

This is Aerospace Medicine

Presented by the Aerospace Medical Association

Overview

Introduction
Flight Environment
Clinical Aerospace Medicine
Operational Aerospace Medicine

Aerospace Medicine vs. Traditional Medicine

Medical Discipline	Physiology	Environment
Traditional Medicine	Abnormal	Normal
Aerospace Medicine	Normal/Abnormal	Abnormal

Brief History of Flight Medicine

- Advent of powered flight presented new physiologic demands such as altitude exposure
- Aviation Medicine driven by WWI high losses of life due to physically unfit pilots
- Development of manned space flight led to evolution of Aviation Medicine into Aerospace Medicine

- Address needs of all who work, recreate, and travel in the air, sea, and space
- Trained in medicine, with special knowledge of operating in extreme environments of flight, undersea, and space
- Uniquely equipped to make decisions on selection and retention of aviators, divers, and space mission and space flight participants.

Armed Forces across the globe **Crew & Passenger Health** Military Safety Policy Certification & Appeals Regulatory Compliance Airline Aeromedical Examiner FAA/DOT Medical **Departments** training & oversight **Evaluation & treatment:** pathologic bubble **Accident Investigation** Aerospace formation Medicine **Physicians** Astronaut selection & Osteo & soft tissue training radionecrosis **Hyperbaric** Space Clinical & basic science **Wound Infections** Medicine Agencies studies Thermal burns **Development of** Space Medical Support to space agencies & countermeasures **Operations** commercial space ventures **Longitudinal Health**

- Aviation Medical Examiners (AMEs)
 - Designated, trained, and supervised by the FAA Flight Surgeons
 - Examine/certify civilian pilots
 - Training provides an understanding of aviation related problems, physiology, standards, and administrative processes
 - One week course with mandatory refresher courses

- International Aviation Medical Examiners
 - European Aviation Safety Agency (EASA)
 - Training provides an understanding of aviation related problems, physiology, standards, and administrative processes
 - 60 hr basic and 60 hr advanced courses

- Military Flight Surgeons
 - Caring for aviators and their families, manage aerospace medicine and public health programs
 - Special training programs:
 - Residency in Aerospace Medicine (RAM)
 - Non-RAM military courses

- National Aeronautics and Space Administration (NASA) Flight Surgeon Duties
 - Medical care for astronaut corps and their families
 - Astronaut selection and mission training
 - Develops physiologic countermeasures for spaceflight
 - Ensures crew health and safety
 - Research promoting a better understanding of medical issues associated with spaceflight environment

Advanced Training in Aerospace Medicine

- United States
 - Civilian Residencies
 - University of Texas -Medical Branch
 - Wright State University
 - Civilian Fellowships
 - Mayo Clinic
 - Military Residencies
 - US Navy
 - US Army
 - US Air Force

- United Kingdom
 Subspecialty of
 Occupational Medicine
 - Civilian Fellowship: King's College in London
 - Military Fellowship: Royal Air Force (RAF) Centre of Aviation Medicine

Aerospace Medicine Practitioners (Non-Physicians)

- Aerospace Experimental Psychologists
- Aerospace Physiologists
- Bioenvironmental Engineers
- Cognitive Psychologists
- Environmental Health Professionals

- Flight Nurses
- Human Factors
 Engineers
- Industrial Hygienists
- Radiation Health Professionals
- Systems Engineers

Advanced Training in Aerospace Medicine

 Other countries also have advanced training in aerospace medicine with military and civilian components

The Flight Environment

Theory of Flight

- Atmospheric flight
 Bernoulli and Newton
 described the concept
 of lift, when air flows
 over a wing.
- Space Flight
 Suborbital and Orbital
 Lunar and
 Interplanetary

The Atmosphere

Composition

Gases

- Nitrogen 78 % (at SL 592.8 mmHg)
- Oxygen 21%
 (at SL 159.6 mmHg)
- Other 1%
 (at SL 76 mmHg)

Additional Components Solid particles

- Dust
- Sea Salt

The Atmosphere

- Gaseous mass surrounding Earth which is retained by the Earth's gravitational field
- Governed by gas laws

Aerospace Physiology

Respiration

Cardiovascular System

Spatial Orientation

Bioacoustics

Vision

Sleep and Circadian Rhythms

Acceleration

Gravitational Effects

Vibration

Hypobaria

Hyperbaria

Other Physical Factors

Human Factors

Clinical Aerospace Medicine

Fitness for Duty & Return to Flight Status

- Screen aviators, astronauts, air traffic control personnel for risk of sudden incapacitation or degradation in skills
- Applies to all areas of medicine
- Applies to all types of aviators, i.e. military, commercial pilots, private pilots, and flight crew

- Address challenges of operating aerospace vehicles in a physiologically challenging environment
- Conducted in military and civilian setting
- Management and prevention of medical events during operations

- Issues in civilian operations
 - Commercial air transport flight operations
 - Deep vein thrombosis prophylaxis in susceptible individuals,
 - Circadian rhythm issues
 - Potential for spread of infectious diseases
 - Consideration of radiation exposure
 - Commercial spaceflight operations

- Military crew members can be required to operate at very high altitudes for the purposes of reconnaissance, combat, or routine training operations
- The unique stresses of extreme altitude operations require special protective equipment and training

- Aeromedical Transportation encompasses the transport and inflight care of patients of different acuity levels.
- Noise, vibration, communication, pressure changes and combat activities can impact ability to deliver care in these settings.
- These transports include fixed-wing aircraft and rotary wing aircraft.

- Hyperbaric Medicine Practitioners support a variety of occupational, training, and remote diving activities
 - Oil Industry
 - Astronaut Dive Training for Extravehicular Activities
 - Underwater Search & Rescue Support

Survival, Search & Rescue

Crash Worthiness – Primary/Secondary Protection

 The aircraft and its systems are a life support system and its thoughtful design may greatly aid in the survivability of a crash

Search & Rescue Systems

- Beacons
- Increased use of satellite technology
- Organized systems in civilian environment and military
- Importance of survival training

Accident Investigation

- Significant improvements in accident rate and data since the 1960s due to:
 - Improved operational procedures
 - Technological developments
 - Application of lessons learned from accident investigations

Acknowledgements

- Anthony Artino PhD
- Professor Michael Bagshaw
- Eilis Boudreau MD PhD
- Yvette DeBois MD MPH
- Marvin Jackson MD
- Jeff Myers MD

- David Rhodes MD MPH
- Philip Scarpa MD
- Erich Schroeder MD MPH
- Greg Shaskan MD
- Jan Stepanek MD MPH
- Jeffrey Sventek MS
- James Webb PhD