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Abstract

The goal of this paper is to analyze the texture of iri-
des and determine if they can be quantitatively measured
and assigned into multiple categories. Such an exercise
would ensure that irides, like fingerprints, can be parti-
tioned into multiple classes thereby allowing for faster re-
trieval of identities in large scale biometric systems. In or-
der to facilitate this, a set of 68 statistical features is ex-
tracted from the iris texture. These features correspond to
the high frequency information associated with anatomical
structures in the iris such as crypts, furrows and pigment
spots. The statistical features extracted from different blocks
in the iris are fused at the feature level and decision level.
Experimental analysis using the UPOL database indicates
the efficacy of the proposed scheme in (a) clustering iris
texture, and (b) assigning an input iris to the correct cluster
based on its textural content. The feasibility of using blocks
of iris to perform partial iris matching is also investigated.

1. Introduction

The human iris is a complex textured entity. It begins
to form during the third month of the gestation period and
the distinctive structures within it are completed by the
eighth month [7]. These distinctive structures include pig-
ment frill, collarate, radial furrows, arching ligaments and
Fuch’s crypts [7], and their agglomerative composition im-
parts structure and texture to the iris (Figure 1).

The assumed uniqueness of the iris has resulted in its use
in the field of biometrics for the purpose of human recogni-
tion (verification and identification) [3]. A traditional iris
recognition system consists of the following stages: im-
age acquisition, iris segmentation, normalization, feature
extraction and matching. An iris recognition system op-
erating in the identification mode typically compares the
features extracted from a query image against all the can-
didate entries in the database in order to determine the best
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Figure 1. Structures within the iris

match. With the increasing size of iris databases, there is
a need to reduce the search space during identification of
the query image. Indexing and classification are two ways
by which the search space can be reduced during identifi-
cation. Unlike traditional fingerprint classification systems,
there are no standard iris classification systems in place. In
the recent literature, there have been some efforts to per-
form iris indexing and classification. The work by Hao et
al [6] introduces the concept of a Beacon Guided Search,
where iriscodes are indexed using a unique 32-bit ID that is
computed by permuting the iriscode itself. Mukherjee and
Ross [9] discuss two schemes for iris indexing. The first
scheme, called pre-encoding, uses a texture measure to cat-
egorize the iris into multiple bins and organizes them into a
tree-like structure to facilitate retrieval; the second scheme,
called post-encoding, uses a clustering technique to cate-
gorize iriscodes into multiple classes after processing them
using first-order statistics. Yu et al [14] perform iris tex-
ture classification by computing the fractal dimension on
tessellated blocks of the normalized iris, and Qiu et al [11]
perform ethnicity classification by analyzing the iris texture
using Gabor filters.

The goal of this paper is to study the stochasticity of
the iris texture by characterizing it using multiple features
and to use the ensuing features to group irides into multi-
ple classes. Thus, it seeks to exploit the textural content of
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the distinctive features composing its anatomy for classifi-
cation. In order to facilitate this an ensemble of statistical-
and signal-based texture characterization schemes is used
to define a 68-dimensional feature vector on the normalized
iris. For purposes of this study, the UPOL database captured
in the visible light is used due to the clarity of the texture
present in the component images.

2. Feature Extraction

A typical iris recognition system consists of pre-
processing steps including segmentation, normalization us-
ing Daugman’s rubber sheet model, and image enhance-
ment [4]. Segmentation is the process by which the inner
and outer boundaries of the iris are localized in an image
of the eye. Normalization transforms the points within the
iris to polar coordinates(r, θ), wherer represents the ra-
dial distance from the iris-pupil boundary to the iris-sclera
boundary, andθ represents the angle subtended by a pixel
relative to the horizontal axis. This transformation model
accounts for the scaling due to pupil dilations and different
diameters of the iris across subjects. The pixel at location
(x, y) within the iris imageI is transformed to polar coor-
dinates using the following mapping [4]:

I(x(r, θ), y(r, θ)) → I(r, θ), (1)

where,x(r, θ) andy(r, θ) are pixel positions within the
circular disk defined as the linear combination of points on
the pupillary boundary(xp(θ), yp(θ)) and limbus boundary
(xs(θ), ys(θ)). Thus,

x(r, θ) = (1 − r)xp(θ) + rxs(θ) (2)

y(r, θ) = (1 − r)yp(θ) + rys(θ), (3)

The normalized iris images are enhanced using
the contrast-limited adaptive histogram equalization
(CLAHE) [15] technique. Enhancement involves tessellat-
ing the normalized iris into 64 tiles, and subjecting each tile
to histogram equalization such that its original histogram
distribution matches a uniform flat distribution. Each of
the neighboring tiles are bilinearly interpolated to remove
the artificially induced boundaries. In order to minimize
the effect of noise due to eyelids and eyelashes, only the
inner iris region extending from the pupil-iris boundary
to half the iris radius is considered for feature extraction.
Gentile et al [5] observed that regions close to the pupil and
sclera contribute the least to the discriminatory information
contained within the iris. The inner half is resized and
partitioned to overlapping blocks of size32× 2i , where
6 ≤ i ≤ 9. Figure 2 shows the segmented, normalized and
the enhanced iris along with the region of interest used in
this work and the iris blocks used for feature extraction.

(a) Acquired Iris Image

(b) Segmented Iris

(c) Normalised Iris

(d) Enhanced Image

Figure 2. The output of the individual pre-processing steps are il-
lustrated here. In (c) the inner iris region used in this work is
indicated. (d) illustrates the overlapping blocks (represented here
as white and yellow boxes) used for feature extraction.

The agglomeration of structures within the iris impart
stochasticity and uniqueness to each eye. In general, tex-
tural features can be characterized using statistical, geo-
metrical, model and signal processing based methods [13].
Statistical methods measure the spatial distribution of gray
scale values within the image and model the statistical rela-
tion between pixels in the image. Thus, statistical features
typically correspond to higher order pixel-intensity statis-
tics. Signal processing based methods are based on de-
composing an image into frequency and orientation com-
ponents [13]. Due to the non-deterministic nature of the iris
texture, a combination of both the aforementioned methods
is used. The statistical features extracted are based on the
work by Portilla and Simoncelli [10]. The features are ex-
tracted from individual iris blocks each of which is decom-
posed using complex steerable pyramid atN = 2 scales
andO = 4 orientations. The steerable pyramid responses
are implemented by initially decomposing an image to low
pass and high pass residuals (H), and then recursively de-
composing the low pass residual of an image into orienta-
tion (Bk) and low pass residual bands (L). The filters used
are polar separable in Fourier domain and are represented
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as:
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Here, (r, θ) are polar frequency coordinates andαK =

2k−1 (K−1)!√
K[2(K−1)]!

. Figure 3 and 4, respectively, illustrate

the orientation bands in the frequency domain and the ori-
entation responses on iris blocks of size64 × 128 atN = 2
scales andO = 4 orientations.

Figure 3. Orientation bands in the frequency domain

The visual texture of the iris can be characterized in
terms of its pixel intensity distribution, coarseness, fineness,
and regularity due to the presence of periodic or globally
oriented structures such as radial furrows, contraction fur-
rows and pigmentation spots. Apart from this, the crypts
and furrows at different scales produce oriented edges and
corners. The agglomeration of these structures results in the
stochasticity of the iris texture and can be captured using
statistical features. In the proposed method these statistics

Figure 4. Iris blocks and corresponding responses

aremeasured from the original iris image as well as the de-
composed subbands of the iris.

The statistical features used for modeling the pixel statis-
tics are the minimum, maximum, mean, variance, skew-
ness and kurtosis of pixel-intensity distribution within the
iris texture. These features are extracted from the original
image as well as from the low pass bands at each scale of
the decomposed pyramid. The spectral features which rep-
resent periodicity (spectral peaks) and ridges (globally ori-
ented structures) are captured by computing the local au-
tocorrelation of the lowpass residuals at each level of the
pyramid decomposition. The high contrast regions oriented
at each scale such as edges, bars and corners are captured
using the cross correlation of of subband magnitudes with
all orientations at the same scale. Given an imageI with
total number of pixels|I|, pixel intensitiesxi and mean of
all pixel intensitiesm, the variance skewness and kurtosis
are computed as,

V ariance, σ2 =
1

|I|
∑

1≤i≤|I|

(xi − m)2, (8)

Skew =
1

|I|
∑

1≤i≤|I|

(xi − m)3

σ3
, (9)

Kurtosis =
1

|I|
∑

1≤i≤|I|

(xi − m)4

σ4
, (10)

For each iris block, all these statistical features are com-
puted, resulting in a feature vector of dimension 68 corre-
sponding to pixel intensity distribution (9 features), auto-
correlation ((N + 1)(M2+1

2 ) = 39 features, whereM=5 is

the size of the filter) and cross correlation (N
O(O+1)

2 = 20
features).

3. Clustering and Classification

The goal of clustering in the context of this work is to
create classes of irides and, subsequently, reduce the search
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space of a query image during identification. This is done
by classifying the query image into one of the several pre-
determined classes and limiting the search to the candidate
entries in the assigned class. Figure 5 shows the iris recog-
nition system operating in the classification mode.

Figure 5. An identification system using classification technique

3.1. Creating cluster classes

The Principal Direction Divisive Partitioning [2] tech-
nique is adopted to partition the iris database into a pre-
determined number of clusters. The PDDP algorithm,
which is a top-down approach to clustering, is faster than
agglomerative clustering algorithms. In order to cluster the
iris database, the feature set extracted from a specific block
in each iris is used. The database comprised of feature vec-
tors extracted from the iris blocks is recursively partitioned
using the principal component analysis thereby making the
algorithm divisive. During the process, a hierarchical par-
tition structure is generated until a pre-determined number
of clusters is obtained. Each cluster is partitioned based on
the measure of cohesiveness. The magnitude of the eigen-
values within a cluster is used as the measure of scatter or
non-cohesiveness of a cluster. The higher the scatter value,
higher the non-cohesiveness of the cluster which is then
chosen to be split into two. Each member feature vector
extracted from the iris block (with a dimension of 68) is as-
signed to one of the two clusters based on its projection on
to the principal component. This is repeated until a desired
number of clusters is obtained. Figure 6 shows examples of
irides in the 5 clusters obtained using PDDP.

A query image is classified by comparing the extracted
feature vector (from a block) against each of the cluster cen-
troids and assigning it to the nearest cluster (class).

Figure 6. Examples of irides in the 5 clusters.

4. Database

The experiments are performed on two datasets of the
UPOL1 iris database. The UPOL database consists of high
resolution iris images in which the iris texture is not unduly
occluded due to eyelids and eyelashes. It has768× 576 24-
bit RGB color images of the left and right eye of 64 users.
The images were acquired using the TOPCON TRC50IA
optical device connected to a Sony DXC-950p 3CCD cam-
era. The database consists of 3 samples of each eye re-
sulting in a total of 192 images each of the left and right
eyes. The images in the database are subjected to some pre-
processing steps where they are first converted to grayscale
and the irides manually segmented before normalizing them
to size150×720 and64×360 (low resolution LR - UPOL).
The irides normalized to size64 × 360 are used to evaluate
the performance of the proposed approach on low resolution
images. Figure 7 shows examples of normalized irides gen-
erated from the database. This database was chosen due to
the clarity of the texture observed on the surface of the iris.
As will be shown later, the performance of the proposed
classification scheme deteriorates when the iris images do
not reveal strong texture. Since the purpose of this work is
to understand the textural intricacy of the irides and subse-
quently cluster them, the UPOL database was used in this
work to demonstrate this possibility.

(a) UPOL

(b) Low-resolution UPOL

Figure 7. Example of normalized iris images in the database

1http://www.inf.upol.cz/iris/
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5. Experimental setup

In order to evaluate the potential of using texture features
for clustering, the database is split into two sets: training set
and test set. Each iris is partitioned into blocks of widths2i,
where6 ≤ i ≤ 9. The iris blocks are sequentially numbered
from 1 to n, wheren represents the maximum number of
blocks obtained with widthw from the normalized iris. The
features extracted from the irides in the training set are used
to obtain the pre-determined cluster classes and their asso-
ciated centroids. To determine the clustering capability of
the statistical textural features extracted, three experiments
with different number of clusters (nc = 3, 5) are conducted
using the test set. The test set is partitioned into the gallery
set and the probe set. The gallery set is constructed by either
(a) randomly selecting one sample of each iris and assign-
ing it to one of the clusters by computing its distance from
each of the cluster centroids, or (b) systematically choos-
ing the first, second or third sample of each iris. The probe
set consists of the remaining two samples of each iris and
is used for evaluating the classification performance. The
classification is deemed to be correct if the probe sample of
a subject is assigned to the same class as the corresponding
gallery sample. Figure 8 illustrates the experimental set-up.
The three experiments performed are summarized below:

Figure 8. The evaluation protocol adopted in this work

1. Simple classification: Classifying an iris using features
extracted from a single block of the iris.

2. Feature level fusion: Classifying an iris by concatenat-
ing two feature sets extracted from two different blocks
of the same size from the iris.

3. Decision level fusion: Classifying an iris after inde-
pendently classifying two different blocks within the
iris and determining if either of them is assigned to the
correct class.

Figure 9 shows the stages involved in the three experi-
ments conducted.

(a) Setup for experiment 1

(b) Setup for experiment 2

(c) Setup for experiment 3

Figure 9. (a) Setup for experiment 1 using a single iris block. (b)
Setup for experiment 2 using two different iris blocks (Feature
Level Fusion). (c) Setup for experiment 3 using two different iris
blocks (Decision Level Fusion).

6. Results

The experiments are conducted using iris blocks with
widths2i, where6 ≤ i ≤ 9. The classification accuracy is
evaluated as the percentage of probe irides that are correctly
assigned to the same cluster as that of the corresponding
gallery iris. The following tables report the best classifica-
tion rate for iris blocks of different sizes.

Experiment 1: The features extracted from a single iris
block are used for the purpose of evaluation. Tables 1 and 2
show the results of experiment 1. The distribution of users
across the 5 clusters using blocks of width 128 was observed
to be 30.47%, 23.83%, 21.48%, 20.70% and 3.52%, respec-
tively.

Experiment 2: The features extracted from two differ-
ent iris blocks are concatenated before classification. The
results are shown in Tables 3 and 4.

Experiment 3: The features extracted from two differ-
ent iris blocks are used independently to classify the iris.
Tables 5 and 6 show the results of decision level fusion
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Table 1. Results of Experiment 1 with 3 clusters
Width of tessellated blocks

Database 64 128 256 512
Mean StD Mean StD Mean StD Mean StD

UPOL(L) 89.84 0.40 92.57 1.01 91.21 0.96 85.52 2.31
UPOL(R) 92.77 0.96 93.16 0.55 91.21 0.55 84.76 3.45

LR-UPOL(L) 91.01 1.01 90.62 0 81.83 0.96 - -
LR-UPOL(R) 88.47 2.59 85.54 0.61 87.30 1.78 - -

Table 2. Results of Experiment 1 with 5 clusters
Width of tessellated blocks

Database 64 128 256 512
Mean StD Mean StD Mean StD Mean StD

UPOL(L) 85.35 3.40 83.98 3.45 82.22 3.00 79.10 5.84
UPOL(R) 85.54 2.64 88.67 0.20 83.00 1.78 81.44 0.55

LR-UPOL(L) 85.15 2.84 81.05 2.99 75.97 2.59 - -
LR-UPOL(R) 85.35 0.15 81.44 0.96 79.49 3.00 - -

Table 3. Results of Experiment 2 with 3 clusters
Width of tessellated blocks

Database 64 128 256 512
Mean StD Mean StD Mean StD Mean StD

UPOL(L) 92.97 1.62 91.99 1.77 85.74 0.96 85.94 3.24
UPOL(R) 95.70 0.61 93.94 0.55 90.62 1.22 85.74 3.00

LR-UPOL(L) 89.65 11.54 89.61 31.06 82.42 3.44 - -
LR-UPOL(R) 88.08 0.55 88.47 0.55 85.54 5.08 - -

Table 4. Results of Experiment 2 with 5 clusters
Width of tessellated blocks

Database 64 128 256 512
Mean StD Mean StD Mean StD Mean StD

UPOL(L) 86.52 0.55 86.91 2.58 89.68 5.28 81.05 1.77
UPOL(R) 88.28 1.62 88.47 0.55 80.47 0.40 76.36 0.55

LR-UPOL(L) 83.39 0.56 79.10 2.59 78.90 4.48 - -
LR-UPOL(R) 85.35 0.96 80.66 0.15 78.90 2.85 - -

when 3 and 5 clusters are used, respectively.

Table 5. Results of Experiment 3 with 3 clusters
Width of tessellated blocks

Database 64 128 256 512
Mean StD Mean StD Mean StD Mean StD

UPOL(L) 100.00 0 100.00 0 98.04 0.20 94.53 0.40
UPOL(R) 100.00 0 100.00 0 99.21 0 96.48 0.20

LR-UPOL(L) 99.41 0.15 99.02 0.15 95.11 0.96 - -
LR-UPOL(R) 100 0 99.02 0.15 96.28 2.18 - -

Table 6. Results of Experiment 3 with 5 clusters
Width of tessellated blocks

Database 64 128 256 512
Mean StD Mean StD Mean StD Mean StD

UPOL(L) 99.02 0.15 97.85 0.15 94.72 0.55 87.50 1.22
UPOL(R) 99.21 0.40 98.82 0.20 96.09 0.40 95.31 0.40

LR-UPOL(L) 97.46 0.15 96.28 0.15 89.84 4.06 - -
LR-UPOL(R) 98.82 0.20 96.67 0.15 94.53 2.03 - -

7. Analysis of experimental results

Tables 1 and 2 illustrate the results of experiment 1 using
3 and 5 clusters, respectively. Experiment 1 is performed to

determine if blocks with varying sizes can be used for the
purpose of texture analysis and classification. From the re-
sults it is observed that higher classification accuracies are
achieved using blocks of smaller widths rather than larger
widths. It is also observed that with increasing widths, the
discriminability of the features extracted decreases resulting
in lower classification accuracy. Furthermore, the classifi-
cation accuracies are affected by the resolution of the iris.
With decreasing resolution, the classification accuracies are
observed to decrease in most cases.

To further improve the results of accuracy, feature level
fusion and decision level fusion are performed where fea-
tures from two different iris blocks are used. In feature level
fusion, the performance of classification either decreases or
remains the same as in Experiment 1. The results show that
a simple concatenation of features does not improve the per-
formance and may require feature selection. However, clas-
sification via decision level fusion using two independent
iris blocks from an iris image shows a large improvement in
performance. 100% classification accuracies are observed
for blocks with smaller widths once again illustrating the
advantage of using smaller iris blocks for classification. The
higher performance obtained, can be attributed to the advan-
tage of using blocks with higher discriminating characteris-
tics rather than using the entire normalized iris for classifi-
cation. Figure 10 shows an example of an iris image where
the classification failed when using blocks of width 256.

(a) Query image

(b) Irides in the class to which (a)
belongs.

(c) Irides in the class to which (a)
wasincorrectly assigned.

Figure 10. Example of failed classification.
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The experiments were also conducted on the CASIA-
IrisV3-Interval2 database which includes iris images oc-
cluded due to eyelids and eyelashes. It consists of 8-bit gray
scale images of size320× 280 captured using near infrared
illumination. The database consists of left and right eye im-
ages of 249 users with 1,335 and 1,320 images of the left
and right eyes, respectively.

Although the classification accuracies using CASIA-Iris
V3-Interval database was not as good as that of the UPOL
database, the trend of the results was similar to that of
UPOL. The experiments showed that blocks with smaller
widths exhibit higher or similar classification accuracies as
that obtained using blocks of irides with larger widths. The
performance increases from 66% to 88% and 55% to 78%
for Experiment 1 and Experiment 3 with 3 and 5 clusters,
respectively. Results once again showed that the method
takes advantage of smaller portions of iris which may not
be occluded with eyelids and eyelashes for classification.
Note that the performance of the classification system on
the CASIA database is remarkably inferior. This is due to
the low ‘clarity’ of the texture resident in these iris images.
Thus, the proposed technique is relevant for use with iris
images exhibiting reasonable textural clarity. Currently, the
use of phase information is being pursued in order to de-
vise classification mechanisms for iris databases containing
relatively poor quality images.

8. Block-based recognition

The above experiments show the feasibility of grouping
irides based on features extracted from small blocks of iris.
Next, the possibility of using small blocks [12] formatching
irides is considered. Specifically, the possibility of match-
ing a partial iris to a complete one is investigated. Recogni-
tion is performed using features extracted around keypoints
detected on these blocks using the Scale Invariant Feature
Transform (SIFT) [8, 1]. The portions of iris used in this ex-
periment represent 10%, 30%, 50%, 75% and 100% of the
spatial extent of a normalized iris; the cropped area corre-
spond to the left-most region of the normalized iris. Figure
11 shows examples of the partial irides used in the experi-
ments.

Figure 12 shows the block diagram for partial iris match-
ing using SIFT.

The scale invariant feature transform (SIFT) detects key-
points at multiple scales. The iris block is incrementally
convolved with Gaussians to produce images separated with
a constantk in scale space. In each octave the difference
of Gaussians is obtained by subtracting responses of fil-
tered images in adjacent scales. The extrema points (max-
ima and minima) in the spatial domain are detected across
these Difference-of-Gaussian filtered images. The local ex-

2http://www.cbsr.ia.ac.cn/IrisDatabase

(a) Partial irides

(b) Partial iris matching

Figure 11. (a) Partial iris images representing 10, 30, 50, 75 and
100 percent of the normalized iris. (b) SIFT matching using key-
point descriptors extracted from a partial iris and a complete one.

Figure 12. Block diagram to illustrate partial iris recognition using
SIFT

trema are determined by checking each pixel for maxima
or minima in the neighborhood defined by 8 neighbors in
the current image and 9 neighbors each in the images above
and below the current image in the Difference-of-Gaussian
hierarchy. Orientation histogram is the feature set used to
characterize the keypoint and is computed within a descrip-
tor region of size16×16 window around the keypoint. The
keypoint descriptor is computed as an 8-bin orientation his-
togram over4 × 4 regions within the descriptor window
resulting a 128 dimensional feature vector [8]. The recog-
nition experiment is performed by matching the keypoints
detected in the partial irides extracted from normalized iri-
des with the keypoints detected on the complete normalized
iris. The match score is the number of keypoints matched
between the two iris images. The match between two key-
points is established by computing a cosine similarity score
between the features around the keypoints.

The complete UPOL database was used in this experi-
ment involving partial irides - both the left and right eyes
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of all 64 subjects were used to generate the impostor and
genuine match scores. The error rates of the recognition ex-
periment using features extracted from portions of the iris
are presented in Table 7.

Table 7. Results of partial iris matching
Portion of iris (%) Equal Error Rate (%)

10 0.62
30 0
50 0
75 0
100 0

These results show that using partial irides as small
as 30% of the original normalized iris can result in good
matching accuracy. Hence, the iris blocks used for the pur-
pose of classification may also be used for the purpose of
recognition.

9. Summary and future work

This paper investigated the use of textural information
to classify irides into multiple categories. The proposed
method extracts statistical features of the iris texture from
a block in order to generate a 68-dimensional feature vec-
tor. This vector is assigned to one of several pre-determined
cluster centroids in order to facilitate iris classification. Ex-
periments show that the resolution of the original iris im-
age and the size of the blocks considered for feature ex-
traction affect the classification accuracy. In addition, the
experiments show that performing decision level fusion us-
ing two different blocks increases the classification accu-
racy to∼100% in the UPOL database. It was also observed
that the classification results on the CASIA V3 database
were inferior since component images were relatively noisy
and lacked textural clarity. As future work, a more detailed
analysis on the automated selection of iris blocks with high
discriminatory information has to be conducted. Also, the
proposed method has to be extended to accommodate poor
quality iris images acquired in the near infrared domain. Fi-
nally, the design of novel texture descriptors for iris may be
necessary due to the stochastic nature of its content.
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