to 175.37% with the
MAC approach. Overall the MAC approach incurs a lot more overhead
which is expected. The overhead for each hypercall varies depending on the
total execution time for each hypercall.

5.2.2 Macro Benchmark

We used a set of different applications to measure the macro-benchmark of
the system including the Apache ab benchmarking tool, and make to com-
pile the whole Linux 2.6.17 kernel. We also measured the time it takes to
tar, gzip and scp on the Linux 2.6.17 kernel. We observed a small amount of
increase in the overhead across the methods we used to protect hypercalls.
All the overheads are smaller than the relative standard deviations.

We used the ApacheBench bench-marking suite for the Apache HTTP
server as the benchmark for evaluating the performance impact of protected
hypercalls on guest domains. Apache is ideal for this purpose owing to
its popularity, and to the fact that it may exercise some of the memory
management hypercalls. We ran the ab tool from ApacheBench with the
parameters: -n 10000 -C 1000 http://localhost/50KB.bin to simulate 1000

Original Xen/HAT Xen/MAC
Hypercall Cost Cost Over- Cost Over-

head Cost head
(ms) (ms) (%) (ms) (%)

fpu task switch 7.0255 9.5083 35.34 17.6618 151.40
memory op 12.0005 12.969 8.07 18.9412 57.84
mmuext op 16.0294 19.3408 20.66 29.1182 81.65
update va mapping 6.8814 9.4144 36.81 17.8745 159.75
acm op 3.436 5.4612 58.94 9.4616 157.37

Table 5.1: Hypercall Micro-benchmark
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Figure 5.1: Micro Benchmarks

concurrent clients making a total of 10,000 requests for a 50KB file through
the loop back network device (i.e., on the same host as the web server, to
avoid network latency-induced perturbations to our results) on a guest. We
collected and averaged the results for 5 runs of ab for each server configura-
tion. The guest was otherwise unloaded.

Figure 5.2 plots the results of our macro-benchmark tests (also shown
in Table 5.2). The Apache server suffers a small 5.13% decrease in request-
handling capacity while running under HAT protection, as compared to
running unprotected on original Xen. Respectively, it suffers a 7.68% de-
crease in request handling capacity with the MAC approach. The standard
deviation indicates that these decreases are insignificant.

We also ran other applications to determine the impact of protected hy-
percalls on the performance of common Linux programs. Table 5.2 shows
the execution time (averaged over 5 runs, and corresponding standard de-
viation) for the kernel compiling, tar, gzip and scp utilities, measured using
the time command. All these tests involved the entire Linux 2.6.17 code
repository: we ran make to compile the Linux 2.6.17 kernel, tar to create an
archive of the kernel source code repository, and scp to upload the archive
to a remote server (using public keys for automatic authentication). We also
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Figure 5.2: Apache Performance

compressed this kernel archive using gzip. These results show that overhead
added by protected hypercalls to these common programs is insignificant.

The MAC approach consistently has a slightly bigger overhead compared
to the HAT approach. The reported overhead of Apache is somewhat higher
than we expected. However, overall all overheads are consistently smaller in
magnitude than the standard deviations.

5.3 Correctness

We have been running our Linux machine for daily use with the modified Xen
with both MAC and HAT for extended periods of time without noticing ab-
normalities or significant performance degradation. All regular applications
run normally. During our performance evaluation period, the system func-
tions well under heavy loads. Although further stress tests may be needed,
with current conditions we can come to the conclusion that our protection
measures maintain system correctness.
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Program Original Xen/HAT Xen/MAC
Time Std. Time Std. Over- Time Std. Over-

head head
(secs) Dev. (secs) Dev. (%) (secs) Dev. (%)

Kernel
Compiling 773.351 11.67 782.224 8.61 1.15 810.394 6.73 4.79
Apache

benchmark 474.467 15.91 498.815 10.78 5.13 510.883 11.26 7.68
Tar 131.184 1.57 132.282 1.36 0.84 134.217 3.1 2.31
Gzip 46.344 0.87 46.417 0.79 0.16 47.037 0.94 1.50
Scp 14.562 0.37 14.716 1.03 1.06 15.027 0.56 3.19

Table 5.2: Macro-benchmark.
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Chapter 6

Conclusion and Future Work

While virtualization technology in general becomes increasingly popular and
many research applications rely on it as a solution for various security prob-
lems, this thesis focuses strenghthen Xen itself. We believe that making Xen
more secure would bring true values to its popularity and usability. We have
a high level security evaluation of Xen. We conclude that although the Xen
VMM (or hypervisor in general) is much smaller than a conventional OS and
has much narrower interface to low level hardware, it is still rather complex
and certainly not free of vulnerabilities. We are also convinced that these
vulnerabilities can be exploited through the hypercall interface and harden
hypercalls would make Xen more secure in certain aspects.

Based on this premise and given the similarity in terms of functional-
ity and characteristics of syscalls and hypercalls, we do a literature survey
of syscall security including attacks and defense mechanisms, this survey
gives us insights into how to protect hypercalls. Syscall monitoring is a
popular technique to protect syscall and reactive syscall monitoring includ-
ing detecting and reponding to attacks. Among detecting techniques, the
anomaly detection approach appears to be more suitable for our case since
this approach can provide capabilities to detect unknown attacks. We adopt
two simple anomaly detection techniques using hypercall callsites as basic
information combined with cryptographic and caching schemes to provide
simple yet effective hypercall protection against hypercall injection attacks.
We implement Authenticated Hypercalls (MAC) and Hypercall Access Ta-
ble (HAT) in our simple proof-of-concept prototype. We would be able to
do some simple evaluation and prove that protecting hypercalls can prevent
certain kinds of intrusion via hypercalls. Despite the fact that hypercall pro-
tection measures can cause high overhead per each hypercall, their impact
on the overall system performance is negligible.

We believe that improving security of virtualization technology is an im-
portant area to make this technology more mature. We believe that this
research direction is interesting and it opens opportunities for us to learn
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and to qualify some of the security mechanisms from the OS community.
However, our protype is incomplete and this thesis has been delayed over an
extended period of time for some reasons. Xen itself, the research commu-
nity around Xen and other security tools have been evolving so much over
this period of time, we have missed some opportunites to incorporate those
developments into this thesis.

There are many areas in this thesis that could be improved upon:

Use of Binary Rewriting and/or Static Analysis Tools: we chose
to modify the guest OS kernel and Xen VMM directly to implement our
prototype. There are some limitations with this approach. First of all, it is
not always straightforward to modify the guest kernel in practice for reasons
like the unavailability of kernel source code or legal constraints. In addition,
in the MAC approach we cannot cover hypercalls having more than 3 ar-
guments because we need additional space to store the policy string and
MAC; if we want to protect hypercalls with more than 3 arguments, we
need to change the current hypercall implementation to pass arguments via
memory instead of registers which adds extra complexity. Finally, to have
an extended HAT model to accommodate complete hypercall chains instead
of only callsites, we need to utilize some static analysis tools because it is
error-prone and very challenging to compute complete call chains manually.

At the time we carried out this project, we were not aware of any avail-
able binary rewriting tool which is free and capable of handling the Linux
kernel binary. We believe that with the assistance of proper tools we can
avoid the complication of kernel modification and can explore different ways
to provide a better and more complete implementation prototype.

More Complete Implementation of The Prototype and Full Secu-
rity Evaluation: we would like to improve the MAC implementation so
that all hypercalls can be protected. As mentioned above, this would re-
quire fundamental changes to the current hypercall implementation or use
of some binary rewriting tools. It would be interesting to extend protection
coverage over the hypercalls at the lowest level. We could achieve this by
implementing an extended HAT with each entry as a more comprehensive
data structure (i.e., an inverted tree) to contain complete call chains lead
to this hypercall. It would be technically challenging to generate such com-
plete call graph, however given the small numbers of hypercall this approach
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seems to be achievable with appropriate tools.

We would also want to experiment with the stack walk or hypercall chain
verification approach as an alternative or complementary to the MAC/HAT
approach. Technically, hypercall chain verification neither requires modifi-
cation of the guest kernel nor performs any callsites computation in advance.
However, it can also be used in conjunction with the extended HAT. Finally,
it would be interesting to compare and contrast these different protection
models in terms of performance and effectiveness.

Given the completeness of all the above protection measures, we also
need to improve protection policies to detect more attacks which are not
simply injected hypercalls, but more sophisticated ones such as mimicry
attacks. Finally, we may also need to implement some security measures to
protect our protection measures.
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