
Binding-time Analysis for Polymorphic Types

Rogardt Heldal and John Hughes

Chalmers University of Technology, S-41296 G�OTEBORG.
heldal@cs.chalmers.se, www.cs.chalmers/�heldal.

1 Introduction

Partial evaluation is by now a well-established technique for specialising pro-
grams [13], and practical tools have been implemented for a variety of program-
ming languages [2, 1, 16, 5]. Our interest is in partial evaluation of modern typed
functional languages, such as ML [18] or Haskell [14]. One of the key features of
these languages is polymorphic typing [17], yet to date the impact of polymor-
phism on partial evaluation has not been studied. In this paper we explain how
to extend an o�ine partial evaluator to handle a polymorphic language.

1.1 Background: Polymorphism

A polymorphic function is a function which may be applied to many di�erent
types of argument. In ML and Haskell, the types of such functions are expressed
using a \forall" quanti�er: for example, the well-known map function, which
applies a function to every element of a list, has the type

map :: 8�1; �2:(�1 ! �2)! [�1]! [�2]

meaning that for any types �1 and �2, map takes a function of type �1 ! �2

and a list of type [�1], and produces a list of type [�2]. ([�] is our notation for
a list type with elements of type �).

Polymorphic functions are heavily used in real functional programs. In par-
ticular, library functions are frequently polymorphic, since the types at which
they will be needed are not known when the library is written. The standard li-
brary contains many polymorphic functions such as map and foldr (which takes
a binary operator and its unit, and combines the elements of a list using the
operator). These polymorphic functions greatly simplify programming, for ex-
ample, the sum of a list of integers xs can be computed as foldr (+) 0 xs, and
the conjunction of a list of booleans bs can be computed as foldr (^) true bs.

1.2 Background: Partial Evaluation

A partial evaluator is a tool which takes a program and a partially known input,
and performs operations in the program which depend only on the known parts,
generating a specialised program which processes the remainder. For example,
specialising foldr to the inputs foldr (+) 0 [x; y; z], where x, y and z are unknown,

would generate the specialised program x + y + z + 0. Here the construction of
the known list, and the recursion over it inside foldr, have been performed by
the partial evaluator: only the actual computations of the sum of the unknown
quantities remains in the specialised code.

Partial evaluators can be classi�ed into online and o�ine. Online partial
evaluators decide dynamically during specialisation which operations to perform,
and which to build into the residual program: an operator is performed if its
operands are known in that particular instance. An o�ine partial evaluator
processes an annotated program, in which the annotations determine whether
an operator is to be applied or not. O�ine partial evaluators are generally more
conservative, but simpler and more predictable; we focus on this type in this
article.

As an example, we annotate the power function, which computes xn, for spe-
cialisation with a known value for n. We annotate each operator with a binding-
time, S (static) or D (dynamic), and we write function application explicitly as
@ so that we can annotate it. Operators annotated static are performed during
partial evaluation.

power n x = ifS n =S 0
then IntSD 1
else x� power@S(n�S 1)@Sx

In annotated programs we distinguish between known static values, and the
corresponding dynamic code fragment; in this example, since the result of spe-
cialising power is code, the coercion IntSD must be used to convert the static
integer 1 to the correct type.

Annotated programs can be interpreted by a partial evaluator, or compiled

into a generating extension. This is a program which, given the partially known
input, generates a specialised version of the annotated program directly. The
generating extension of this annotated power function is itself a recursive func-
tion, which computes the static operations directly, and generates code for the
dynamic ones. Running the generating extension with the arguments 3 and \x"
(a code fragment) produces the code fragment \x� x� x � 1". Notice that, in
the generating extension, a static integer and a dynamic integer are represented
by di�erent types: the former by an integer, and the latter by a code fragment
| for example, an abstract syntax tree. Thus coercions do real work.

However, �xed annotations work poorly in large programs. Library func-
tions in particular may be called in many contexts, with combinations of static
and dynamic arguments which are unknown at the time the function de�nition
is annotated. This motivates polychronic annotations1 containing binding-time
variables, which are passed as parameters to annotated functions [7]. Using poly-
chronic annotations, we can annotate the power function as

power �1 �2 n x = if�1 n =�1 IntS�1 0

then IntS(�1t�2) 1
else x��1t�2 power �1 �2@

S(n��1 IntS�1 1)@Sx

1 Also, confusingly, called \polymorphic".

where the least upper bound of two binding times is determined by S � D. This
version can be specialised to any combination of known and unknown arguments,
but binding-times must actually be computed and passed as parameters in the
generating extension, increasing the cost of specialisation somewhat. Notice also
that many more coercions are needed, now that the binding-times are no longer
known a priori.

The binding-time behaviour of this function can be captured by a binding-

time type,

power :: 8�1; �2:Int
�1 !S Int�2 !S Int�1t�2

in which each type constructor is annotated to indicate whether the correspond-
ing value is known. Program annotations can be generated by inferring these
types using a binding-time type system. Types must always be well-formed, in
the sense that no static type appears under a dynamic type constructor.

2 What About Polymorphism?

When we try to incorporate polymorphic functions into this framework, we im-
mediately run into di�culties. Consider, for example, a possible binding-time
type for the map function:

map :: 8�1; �2:8�1; �2:(�1 !
�1 �2)!

S [�1]
�2 !S [�2]

�2

But not every instantiation of this type is well-formed: if either �1 or �2 isD, then
neither �1 nor �2 may be instantiated to a static type, since this would produce
an ill-formed type containing a static type under a dynamic type constructor. To
capture such dependencies between variables, we add constraints to our binding-
time types, which all instantiations must satisfy. Writing ��� for the constraint
that if � is D, then � must be a dynamic type, we can give a correct type for
map as

map :: 8�1; �2:8�1; �2:(�1 � �1; �1 � �2; �2 � �1; �2 � �2))
(�1 !

�1 �2)!
S [�1]

�2 !S [�2]
�2

These constraints have been used before [7], but did not appear in binding-time
types since that paper did not consider polymorphism.

Now consider an even simpler polymorphic function,

twice f x = f@(f@x)

The standard type of this function is 8�:(�! �)! �! �, but for the purposes
of specialisation we can be more liberal: we can allow the argument and result of
f to have di�erent binding-time types, provided the result can be coerced to the
argument type. Thus we also need a coercion or subtyping constraint �1 � �2,
which lets us give twice the binding-time type

twice :: 8�1; �2:8�:(� � �1; � � �2; �2 � �1)) (�1 !
� �2)!

S �1 !
S �2

However, there is more than one way that we might choose to annotate the
de�nition of twice.

We might expect that, just as we pass binding-times explicitly in annotated
programs, we should pass types explicitly to annotated polymorphic functions.
Annotating twice in this way would result in something like

twice �1 �2 � f x = f@�([�2 7! �1] (f@
�x))

But notice that we need a coercion, which we have written as [�2 7! �1], between
two unknown types here! The compiled code for a generating extension will
need to construct representations of types during specialisation, pass them as
parameters, and interpret them in order to implement such coercions. Because
types may be complex, this may be expensive, and in any case we prefer to avoid
interpretation in generating extensions.

Therefore, we treat polymorphic functions di�erently. Rather than passing
types as parameters, we pass the necessary coercion functions, one for each sub-
type constraint in the function's type. With this idea, the annotated version of
twice becomes

twice � � f x = f@�(� (f@�x))

where � implements the coercion �2 � �1. At each call of twice, we can pass a
specialised coercion function for the types which actually occur.

3 Binding-Time Analysis

Binding-time annotations are usually constructed automatically by a binding-

time analyser. We specify our polymorphic binding-time analysis via a type
system for annotated programs, which guarantees that operations annotated as
static never depend on dynamic values. Given an unannotated program, the
binding-time analyser �nds well-typed annotations that make as many oper-
ations as possible static. This type-based approach builds on earlier work by
Dussart, Henglein and Mossin [12, 7], which has been adopted for the Similix
partial evaluator [2]. We favour a type-based approach because it is e�cient,
comprehensible, and extends naturally to handle polymorphism.

We shall specify the binding-time type system for the smallest interesting
language, and then discuss how it is used to infer annotations.

3.1 The Binding-Time Type System

We consider an annotated �-calculus with polymorphic let and one base type:

e[Expression] ::= c j x j let x = e in e j �x:e j e@b� e j ��:e j e b j ��:e j e �
b[Binding-time] ::= S jD j � j b t b
�[Coercion] ::= � j � j Intbb j �!bb �

Here � is a binding-time variable, � is a coercion variable, x is a program variable,
and c is a constant.

In this simple language, only function application need be annotated with
a binding-time, and only function arguments need be coerced. Constants and
�-expressions are always static, and are coerced to be dynamic where necessary.
let-expressions are always dynamic, but their bodies may even so be static since
we use Bondorf's CPS specialisation [3], which moves the context of a let into its
body, where it can be specialised. Applications to binding-times and coercions
always take place during specialisation, and so need no annotation.

We have already seen integer coercions. A coercion �1 !
b1b2 �2 coerces a

function with binding-time b1 to one with binding-time b2, applying coercion �1
to the argument and �2 to the result. � is the identity coercion.

Binding-time types and constraints take the form

� [Monotype] ::= � j Intb j � !b �
c[Constraint] ::= b � b j b� � j � : � � �

The complete set of binding-time type inference rules can be found in the
appendix; here we focus on the rule for application:

� ;C j� e1 : (�1 ! �2)
b � ;C j� e2 : �3 C j� � : �3 � �1 C j� b B �1 C j� b B �2

� ;C j� (e1 @b � e2) : �2

As usual in a binding-time type system, our judgements depend both on an
environment � and a set of constraints C. Notice, however, that our subtype
constraints include the coercion that maps one type to the other. Thus, from the
constraint set C, we infer which coercion � converts �3 to �1. Notice also that we
include �-constraints to guarantee that the type of the function is well-formed.
Finally, the annotation on the application is taken from the type of the function.

Our constraint inference rules, with judgements of the form C j� c, can
be found in the appendix. They are mostly standard, with the exception that
the rules for subtyping actually construct a coercion. For example, the rule for
function types

C j� �1:�3 � �1 C j� �2:�2 � �4 C j� b1 � b2
C j� �1 !

b1b2 �2 : �1 !
b1 �2 � �3 !

b2 �4

constructs a coercion on functions from coercions on the argument and result.
Where possible, we use the identity coercion

C j� � : � � �

which can be removed altogether by a post-processor. We restrict the coercions
in C to be distinct coercion variables; thus we can think of C as a kind of
environment, binding coercion variables to their types.

As in the Hindley-Milner type system, let-bound variables may have type

schemes rather than monotypes. Type-schemes take the form

[Quali�ed type] ::= � j q)
q[Quali�er] ::= b � b j b� � j � � �
�[Polychronic type] ::= j 8�:�
�[Polymorphic type] ::= � j 8�:�

We give a complete set of rules to introduce and eliminate type-schemes in the
appendix; note that although our rule system is not syntax-directed, it is easy
to transform it into a syntax-directed system because of the restriction on where
type schemes may appear. Here we discuss only the rules which are not standard.

Notice that quali�ers are almost, but not exactly, the same as constraints.
The di�erence is that sub-type quali�ers �1 � �2 do not mention a coercion.
Looking at the rules for introducing and eliminating such a quali�er

� ;C; �:�1 � �2 j� e :
� ;C j� ��:e : �1 � �2)

� ;C j� e : �1 � �2) C j� �:�1 � �2
� ;C j� e � :

we see why: the coercion in the constraint becomes the bound variable of a
coercion abstraction; it would be unnatural to allow bound variable names in
types. That we `forget' the coercion doesn't matter: it can be recreated where it
is needed by the elimination rule.

The rules for generalising and instantiating type variables are standard,
except that we only allow instantiation with well-formed types. The rules for
binding-time variables just introduce binding-time abstraction and application:

� ;C j� e :
� ;C j� ��:e : 8�: � =2 FV (C; �)

� ;C j� e : 8�:
� ;C j� e b : [b=�]

Given any unannotated expression which is well-typed in the Hindley-Milner
system, we can construct a well-typed annotated expression by annotating each
application with a fresh binding-time variable and a fresh coercion variable,
moving constraints into quali�ed types, and generalising all possible variables.
But this leads to polymorphic de�nitions with very many generalised variables,
and very many quali�ers. In the remainder of this section we will see how to
reduce this multitude.

3.2 Simplifying Constraints

Before generalising the type of a let-bound variable, it is natural to simplify
the constraints as much as possible. Simpli�cation of this kind of constraint is
mostly standard [11], except that we keep track of coercions also; essentially
we use the constraint inference rules in the appendix backwards, instantiating
variables where necessary to make rules match. For example, we simplify the
constraint � : � � Intb by instantiating � to Int� and � to Int�b, where � is
fresh, and then simplifying the constraint to � � b. Simpli�cation of this kind
does not change the set of solutions of the constraints.

We use two non-standard simpli�cation rules also. Firstly, whenever we dis-
cover a cycle of binding-time variables �1 � � � � � �n � �1, we instantiate each
�i to the same variable. We treat cycles of type variables similarly, which much
reduces the number of variables we need to quantify over. Secondly, we simplify
the constraints fD � �1; � : �1 � �2g by instantiating �2 to �1 and � to �: this
preserves the set of solutions because both �1 and �2 have to be well-formed

types annotated D at the top-level, and one such type can be a subtype of
another only if they are equal.

Simpli�cation terminates, which can be shown by a lexicographic argument:
each rule reduces the size of types, the number of �-constraints, the number of
ts to the left of �, or the total number of constraints.

3.3 Simplifying Polymorphic Types

The simpli�cations in the previous section preserve the set of instances of a
polymorphic type. That is, if we simplify a type scheme �1 to a type scheme �2,
then any instance �1 of �1 is guaranteed also to be an instance of �2. But we
can go further, if we guarantee only that there is an instance �2 of �2 which is a
subtype of �1. This still enables us to use a polymorphic value of type �2 at any
instance of �1, provided we introduce a coercion. For example, we can simplify
the type of the power function from 8�1; �2; �3:(�1 � �3; �2 � �3)) Int�1 !S

Int�2 !S Int�3 to 8�1; �2:Int
�1 !S Int�2 !S Int�1t�2 ; these two types do not

have the same instances, but any instance of the �rst can be derived by coercing
an instance of the second. The second type has fewer quanti�ed variables and
coercions, and is therefore cheaper to specialise.

This subtype condition is guaranteed by ensuring that variables occurring
negatively in the type are only instantiated to smaller quantities, while variables
occurring positively are only instantiated to larger ones. Moreover, simpli�ca-
tion must not increase the binding-time of any program annotation, otherwise it
would lead to poorer specialisation. Positively occurring binding-time variables
therefore cannot be instantiated at all. Dussart et al. [7] simplify by instantiat-
ing non-positive binding-time variables to the least upper bound of their lower
bounds (as in the power example above).

In the presence of polymorphism, we instantiate type variables also. We
might treat non-positive type variables in the same way that Dussart et al.
treat binding-time variables, but this would introduce least upper bounds of
type variables. This would be problematic for us, since we pass coercions and
not types as parameters during specialisation: while it is straightforward (if ex-
pensive) to compute the least upper bound of two types, computing the least
upper bound of two coercions would be far harder. But in two special cases, we
can instantiate non-positive type variables to smaller types without needing least
upper bounds.

Firstly, if � : �1 � �2 is the only constraint imposing a lower bound on
�2, and �2 is non-positive, then we can instantiate �2 to �1 and � to �. We also
must insist that �1 and �2 are forced by the same set of binding-times; otherwise
unifying them might make �1 more dynamic.

Secondly, if �1 and �2 are both non-positive, have the same set of lower
bounds, and are forced by the same binding-times, then they must take the
same value in the least solution of the constraints, and we can unify them |
even though we cannot express this least solution without least upper bound.

But there is another way to simplify constraints on type variables: we can
instantiate non-negative type variables to larger types! This does potentially

make some types more dynamic, but no binding-times, and it is the binding-
time annotations which determine the quality of specialisation, not the types.
We can do this in cases analogous to the two above, except that we need not
be concerned with the binding-times which force type variables, since we expect
to make type variables more dynamic. This process is speci�ed formally in the
appendix.

This form of simpli�cation terminates since each step eliminates one variable.
For example, the type inferred for themap function, after simplifying binding-

times, is

8�1; �2; �3; �4; �5:8�1; �2:
(�1 � �1; �1 � �2; �2 � �3; �2 � �4; �3 � �1; �2 � �4; �5 � �4))
(�1 !

�1 �2)!
S [�3]

�2 !S [�4]
�2

(where �5 is a type variable internal to the de�nition of map). �4 has two lower
bounds, so cannot be reduced, while �1 cannot be reduced to its only lower
bound �3 since �1 � �1, but �1 does not force �3. However, �2, �3, and �5 are
all non-positive and have unique upper bounds, so we can increase all three to
their upper bounds and simplify the type to

8�1; �2:8�1; �2:(�1 � �1; �1 � �2; �2 � �1; �2 � �2))
(�1 !

�1 �2)!
S [�1]

�2 !S [�2]
�2

The number of coercion parameters is decreased from three to zero.

4 Discussion

We have implemented this binding-time analysis in a prototype partial evaluator
for polymorphic programs [10]. In practice, every binding-time analyser some-
times makes too many operations static, causing partial evaluation to loop, and
ours is no exception. This must be prevented using user annotations, which have
to be rethought in a polymorphic context. The full paper will contain details.

Polymorphism is particularly important for programs made up of many mod-
ules. In earlier work on specialising modules [8, 6, 9] we discovered we needed
polymorphic binding-time analysis, which directly inspired this work.

Our analysis is built on Henglein et al's earlier polychronic analyses [12,
7]. Consel et al generalised their work in a di�erent direction [4]. Binding-time
analysers for polymorphic programs have also been developed based on abstract
interpretation [15, 19], although this approach is now little used in practice.

This paper considers only parametric polymorphism, without overloading.
We hope to extend our system to handle overloading based on Haskell classes
[21].

Polymorphic typing is integral to widely used functional programming lan-
guages such as ML and Haskell, and has also been adopted in other languages
such as Mercury [20]. Polymorphic binding-time analysis, such as ours, is vital
if program specialisation is to be applied to such languages in practice.

References

1. L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU report
94/19).

2. A. Bondorf. Automatic autoprojection of higher-order recursion equations. In
N. Jones, editor, 3rd European Symposium on Programming, LNCS, Copenhagen,
1990. Springer-Verlag.

3. A. Bondorf. Improving binding times without explicit cps-conversion. In 1992 ACM
Conference on Lisp and Functional Programming. San Francisco, California, pages
1{10, June 1992.

4. C. Consel and P. Jouvelot. Separate Polyvariant Binding-Time Analysis. Technical
Report CS/E 93-006, Oregon Graduate Institute Tech, 1993.

5. Charles Consel. A tour of schism: a partial evaluation system for higher-order
applicative languages. In ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages 145{154, June 1993.

6. D. Dussart, R. Heldal, and J. Hughes. Module-Sensitive Program Specialisation.
In Conference on Programming Language Design and Implementation, Las Vegas,
June 1997. ACM SIGPLAN.

7. D. Dussart, F. Henglein, and C. Mossin. Polymorphic Recursion and Subtype
Quali�cations: Polymorphic Binding-Time Analysis in Polynomial Time. In Alan
Mycroft, editor, SAS'95: 2nd Int'l Static Analysis Symposium, volume 983 of Lec-
ture Notes in Computer Science, pages 118{135, Glasgow, Scotland, September
1995. Springer-Verlag.

8. R. Heldal and J. Hughes. Partial Evaluation and Separate Compilation. In Sym-
posium on Partial Evaluation and Semantics-Based Program Manipulation, Ams-
terdam, June 1997. ACM SIGPLAN.

9. R. Heldal and J. Hughes. Extending a partial evaluator which supports separate
compilation. Theoretical Computer Science 248, pages 99{145, 2000.

10. Rogardt Heldal. The Treatment of Polymorphism and Modules in a Partial Eval-
uator. PhD thesis, Chalmers University of Technology, April 2001.

11. F. Henglein. E�cient type inference for higher-order binding-time analysis. In
J. Hughes, editor, FPCA, pages 448{472. 5th ACM Conference, Cambridge, MA,
USA, Springer-Verlag, August 1991. Lecture Notes in Computer Science, Vol. 523.

12. F. Henglein and C. Mossin. Polymorphic Binding-Time Analysis. In D. Sannella,
editor, ESOP'94: European Symposium on Programming, volume 788 of Lecture
Notes in Computer Science, pages 287{301. Springer-Verlag, April 1994.

13. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, 1993.

14. Simon Peyton Jones, John Hughes, (editors), Lennart Augustsson, Dave Barton,
Brian Boutel, Warren Burton, Joseph Fasel, Kevin Hammond, Ralf Hinze, Paul Hu-
dak, Thomas Johnsson, Mark Jones, John Launchbury, Erik Meijer, John Peterson,
Alastair Reid, Colin Runciman, and Philip Wadler. Report on the Programming
Language Haskell 98, a Non-strict, Purely Functional Language. Available from
http://haskell.org, February 1999.

15. J. Launchbury. Projection Factorisations in Partial Evaluation (PhD thesis), vol-
ume 1 of Distinguished Dissertations in Computer Science. Cambridge University
Press, 1991.

16. K. Malmkjr, N. Heintze, and O. Danvy. ML partial evaluation using set-based anal-
ysis. In Workshop on ML and its Applications, pages 112{119. ACM SIGPLAN,
1994.

17. R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer
and Systems Sciences, 17:348{375, 1978.

18. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The De�nition of Standard
ML (Revised). MIT Press, 1997.

19. T. �. Mogensen. Binding Time Analysis for Polymorphically Typed Higher Order
Languages. In Theory and Practice of Software Development, volume 352 of Lecture
Notes in Computer Science, pages 298{312. Springer-Verlag, March 1989.

20. Zoltan Somogyi, Fergus Henderson, and Thomas Conway. Mercury: an e�cient
purely declarative logic programming language. In Proceedings of the Australian
Computer Science Conference, pages 499{512, Glenelg, Australia, February 1995.

21. P. Wadler and S. Blott. How to make ad hoc polymorphism less ad hoc. In
Proceedings 1989 Symposium Principles of Programming Languages, pages 60{76,
Austin, Texas, 1989.

A Appendix: Binding-Time Rules

�; x:�; � 0;C j� x : � � ;C j� c : IntS
C j� �1 wft �; x:�1;C j� e : �2

� ;C j� �x:e : (�1 !
S �2)

� ;C j� e1 : (�1 ! �2)
b � ;C j� e2 : �3 C j� � : �3 � �1 C j� b B �1 C j� b B �2

� ;C j� (e1 @
b � e2) : �2

� ;C j� e1 : � �; x:�;C j� e2 : �
� ;C j� let x = e1 in e2 : �

Fig. 1. Syntax Directed Binding-time Rules for Expressions.

� ;C j� e :
� ;C j� ��:e : 8�: � =2 FV (C; �)

� ;C j� e : 8�:
� ;C j� e b : [b=�]

� ;C; b1 � b2 j� e :
� ;C j� e : b1 � b2)

� ;C; b� � j� e :
� ;C j� e : b� �)

� ;C; �:�1 � �2 j� e :
� ;C j� ��:e : �1 � �2)

� ;C j� e : b1 � b2) C j� b1 � b2
� ;C j� e :

� ;C j� e : b� �) C j� b� �
� ;C j� e :

� ;C j� e : �1 � �2) C j� �:�1 � �2
� ;C j� e � :

� ;C j� e : �
� ;C j� e : 8�:� � =2 FV (C; �)

� ;C j� e : 8�:� C j� � wft
� ;C j� e : �[�=�]

Fig. 2. Non-Syntax Directed Rules

C; c j� c C j� � : � � �
C j� b1 � b2

C j� Intb1b2 : Intb1 � Intb2

C j� �1:�3 � �1 C j� �2:�2 � �4 C j� b1 � b2
C j� �1 !

b1b2 �2 : �1 !
b1 �2 � �3 !

b2 �4

C j� b1 � b2
C j� b1 � Intb2 C j� S � �

C j� b1 � b2
C j� b1 � �1 !

b2 �2

C j� b � b C j� S � b C j� b � D C j� �i � t�i
C j� �1 � �3 C j� �2 � �3

C j� �1 t �2 � �3

Fig. 3. Constraint Inference Rules

C j� � wft C j� Baseb wft
C j� �1 wft C j� �2 wft C j� b B �1 C j� b B �2

C j� �1 !
b �2 wft

Fig. 4. Well-formedness of Types.

Each time one of the rules below is applied, the constraints must �rst be normalised
and the set of force constraints must be closed using the following rule:

f� � �1; � : �1 � �2g f� � �1; � � �2; � : �1 � �2g

To simplify a type � and constraint set C in an environment � :

� =2 (j� j� [FV(�))) C C�[� := t�02C���
0]; � := t�02C���

0

� =2 (j� j� [FV(�)) ^ C�� = fg ^ C�� � C��1
) C; � : �1 � � C[� := �1];� := �1; � := �

�1; �2 =2 (j� j� [FV(�)) ^ C��1 = C��2 ^ C��1 = C��2
) C C[�1 := �2];�1 := �2

� =2 (j� j+ [FV(�)) ^ C�� = fg
) C; � : � � �1 C[� := �1];� := �1; � := �

�1; �2 =2 (j� j+ [FV(�)) ^ C�1� = C�2�

) C C[�1 := �2];�1 := �2

where

C�� , f�1j�1 � � 2 Cg C� , C � f�1 � � j�1 2 Bg

C�� , f�1j� : �1 � � 2 Cg C�� , fbjb� � 2 Cg C�� , f�1j� : � � �1 2 Cg

Fig. 5. Increasing and Decreasing Variables.

