

 Skip to main content

 LoginJoin NowHelp

 The Source for Java Technology Collaboration

 Forums
 Blogs
 Projects
 People

 Main Menu

 	Home
	Projects
	Forums
	People
	Java User Groups
	JCP

 Generating PDFs for Fun and Profit with Flying Saucer and iText

	

 June 26, 2007

 Josh Marinacci

	

	Contents
	

	The Problem with PDFs
	An Introduction to Flying Saucer and iText
	Generating a Simple PDF
	Generating Content on the Fly
	Page-Specific Features
	Rendering Generic XML Instead of XHTML
	Generating PDFs in a Server-Side Application
	Conclusion
	Resources

PDFs are one of the most common and most significant document

formats on the internet. Typically, developers must use expensive

tools from Adobe or cumbersome APIs to generate PDFs. In this

article, you will learn how to programmatically generate PDFs easily

with plain XHTML and CSS using two open source Java libraries:

Flying Saucer and iText.

The Problem with PDFs

PDFs are a great technology. When Adobe created the PDF format, they had a

vision for a portable document format (hence the name) that could

be viewed on any computer and printed to any printer. Unlike web

pages, PDFs will look exactly the same on every device, thanks to

the rigorous PDF specification. And the best thing about PDFs is

that the specification is open so you can generate them on the fly,

using readily available open source libraries.

There is one big problem with PDFs, however: the spec is

complicated and the APIs for generating PDFs tend to be cumbersome,

requiring a lot of low-level coding of paragraphs and headers. More

importantly, you have to use code to generate PDFs. But to

make good-looking PDFs, you need a graphic designer to create the

layout. Even if graphic designers are up to the task of

programming, they still must convert their layout from some other

format to code, which can be cumbersome, buggy, and time-consuming.

Fortunately, there is a better way.

The way to make good looking PDFs is to let the programmers do

what they are good at: writing code that manipulates data, and let

the graphic designers do what they are good at: making attractive

graphic designs. Flying Saucer and iText are tools that do this.

They let you render CSS stylesheets and XHTML, either static or

generated, directly to PDFs.

An Introduction to Flying Saucer and iText

Flying Saucer, which is the common name for the
"https://xhtmlrenderer.dev.java.net">xhtmlrenderer project on

java.net, is an LGPLed Java library on java.net originally

created by me and continually developed by the java.net community.

Download it from the project page, or use the copy included with

this article's sample code (see
"#resources">Resources). Flying Saucer's primary purpose is to

render spec-compliant XHTML and CSS 2.1 to the screen as a Swing

component. Though it was originally intended for embedding markup

into desktop applications (things like the iTunes Music Store),

Flying Saucer has been extended work with iText as well. This makes

it very easy to render XHTML to PDFs, as well as to images and to the

screen. Flying Saucer requires Java 1.4 or higher.

iText is a PDF generation library created by Bruno

Lowagie and Paulo Soares, licensed under the LGPL and the Mozilla

Public License. You can download iText from
"http://www.lowagie.com/iText/">its home page or use the copy

in the download bundle at the end of this article (see
"#resources">Resources). Using the iText API, you can produce

paragraphs, headers, or any other PDF feature. Since the PDF

imaging model is fairly similar to Java2D's model, Flying Saucer

and iText can easily work together to produce PDFs. In fact, the

PDF version of the
"https://xhtmlrenderer.dev.java.net/r6/users-guide-r6.pdf">Flying

Saucer user manual was itself produced using Flying Saucer and

iText.
Generating a Simple PDF

To get started, I'm going to show you how to render a very

simple HTML document as a PDF file. You can see in the

samples/firstdoc.xhtml file below that it's a plain XHTML

document (note the XHTML DTD in the header) and contains only a

single formatting rule: b { color: green; }. This

means the default HTML formatting for paragraphs and text will

apply, with the exception that all b elements will be

green.

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>My First Document</title> <style type="text/css"> b { color: green; } </style> </head> <body> <p> Greetings Earthlings! We've come for your Java. </p> </body></html>

Now that we have a document, we need code to produce the PDF. The

FirstDoc.java file below is the simplest possible way to

render a PDF document.

package flyingsaucerpdf;import java.io.*;import com.lowagie.text.DocumentException;import org.xhtmlrenderer.pdf.ITextRenderer;public class FirstDoc { public static void main(String[] args) throws IOException, DocumentException { String inputFile = "samples/firstdoc.xhtml"; String url = new File(inputFile).toURI().toURL().toString(); String outputFile = "firstdoc.pdf"; OutputStream os = new FileOutputStream(outputFile); ITextRenderer renderer = new ITextRenderer(); renderer.setDocument(url); renderer.layout(); renderer.createPDF(os); os.close(); }}

There are two main parts to the code. First it prepares the

input and output files. Since Flying Saucer deals with input URLs,

the code above converts a local file string into a

file:// URL using the File class. The

output document is just a FileOutputStream that

writes to the firstdoc.pdf file in the current working

directory.

The second part of the code creates a new

ITextRenderer object. This is the Flying Saucer class

that knows how to render PDFs using iText. You must first set the

document property of the renderer using the

setDocument(String) method. There are other methods

for setting the document using URLs and W3C DOM objects. Once the

document is installed you must call layout() to

perform the actual layout of the document and then

createPDF() to draw the document into a PDF file on

disk.

To compile and run this code you need the Flying Saucer .jar,

core-renderer.jar. For this article I am using a recent

development build (R7 HEAD). R7 final should be out in

a few weeks, perhaps by the time you read this. I chose to use a recent

R7 build instead of the year-old R6 because R7 has a rewritten CSS

parser, better table support, and of course, many, many bugfixes.

You will also need the iText .jar itext_paulo-155.jar (this

is actually an early access copy of iText from
"http://itextpdf.sourceforge.net/">its SourceForge project

page). All of these .jars are included in the standard Flying

Saucer R6 download, and also in the examples.zip file in

this article's Resources section. Once you put

these .jars in your classpath everything will compile and run. The

finished PDF looks like Figure 1:

"Screenshot of firstdoc.pdf" width="375" height="145" />

Figure 1. Screenshot of firstdoc.pdf (click to download full PDF

document)

Generating Content on the Fly

Producing a PDF from static documents is useful, but it would be

more interesting if you could generate the markup programmatically.

Then you could produce documents that contain more interesting

content than simple static text.

Below is the code for a simple program that generates the

lyrics to the song "99 Bottles of Beer on the Wall." This song has

a repeated structure, so we can easily produce the lyrics with a

simple loop. This document also uses some extra CSS styles like

color, text transformation, and modified padding.

In first part of the OneHundredBottles.java code, all of

the style and markup is appended to a StringBuffer.

Note that the style rule for h3 includes the

text-transform property. This will capitalize the

first letter of every word in the title. The body of the document

is produced by the loop that goes from 99 to 0. Notice that there

is an image, 100bottles.jpg, included at the top of

the document. iText will embed the image in the resulting PDF,

meaning the user will not need to load any other images once they

receive the PDF. This is an advantage of PDFs over HTML, where

images must be stored separately.

public class OneHundredBottles {public static void main(String[] args) throws Exception { StringBuffer buf = new StringBuffer(); buf.append("<html>"); // put in some style buf.append("<head><style language='text/css'>"); buf.append("h3 { border: 1px solid #aaaaff; background: #ccccff; "); buf.append("padding: 1em; text-transform: capitalize; font-family: sansserif; font-weight: normal;}"); buf.append("p { margin: 1em 1em 4em 3em; } p:first-letter { color: red; font-size: 150%; }"); buf.append("h2 { background: #5555ff; color: white; border: 10px solid black; padding: 3em; font-size: 200%; }"); buf.append("</style></head>"); // generate the body buf.append("<body>"); buf.append("<p></p>"); for(int i=99; i>0; i--) { buf.append("<h3>"+i+" bottles of beer on the wall, " + i + " bottles of beer!</h3>"); buf.append("<p>Take one down and pass it around, " + (i-1) + " bottles of beer on the wall</p>\n"); } buf.append("<h2>No more bottles of beer on the wall, no more bottles of beer. "); buf.append("Go to the store and buy some more, 99 bottles of beer on the wall.</h2>"); buf.append("</body>"); buf.append("</html>");

The second part of the code parses the

StringBufferinto a DOM document using the standard

Java XML APIs and then sets that as the document on the

ITextRenderer object. The renderer needs a base

URL to load resources like images and external CSS files. If

you pass a URL for the document to the renderer, then it will infer

the base URL. For example the document URL

http://myserver.com/pdf/mydoc.xhtml would result in a base

URL of http://myserver.com/pdf/ However, if you pass in a

pre-parsed Document object instead of a URL, then the

renderer will have no idea what the base URL is. You can manually

set the base URL using the second argument to the

setDocument() method. In this case I have used a value

of null, since I am not referencing any external

resources.

 // parse the markup into an xml Document DocumentBuilder builder = DocumentBuilderFactory.newInstance().newDocumentBuilder(); Document doc = builder.parse(new StringBufferInputStream(buf.toString())); ITextRenderer renderer = new ITextRenderer(); renderer.setDocument(doc, null); String outputFile = "100bottles.pdf"; OutputStream os = new FileOutputStream(outputFile); renderer.layout(); renderer.createPDF(os); os.close();}}

The final document looks like Figure 2:

"Screenshot of 100bottles.pdf" width="398" height="280" />

Figure 2. Screenshot of 100bottles.pdf (click to download full

PDF document)

Page-Specific Features

So far the documents we have rendered are basically just web

pages in PDF form. They don't have any features that take

advantage of pages. Paged media like printed documents or

slideshows have certain features specific to pages. In particular,

pages have specific sizes and margins. Text laid out for an 8 1/2

by 11 inch piece of paper will look very different than text for a

paperback book, or a CD cover. In short, pages matter, and Flying

Saucer gives you some control over pages using page-specific

features in CSS.

This next example will print the first chapter of Lewis

Carroll's Alice in Wonderland in a paperback format. The

markup is pretty straightforward, just a bunch of headers and

paragraphs. Below are the first few paragraphs of the document (see

the download for the entire chapter). There are two things to

notice in this document. First, all of the style is included in the

alice.css file linked in the header with a link

element. The media="print" attribute must be included,

or the style will not be loaded. The other important thing to

notice are the two divs at the top: header

and footer. The footer has two special elements in it,

pagenumber and pagecount, which are used

to generate the page numbers. These divs and the page

number elements will not be rendered at the top of the page.

Instead, we will use some special CSS to make these

divs repeat on every page and generate the proper page

numbers at runtime.

<html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Alice's Adventures in Wonderland -- Chapter I</title> <link rel="stylesheet" type="text/css" href="alice.css" media="print"/> </head> <body> <div id="header" style="">Alice's Adventures in Wonderland</div> <div id="footer" style=""> Page of </div> <h1>CHAPTER I</h1> <h2>Down the Rabbit-Hole</h2> <p class="dropcap-holder"> <div class="dropcap">A</div> lice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, `and what is the use of a book,' thought Alice `without pictures or conversation?' </p> <p>So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid), whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly a White Rabbit with pink eyes ran close by her. </p> <p class="figure">
 White Rabbit checking watch </p> ... the rest of the chapter

Most of the alice.css file contains normal CSS rules

that can apply to any kind XHTML document, printed or not. There

are a few, however, that are page-specific extensions:

@page { size: 4.18in 6.88in;margin: 0.25in; -fs-flow-top: "header";-fs-flow-bottom: "footer";-fs-flow-left: "left";-fs-flow-right: "right";border: thin solid black;padding: 1em;}#header {font: bold serif;position: absolute; top: 0; left: 0; -fs-move-to-flow: "header";}#footer {font-size: 90%; font-style: italic; position: absolute; top: 0; left: 0;-fs-move-to-flow: "footer";}#pagenumber:before {content: counter(page); }#pagecount:before {content: counter(pages); }

The first thing you'll notice in the CSS above is the

@page rule. This is a rule that is attached to the

page itself rather than to any particular elements within the

document. Within this @page rule, you can set the size

of the page as well as page margins using the size and

margin properties. Note that I have set the size to

4.18in 6.88in, which is the size of a standard mass-market paperback book in the U.S. (according to
"http://www.cafepress.com/">CafePress). Also in the

@page rule are four special properties beginning with

-fs-flow-. These are Flying Saucer-specific properties

that tell the renderer to move content marked with the specified

names: header, footer, left,

and right to every page in the top, bottom, left, and

right positions.

In the rules for the header and footer divs, you

can see another Flying Saucer-specific property called

-fs-move-to-flow, which will take the div

out of the normal document and put it in the special place marked

by "footer" or "header". This property

works in conjunction with the -fs-flow-* properties in

the @page element to make repeated content work. These

custom properties are needed because CSS 2.1 does not define any

way to have repeated headers and footers. CSS 3 does

define a way to have repeated content, and Flying Saucer will

support the new standard mechanism in the future.

After the @page and header rules, you'll find two

more rules for the pagenumber and

pagecount elements. These are made-up elements (not

standard XHTML) that will have counters added to their content.

Since those two elements are empty, you will only see the counters

themselves. Since the pagenumber and

pagecount elements were defined in the footer, the

final page numbers will also appear in the footer. Again, these page

number elements will be replaced with their proper CSS 3

equivalents in the future.

The final rendered alice.xhtml is shown in Figure 3:

"Screenshot of pagination.pdf" width="256" height="404" />
alt="Screenshot of pagination.pdf" width="256" height="404" />

Figure 3. Screenshot of two pages of pagination.pdf (click to

download full PDF document)

A quick note on debugging: CSS can be tricky sometimes, and it is

very easy to misspell a keyword or forget some punctuation. Flying

Saucer R7 has a brand new CSS parser with very robust error

reporting. When developing your application, I recommend turning on

the built-in logging. The in-depth details of Flying Saucer

configuration are available in the FAQ. I have found the most

useful setting is to set the logging level to INFO by

adding this to your Java command line:

-Dxr.util-logging.java.util.logging.ConsoleHandler.level=INFO

This setting will print lots of debugging information, including

places where the CSS or markup may be broken.

Rendering Generic XML Instead of XHTML

Every example so far has used XHTML, meaning the XHTML dialect

of XML defined by the W3C. Many documents rendered into PDF are in

fact XHTML documents, but Flying Saucer can actually handle any

well-formed XML file. In fact, Flying Saucer does very little that

is XHTML-specific. XHTML documents are just XML documents with a

default stylesheet. If you define your own stylesheet, then you can

render any XML document you want. This could be particularly useful

when working with the output of databases or web services, since

that output is probably in XML already.

Below is a very simple custom XML document, weather.xml,

that describes the weather at multiple locations. It does not use

standard XHTML elements at all; every element is custom. Notice the

second line contains a reference to the stylesheet.

<?xml version="1.0" encoding="UTF-8"?><?xml-stylesheet href='weather.css' type='text/css'?><weather> <station> <location>Springfield, NT</location> <description>Sunny</description> <tempf>85</tempf> </station> <station> <location>Arlen, TX</location> <description>Super Sunny</description> <tempf>99</tempf> </station> <station> <location>South Park, CO</location> <description>Snowing</description> <tempf>18</tempf> </station></weather>

Here is the DirectXML.java code that renders the

document. Notice that the code does nothing special. As far as

Flying Saucer is concerned, the only difference between XHTML and

XML is the file extension.

public class DirectXML { public static void main(String[] args) throws IOException, DocumentException { String inputFile = "samples/weather.xml"; String outputFile = "weather.pdf"; OutputStream os = new FileOutputStream(outputFile); ITextRenderer renderer = new ITextRenderer(); renderer.setDocument(new File(inputFile)); renderer.layout(); renderer.createPDF(os); os.close(); }}

Here's the weather.css CSS that will style the XML.

* { display: block; margin: 0; padding: 0; border: 0;}station { clear: both; width: 3in; height: 3in; padding: 0.5em; margin: 1em; border: 3px solid black; background-color: green; font-size: 30pt; page-break-inside: avoid;}tempf { border: 1px solid white; background-color: blue; color: white; width: 1.5in; height: 1.5in; margin: 5pt; padding: 8pt; font: 300% sans-serif bold;}location { color: white; }description { color: yellow; }

The CSS stylesheet contains all of the magic in this example.

Since this is all XML, there are no default rules to show how any

element is drawn. That's why the first rule is a *

rule to affect all elements: they should all be blocks with no

border, margins, or padding. Then I have defined a rule for each of

the four content elements. The elements take the standard CSS

properties that you could apply to HTML elements. Note that the

station element has a
page-break-inside:
avoid
 property. This is a CSS 3 property that tells the

renderer that you don't want the station element split by a page

break. This is useful when you have content sections that must be printed

whole. For example you might be printing to label paper for

stickers on a map display. In that case, you definitely would

not want any boxes to be split across pages.
Note that I've set the size of the station block using inches.

When coding for the Web you usually want to avoid absolute units

like inches, pixels, or centimeters. Instead, you should use

relative units like points or ems, since these work well when a

user resizes the document or changes their font size. But then

again, PDFs aren't for the Web. They are paged media for

printing. That means absolute units are perfectly fine, and in fact

encouraged, since their use ensures the user will get a document

that looks exactly like you wanted.

The final document looks like Figure 4.:

"Screenshot of weather.pdf" width="212" height="221" />

Figure 4. Screenshot of weather.pdf (click to download full PDF

document)

Generating PDFs in a Server-Side Application

All of the examples in this article have been small command-line

programs that write PDF files. However, you can easily use this

technology to produce PDFs in a web application using a servlet.

The only difference is that you will be writing to a

ServletOutputStream instead of a

FileOutputStream. Below is a portion of the code for a

PDF generation servlet that produces a tabular report of sales for

a particular user:

public class PDFServlet extends HttpServlet { protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { response.setContentType("application/pdf"); StringBuffer buf = new StringBuffer(); buf.append("<html>"); String css = getServletContext().getRealPath("/PDFservlet.css"); // put in some style buf.append("<head><link rel='stylesheet' type='text/css' "+ "href='"+css+"' media='print'/></head>"); ... //generate the rest of the HTML // parse our markup into an xml Document try { DocumentBuilder builder = DocumentBuilderFactory.newInstance().newDocumentBuilder(); Document doc = builder.parse(new StringBufferInputStream(buf.toString())); ITextRenderer renderer = new ITextRenderer(); renderer.setDocument(doc, null); renderer.layout(); OutputStream os = response.getOutputStream(); renderer.createPDF(os); os.close(); } catch (Exception ex) { ex.printStackTrace(); } }

The code above looks pretty much like the previous examples.

There are two special things to notice, though. First, you must set

the content type to application/pdf. This will make

the user's web browser pass the PDF on to their PDF reader or

plugin instead of showing it as garbled text. Second, the CSS is

stored in a separate file in the main webapp directory (where the

JSPs and HTML would go). In order for Flying Saucer to find it, you

must use the getServletContext().getRealPath() method

to convert PDFservlet.css into an absolute URL and put

it in the link tag at the top of the generated markup. Once you

have your HTML properly generated, you can just parse it into a

Document and render the PDF to the output stream

returned by response.getOutputStream().

The final document looks like Figure 5:

"Screenshot of servlet.pdf" width="358" height="310" />

Figure 5. Screenshot of servlet.pdf (click to download full PDF

document)

Conclusion

PDFs are a great format for maps, receipts, reports, and

printable labels. Flying Saucer and iText let you produce PDF files

programmatically without having to use expensive tools or

cumbersome APIs. By using plain XHTML and CSS, your graphic

designer can use their existing web tools like Dreamweaver to

produce great looking CSS templates that you or your developers

plug in to your applications. By splitting the work, you can save

both time and money.

If you use Flying Saucer to produce PDFs for your company or

project, please post a link in the comments of this article or email

me. The Flying Saucer team would love to have more examples of cool

things people are doing with Flying Saucer and iText.

Resources

	Flying Saucer

project
	iText
	
"http://www.adobe.com/devnet/pdf/pdf_reference.html">PDF

reference
	Sample code for

this article

	
width="1" height="1" border="0" alt=" " />

		
			Josh Marinacci first tried Java in 1995 at the request of his favorite TA and has never looked back.
		

	

 Related Topics >>
 Web Design |

 Article Links >>
 	Login or register to post comments
	Printer-friendly version
	ShareThis
	276633 reads

 Comments

 THk you very much

 by kunawat - 2009-09-08 02:07

 THk you very much

 	Login or register to post comments

 Very nice tutorial ... Any

 by jadonohu - 2009-12-30 17:03

 Very nice tutorial ... Any chance that the sources are still available somewhere? (the "Sample Code" link goes to nowhere).

Thanks.

 	Login or register to post comments

 I really enjoyed this

 by gerb - 2010-02-22 03:08

 I really enjoyed this article, the example are concise and the build-up in complexity is very nice.

As, I'm working on a project where I need to render existing (sloppy) HTML into PDF, I decided to go with your solution. However, when I went with the current versions of XhtmlRenderer (R8) and iText (5.0.1), they don't seem to play nice together. I tried many other releases of iText & XHTML renderer in combinations, often they produced a variety of errors, including:
 java.lang.NoClassDefFoundError: com/lowagie/text/pdf/PdfTemplate
 NoSuchMethodError: com.lowagie.text.pdf.BaseFont.getCharBBox

When I finally got a version to render HTML as PDF file, the PDF looked pretty jumbled. Apparently, font-specifics such as bold, italics were rendered OK, as were colours, but the EOLs was completely missing - no line endings, every paragraph on top of the other. It seems In addition, my embedded CSS (caught between style tags) was displayed as well.

I finally decided to piece together your solution as described above, which works fine, but it seems strange that I need to run with a pre-release of iText and XhtmlRenderer R7 in order to get acceptable results. In addition there some other minor issues, like implementing my own FssResolver.

For the record: I did try a great selection of major releases of iText starting with 1.5.9 together with R7 & R8.

I'm posting this here in the hope that in a future release, iText & XhtmlRenderer will be able to play nice with each other again. And to end on a happy note: this article really helped me out!

 	Login or register to post comments

 Nice article. I found it

 by jeetu_indra - 2010-06-18 04:13

 Nice article. I found it useful for creating pdfs from html. But what i found is that the latest version of FlyingSaucer R8 works only with itext-2.0.8.jar not anything later to that.

 	Login or register to post comments

 Nice article, but I can't

 by icsusan - 2010-06-25 10:35

 Nice article, but I can't download sources :(

Can you send me it, plz?

Thanks in advance.

Susan Inga

 	Login or register to post comments

 hi, I like this, but I found

 by chrispoket - 2010-07-20 18:44

 hi, I like this, but I found some troubles for implement an example using servlets, first :
new StringBufferInputStream(buf.toString()
I change for
byte[] byteArray = buf.toString().getBytes("ISO-8859-1");
ByteArrayInputStream baos = new ByteArrayInputStream(byteArray);
Document doc = builder.parse(baos);

so with that works for new versions of java

 	Login or register to post comments

 Great Solution and this is

 by btie - 2010-10-20 12:47

Great Solution and this is exactly what I need.

However, I got Exception "Caused by: java.io.IOException: Stream closed" on line "renderer.setDocument(url);" of the first example--Generating a simple PDF. I copied exactly what you posted here and changed only Input/Output file. Would you let me know what might be wrong here? Thank you!

 	Login or register to post comments

 Generating PDFs for Fun and

 by javanewbie22 - 2010-11-04 12:51

Hi,

I am getting following errors while trying to run your code above.

Can you please tell me do I need any extra Jar's for this code to run.I have included iText-2.0.8.jar and code-renderer.jar.

org.xhtmlrenderer.util.XRRuntimeException: Can't load the XML resource (using TRaX transformer). java.io.IOException: Stream closedXMLResource.java:191)XMLResource.java:71)NaiveUserAgent.java:211)ITextRenderer.java:134)ITextRenderer.java:149)DirectXML.java:16)javax.xml.transform.TransformerException: java.io.IOException: Stream closedXMLResource.java:189)java.io.IOException: Stream closed

at org.xhtmlrenderer.resource.XMLResource$XMLResourceBuilder.createXMLResource(

at org.xhtmlrenderer.resource.XMLResource.load(

at org.xhtmlrenderer.swing.NaiveUserAgent.getXMLResource(

at org.xhtmlrenderer.pdf.ITextRenderer.loadDocument(

at org.xhtmlrenderer.pdf.ITextRenderer.setDocument(

at DirectXML.main(

Caused by:

at com.sun.org.apache.xalan.internal.xsltc.trax.TransformerImpl.transform(Unknown Source)

at com.sun.org.apache.xalan.internal.xsltc.trax.TransformerImpl.transform(Unknown Source)

at org.xhtmlrenderer.resource.XMLResource$XMLResourceBuilder.createXMLResource(

... 5 more

Caused by:

at java.io.BufferedInputStream.getInIfOpen(Unknown Source)

at java.io.BufferedInputStream.fill(Unknown Source)

at java.io.BufferedInputStream.read(Unknown Source)

at com.sun.org.apache.xerces.internal.impl.XMLEntityManager$RewindableInputStream.read(Unknown Source)

at com.sun.org.apache.xerces.internal.impl.XMLEntityManager.setupCurrentEntity(Unknown Source)

at com.sun.org.apache.xerces.internal.impl.XMLVersionDetector.determineDocVersion(Unknown Source)

at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(Unknown Source)

at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(Unknown Source)

at com.sun.org.apache.xerces.internal.parsers.XMLParser.parse(Unknown Source)

at com.sun.org.apache.xerces.internal.parsers.AbstractSAXParser.parse(Unknown Source)

at com.sun.org.apache.xalan.internal.xsltc.trax.TransformerImpl.transformIdentity(Unknown Source)

... 8 more

ERROR: 'Stream closed'

Exception in thread "main"

 	Login or register to post comments

 Generating PDFs for Fun and

 by vamsiannem - 2011-03-11 04:12

I was unable to retrieve the images on pdf properly. I have used the same code example mentioned here in this article. Please help me.

Thanks in Advance!

 	Login or register to post comments

 I just wanted to point out that the -fs-* directives ...

 by neekfenwick - 2011-08-16 23:50

I just wanted to point out that the -fs-* directives seem to be obsolete as of now, flyingsaucer R8 and iText 5.1.1. CSS3 'running elements' are supported instead. This is briefly mentioned in the flyingsaucer FAQ at http://flyingsaucerproject.github.com/flyingsaucer/r8/guide/users-guide-... but I felt it was worth making clear here.

For example, the alice.pdf example rendered by the sample code available here doesn't seem to place the header and footer div anywhere special, they simply overlay the document content. I was able to make the header work, for example, by completely commenting out the -fs-* directives (i.e. they're not required at all) and putting in some CSS3 directives as per the spec. The alice.css file can therefore be:

@page {
size: 4.18in 6.88in;
margin: 0.25in;
/*-fs-flow-top: "header";*/
-fs-flow-bottom: "footer";
-fs-flow-left: "left";
-fs-flow-right: "right";
border: thin solid black;
padding: 1em;
}

#header {
font: bold serif;
position: absolute; top: 0; left: 0;
/*-fs-move-to-flow: "header";*/
}
/* NEW CONTENT - specify 'myheader' div to be in the @top-center region as a running element. */
div#myheader {
 display: block;
 position: running(header);
}
@page { @top-center { content: element(header) }}

This places a div called 'myheader' in the running element positioned in the top-center location. I've called it myheader to make it clear that the string in the running() and element() directives relate to a separate identifier than the div#myheader specifier, which I don't think the CSS3 spec makes clear by calling everything 'header'.

<div id='myheader'>Header goes here</div>

Note that the CSS spec at http://www.w3.org/TR/2007/WD-css3-gcpm-20070504/#running shows an example with the header only shown if the media is of type 'print' .. despite the alice.xhtml file linking to the alice.css stylesheet with media="print", I found the header did not appear with that css, so I've left it, and the "display: none" bit, out in the example above.

 Cheers all.

 	Login or register to post comments

 Thank you very much !
我非常需要它！

 by dc7521976 - 2011-11-14 03:16

 Thank you very much !

�'非常需要它！

 	Login or register to post comments

 Thank You . Very nice Tutorial even for starters. I have a ...

 by vijaya_23 - 2012-11-20 07:58

Thank You . Very nice Tutorial even for starters. I have a question i need to work on this issue with diacritics/ secial characters on PDF . The code uses XHMTL using FLying Saucer R8 and iTEXT 5.3.4 and creates a PDF . In PDF if a student name has diacritics or special characters like "Rosenbrück" it just drop the "U" from name while generating a PDF. CSS was using font Helvetica i change the font to differnt other fonts which supports special characters but nothing works. Could you please help me with this i will be very thankful .

Vammareddy23@gmail.com

 	Login or register to post comments

 Can't seem to get the Direct XML example to work. just shows ...

 by vijaykarl - 2013-04-01 22:31

Can't seem to get the Direct XML example to work. just shows normal text - no CSS formatting applied - do I need to do anything different. When opening the weather.xml in a browser - the page renders as shown - but when converted to pdf - poof! all formatting disappears!

Can you please help?

 	Login or register to post comments

 Hi All,

I am using ITextRenderer to generate PDF from ...

 by meprasobh - 2014-02-11 20:29

Hi All,

I am using ITextRenderer to generate PDF from html.However i am getting following exception

Error Can't load the XML resource (using TRaX transformer). org.xml.sax.SAXParseException: Content is not allowed in prolog.

Could you please help me.

 	Login or register to post comments

 some experience here for you

I added the change here to ...

 by mxz2008 - 2014-06-17 01:30

some experience here for you

I added the change here to provide to you guys who may encounter the same issue, cause seems Flying Saucer Xhtml render do not maintain anymore since version R8, the source code change may still have some errors, you need to consider it.

* 1. R8.1

modify the xhtml source code (core-render) to compatible with itext-2.1.7.jar

Core-render uses i-text2.0.8 and the the method getCharBBox(char)in class com.lowagie.text.pdf.BaseFont.BaseFont.java, but in i-text2.1.7 is getCharBBox(int),we need download the source of xhtmlrender and modify line #679 in class org.xhtmlrenderer.pdf.ITextFontResolver.java

from

 int[] box = _font.getCharBBox('x');

to

 int[] box = _font.getCharBBox(Character.getNumericValue('x'));

* 2. R8.1.1==

modify the xhtml source code (core-render) to compatible ckeditor’s lowercase style

Because the styles which generated by ckeditor are all lowercase,

 We need to change line #167 in class org.xhtmlrenderer.pdf.ITextFontResolver.java

From

 FontFamily fontFamily = getFontFamily(fontFamilyName);

To

 FontFamily fontFamily = getFontFamily(fontFamilyName.toLowerCase());

* 3. R8.1.2

modify the xhtmlrender source code to support all URL image to convert to pdf, we support not only the static image like http://en.wikipedia.org/image/logo.jgp, but also support dynamically image, like struts http://en.wikipedia.org/image/Image.do?image=logo

 The basic idea is we should use the Itext Image.getInstance(byte[] bytes), but not use Image.getInstance(String URL). So we need to get the arraybyte[] from the URL.

 Change line #67 in class ITextUserAgent.java

 From

 Image image = Image.getInstance(url);

 To

 ByteArrayOutputStream tmpOut = new ByteArrayOutputStream(is.available());

 byte[] buf = new byte[512];

 while (true) {

 int len = is.read(buf);

 if (len == -1) {

 break;

 }

 tmpOut.write(buf, 0, len);

 }

 is.close();

 tmpOut.close();

 byte[] array = tmpOut.toByteArray();

 Image image = Image.getInstance(array);

* 4. R8.1.3

fix table pagination can't break properly

modify Class TableBox.java's method from private to protected at line #416

 From

 private Rectangle getContentLimitedBorderEdge(RenderingContext c) {

 To

 protected Rectangle getContentLimitedBorderEdge(RenderingContext c) {

modify class TableCellBox add the following code below line #316

 //fix table pagination can't break properly issue

 //=================Start=================

 if(getContentLimitedBorderEdge(c).y + getContentLimitedBorderEdge(c).height >

 _table.getContentLimitedBorderEdge(c).y + _table.getContentLimitedBorderEdge(c).height){

 return;

 }

 //==================end====================

 	Login or register to post comments

 Get Involved

 	About Java.net
	Adopt a JSR
	Create a Project
	Link an Offsite Project

 Get Informed

 	Articles
	Blogs
	Events
	Java Magazine
	Oracle University

 	Feedback
	FAQ
	Terms of Use
	Privacy
	Trademarks

Your use of this web site or any of its content or software indicates your agreement to be bound by these Terms of Participation.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Powered by Oracle, Project Kenai and Cognisync

