

Oracle White Paper

February 2015

Understanding Optimizer Statistics
with Oracle Database 12c

Understanding Optimizer Statistics with Oracle Database 12c

Disclaimer

The following is intended to outline our general product direction. It is intended for information purposes

only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or

functionality, and should not be relied upon in making purchasing decisions. The development, release, and

timing of any features or functionality described for Oracle’s products remains at the sole discretion of

Oracle.

Understanding Optimizer Statistics with Oracle Database 12c

Introduction ... 1

What are Optimizer Statistics? .. 2

Table and Column Statistics .. 2

Additional column statistics .. 3

Index Statistics .. 14

Gathering Statistics ... 15

GATHER_TABLE_STATS ... 15

Changing the default value for the parameters in
DBMS_STATS.GATHER_*_STATS .. 17

Automatic Statistics Gathering Job .. 19

Improving the efficiency of Gathering Statistics 22

Concurrent Statistic gathering.. 22

Gathering Statistics on Partitioned tables 24

Managing statistics .. 26

Restoring Statistics .. 26

Pending Statistics .. 27

Exporting / Importing Statistics .. 28

Copying Partition Statistics .. 29

Comparing Statistics .. 30

Locking Statistics ... 31

Manually setting Statistics ... 33

Other Types of Statistics ... 34

Dynamic Statistics (previously known as dynamic sampling) 34

System statistics .. 36

Statistics on Dictionary Tables ... 36

Statistics on Fixed Objects .. 37

Conclusion .. 38

Understanding Optimizer Statistics with Oracle Database 12c

 1

 Introduction

When the Oracle database was first introduced, the decision of how to execute

a SQL statement was determined by a Rule Based Optimizer (RBO). The Rule

Based Optimizer, as the name implies, followed a set of rules to determine the

execution plan for a SQL statement.

In Oracle Database 7, the Cost Based Optimizer (CBO) was introduced to deal

with the enhanced functionality being added to the Oracle Database at this

time, including parallel execution and partitioning, and to take the actual data

content and distribution into account. The Cost Based Optimizer examines all

of the possible plans for a SQL statement and picks the one with the lowest

cost, where cost represents the estimated resource usage for a given plan.

The lower the cost, the more efficient an execution plan is expected to be. In

order for the Cost Based Optimizer to accurately determine the cost for an

execution plan, it must have information about all of the objects (tables and

indexes) accessed in the SQL statement, and information about the system on

which the SQL statement will be run.

This necessary information is commonly referred to as Optimizer statistics.

Understanding and managing Optimizer statistics is key to optimal SQL

execution. Knowing when and how to gather statistics in a timely manner is

critical to maintaining acceptable performance. This whitepaper is the first in a

two part series on Optimizer statistics, and describes in detail, with worked

examples, the different concepts of Optimizer statistics including;

 What are Optimizer statistics

 Gathering statistics

 Managing statistics

 Additional types of statistics

Understanding Optimizer Statistics with Oracle Database 12c

2

What are Optimizer Statistics?

Optimizer statistics are a collection of data that describe the database and the objects in the database.

These statistics are used by the Optimizer to choose the best execution plan for each SQL statement.

Statistics are stored in the data dictionary and can be accessed using data dictionary views such as

USER_TAB_STATISTICS. Optimizer statistics are different from the performance statistics visible

through V$ views. The information in the V$ views relates to the state of the system and the SQL

workload executing on it.

Figure 1. Optimizer Statistics stored in the data dictionary used by the Optimizer to determine execution plans

 Table and Column Statistics

Table statistics include information on the number of rows in the table, the number of data blocks

used for the table, as well as the average row length in the table. The Optimizer uses this information,

in conjunction with other statistics, to compute the cost of various operations in an execution plan,

and to estimate the number of rows the operation will produce. For example, the cost of a table access

is calculated using the number of data blocks combined with the value of the parameter

DB_FILE_MULTIBLOCK_READ_COUNT. You can view table statistics in the dictionary view

USER_TAB_STATISTICS.

Column statistics include information on the number of distinct values in a column (NDV) as well as

the minimum and maximum value found in the column. You can view column statistics in the

dictionary view USER_TAB_COL_STATISTICS. The Optimizer uses the column statistics information

in conjunction with the table statistics (number of rows) to estimate the number of rows that will be

Understanding Optimizer Statistics with Oracle Database 12c

3

returned by a SQL operation. For example, if a table has 100 records, and the table access evaluates an

equality predicate on a column that has 10 distinct values, then the Optimizer, assuming uniform data

distribution, estimates the cardinality to be the number of rows in the table divided by the number of

distinct values for the column or 100/10 = 10.

Figure 2. Cardinality calculation using basic table and column statistics

Additional column statistics

Basic table and column statistics tell the optimizer a great deal, but they don’t provide a mechanism to

tell the Optimizer about the nature of the data in the table or column. For example, these statistics

can’t tell the Optimizer if there is a data skew in a column, or if there is a correlation between columns

in a table. Information on the nature of the data can be provided to the Optimizer by using extensions

to basic statistics like, histograms, column groups, and expression statistics.

Histograms

Histograms tell the Optimizer about the distribution of data within a column. By default (without a

histogram), the Optimizer assumes a uniform distribution of rows across the distinct values in a

column. As described above, the Optimizer calculates the cardinality for an equality predicate by

dividing the total number of rows in the table by the number of distinct values in the column used in

the equality predicate. If the data distribution in that column is not uniform (i.e., a data skew) then the

cardinality estimate will be incorrect. In order to accurately reflect a non-uniform data distribution, a

histogram is required on the column. The presence of a histogram changes the formula used by the

Optimizer to estimate the cardinality, and allows it to generate a more accurate execution plan.

Understanding Optimizer Statistics with Oracle Database 12c

4

Oracle automatically determines the columns that need histograms based on the column usage

information (SYS.COL_USAGE$), and the presence of a data skew. For example, Oracle will not

automatically create a histogram on a unique column if it is only seen in equality predicates.

There are four types of histograms: frequency, top-frequency, or height-balanced and hybrid. Oracle

determines the type of histogram to be created based on the number of distinct values in the column.

From Oracle Database 12c onwards, height-balance histograms will be replaced by hybrid histograms1.

Frequency Histograms

Frequency histograms are created when the number of distinct values in the column is less than 254.

Oracle uses the following steps to create a frequency histogram.

1. Let’s assume that Oracle is creating a frequency histogram on the PROMO_CATEGORY_ID

column of the PROMOTIONS table. The first step is to select the PROMO_CATEGORY_ID from

the PROMOTIONS table ordered by PROMO_CATEGORY_ID.

2. Each PROMO_CATEGORY_ID is then assigned to its own histogram bucket (Figure 3).

Figure 3. Step 2 in frequency histogram creation

1 Assuming the parameter ESITMATE_PERCENT is let default in the
DBMS_STATS.GATHER_*_STATS command used to gather the statistics

Understanding Optimizer Statistics with Oracle Database 12c

5

3. At this stage, we could have more than 254 histogram buckets, so the buckets that hold the

same value are then compressed into the highest bucket with that value. In this case, buckets 2

through 115 are compressed into bucket 115, and buckets 484 through 503 are compressed

into bucket 503, and so on until the total number of buckets remaining equals the number of

distinct values in the column (Figure 4). Note the above steps are for illustration purposes.

The DBMS_STATS package has been optimized to build compressed histograms directly.

Figure 4. Step 3 in frequency histogram creation: duplicate buckets are compressed

4. The Optimizer now accurately determines the cardinality for predicates on the

PROMO_CATEGORY_ID column using the frequency histogram. For example, for the predicate

PROMO_CATEGORY_ID =10, the Optimizer would first need to determine how many buckets

in the histogram have 10 as their end point. It does this by finding the bucket whose endpoint

is 10, bucket 503, and then subtracts the previous bucket number, bucket 483, 503 - 483 = 20.

Then the cardinality estimate would be calculated using the following formula (number of

bucket endpoints / total number of bucket) X NUM_ROWS, 20/503 X 503, so the number

of rows in the PROMOTOINS table where PROMO_CATEGORY_ID =10 is 20.

Top-Frequency Histograms

Traditionally, if a column had more than 254 distinct values and the number of buckets specified is

AUTO, a height-balanced histogram would be created. But what if 99% or more of the rows in the

table had less than 254 distinct values? If a height-balance histogram is created, it runs the risk of not

capturing all of the popular values in the table as the endpoint of multiple buckets. Thus some popular

values will be treated as non-popular values, which could result in a sub-optimal execution plan being

chosen.

In this scenario, it would be better to create a frequency histogram on the extremely popular values

that make up the majority of rows in the table and to ignore the unpopular values, in order to create a

better quality histogram. This is the exact approach taken with top-frequency histograms. A frequency

histogram is created on the most popular values in the column, when those values appear in 99% or

more of the rows in the table. This allows all of the popular values in the column to be treated as such.

A top-frequency histogram is only created if the ESTIMATE_PERCENT parameter of the gather statistics

command is set to AUTO_SAMPLE_SIZE, as all values in the column must be seen in order to

determine if the necessary criteria are met (99.6% of rows have 254 or less distinct values).

Understanding Optimizer Statistics with Oracle Database 12c

6

Take, for example, the PRODUCT_SALES table, which contains sales information for a Christmas

ornaments company. The table has 1.78 million rows and 632 distinct TIME_IDs. But the majority of

the rows in PRODUCT_SALES have less than 254 distinct TIME_IDs, as the majority of Christmas

ornaments are sold in December each year. A histogram is necessary on the TIME_ID column to make

the Optimizer aware of the data skew in the column. In this case, a top-frequency histogram is created

containing 254 buckets.

Figure 5. Data distribution of TIME_ID column in PRODUCT_SALES table & top-frequency histogram that is created on it

Height balanced Histograms

Height-balanced histograms are created when the number of distinct values in the column is greater

than 254. In a height-balanced histogram, column values are divided into buckets so that each bucket

contains approximately the same number of rows. Oracle uses the following steps to create a height-

balanced histogram.

1. Let’s assume that Oracle is creating a height-balanced histogram on the CUST_CITY_ID

column of the CUSTOMERS table because the number of distinct values in the CUST_CITY_ID

column is greater than 254. Just like with a frequency histogram, the first step is to

select the CUST_CITY_ID from the CUSTOMERS table ordered by CUST_CITY_ID.

2. There are 55,500 rows in the CUSTOMERS table and there is a maximum of 254 buckets in a

histogram. In order to have an equal number of rows in each bucket, Oracle must put 219

rows in each bucket. The 219th CUST_CITY_ID from step one will become the endpoint for

the first bucket. In this case that is 51043. The 438th CUST_CITY_ID from step one will

become the endpoint for the second bucket, and so on until all 254 buckets are filled (Figure

6).

Understanding Optimizer Statistics with Oracle Database 12c

7

Figure 6. Step 2 of height-balance histogram creation: put an equal number of rows in each bucket

3. Once the buckets have been created, Oracle checks to see if the endpoint of the first bucket is

the minimum value for the CUST_CITY_ID column. If it is not, a “zero” bucket is added to

the histogram that has the minimum value for the CUST_CITY_ID column as its end point

(Figure 7).

Figure 7. Step 3 of height-balance histogram creation: add a zero bucket for the min value

4. Just as with a frequency histogram, the final step is to compress the height-balanced

histogram, and remove the buckets with duplicate end points. The value 51166 is the end

Understanding Optimizer Statistics with Oracle Database 12c

8

point for bucket 24 and bucket 25 in our height-balanced histogram on the CUST_CITY_ID

column. So, bucket 24 will be compressed in bucket 25 (Figure 8).

Figure 8. Step 4 of height-balance histogram creation

5. The Optimizer now computes a better cardinality estimate for predicates on the

CUST_CITY_ID column by using the height-balanced histogram. For example, for the

predicate CUST_CITY_ID =51806, the Optimizer would first check to see how many buckets

in the histogram have 51806 as their end point. In this case, the endpoint for bucket

136,137,138 and 139 is 51806(info found in USER_HISTOGRAMS). The Optimizer then uses

the following formula:

(Number of bucket endpoints / total number of buckets) X number of rows in the table

In this case 4/254 X 55500 = 874

Figure 9. Height balanced histogram used for popular value cardinality estimate

However, if the predicate was CUST_CITY_ID =52500, which is not the endpoint for any

bucket then the Optimizer uses a different formula. For values that are the endpoint for only

one bucket or are not an endpoint at all, the Optimizer uses the following formula:

 DENSITY X number of rows in the table

Understanding Optimizer Statistics with Oracle Database 12c

9

where DENSITY is calculated ‘on the fly’ during optimization using an internal formula based

on information in the histogram. The value for DENSITY seen in the dictionary view

USER_TAB_COL_STATISTICS is not the value used by the Optimizer from Oracle Database

10.2.0.4 onwards. This value is recorded for backward compatibility, as this is the value used

in Oracle Database 9i and earlier releases of 10g. Furthermore, if the parameter

OPTIMIZER_FEATURES_ENABLE is set to version release earlier than 10.2.0.4, the value for

DENSITY in the dictionary view will be used.

Figure 10. Height balanced histogram used for non- popular value cardinality estimate

Hybrid histograms

One prominent problem with height balanced histograms is that a value with a frequency that falls into

the range of 1/254 of the total population and 2/254 of the total population may or may not appear as

a popular value. Although it might span across two 2 buckets, it may only appear as the end point value

of one bucket. Such values are referred to as almost popular values. Height balanced histograms do not

differentiate between almost popular values and truly unpopular values.

A hybrid histogram is similar to the traditional height-balanced histogram, as it is created when the

number of distinct values in a column is greater than 254. However, that’s where the similarities end.

With a hybrid histogram, no value will be the endpoint of more than one bucket, thus allowing the

histogram to have more endpoint values, or effectively more buckets, than a height-balanced

histogram. So, how does a hybrid histogram indicate a popular value? The frequency of each endpoint

value is recorded (in a new column endpoint_repeat_count), thus providing an accurate indication of

the popularity of each endpoint value.

Take, for example, the CUST_CITY_ID column in the CUSTOMERS table. There are 55,500 rows

in the CUSTOMERS table and 620 distinct values in the CUST_CITY_ID column. Neither a

frequency nor a top-frequency histogram is an option in this case. In Oracle Database 11g, a height-

balanced histogram is created on this column. The height-balanced histogram has 213 buckets, but

only represents 42 popular values (value is the endpoint of 2 or more buckets). The actual number of

popular values in CUST_CITY_ID column is 54 (i.e., column values with a frequency that is larger than

num_rows/num_buckets = 55500/254= 54).

In Oracle Database 12c a hybrid histogram is created. The hybrid histogram has 254 buckets and

represents all 54 popular values. The hybrid histogram actually treats 63 values as popular values. This

means that values that were considered as nearly popular (endpoint value of only 1 bucket) in Oracle

Understanding Optimizer Statistics with Oracle Database 12c

10

Database 11g are now treated as popular values and will have a more accurate cardinality estimate.

Figure 11 shows an example of how a nearly popular value (52114) in Oracle Database 11g gets a

much better cardinality estimate in Oracle Database 12c.

Figure 11. Hybrid histograms achieve more accurate cardinality estimates for what was considered a nearly popular

value in Oracle Database 11g

As mentioned earlier, hybrid histograms are the new default histogram type for columns with greater
than 254 distinct values, as long as the statistics are gathered using the default ESTIMATE_PERCENT
setting.

Understanding Optimizer Statistics with Oracle Database 12c

11

Extended Statistics

In Oracle Database 11g, extensions to column statistics were introduced. Extended statistics

encompass two additional types of statistics; column groups and expression statistics.

Column Groups

In real-world data, there is often a relationship (correlation) between the data stored in different

columns of the same table. For example, in the CUSTOMERS table, the values in the

CUST_STATE_PROVINCE column are influenced by the values in the COUNTRY_ID column, as the state

of California is only going to be found in the United States. Using only basic column statistics, the

Optimizer has no way of knowing about these real-world relationships, and could potentially

miscalculate the cardinality if multiple columns from the same table are used in the where clause of a

statement. The Optimizer can be made aware of these real-world relationships by having extended

statistics on these columns as a group.

By creating statistics on a group of columns, the Optimizer can compute a better cardinality estimate

when several the columns from the same table are used together in a where clause of a SQL statement.

You can use the function DBMS_STATS.CREATE_EXTENDED_STATS to define a column group you

want to have statistics gathered on as a group. Once a column group has been created, Oracle will

automatically maintain the statistics on that column group when statistics are gathered on the table, just

like it does for any ordinary column (Figure 12).

Figure 12. Creating a column group on the CUSTOMERS table

After creating the column group and re-gathering statistics, you will see an additional column, with a

system-generated name, in the dictionary view USER_TAB_COL_STATISTICS. This new column

represents the column group (Figure 13).

Understanding Optimizer Statistics with Oracle Database 12c

12

Figure 13. System generated column name for a column group in USER_TAB_COL_STATISTICS

To map the system-generated column name to the column group and to see what other extended

statistics exist for a user schema, you can query the dictionary view USER_STAT_EXTENSIONS (Figure

14).

Figure 14. Information about column groups is stored in USER_STAT_EXTENSIONS

The Optimizer will now use the column group statistics, rather than the individual column statistics

when these columns are used together in where clause predicates. Not all of the columns in the column

group need to be present in the SQL statement for the Optimizer to use extended statistics; only a

subset of the columns is necessary.

Auto Column Groups Detection

Although column group statistics are extremely useful and often necessary to achieve an optimal

execution plan it can be difficult to know what column group statistics should be created for a given

workload.

Auto column group detection automatically determines which column groups are required for a table

based on a given workload. Please note this functionality does not create extended statistics for

function wrapped columns it is only for column groups. Auto Column Group detection is a simple

three-step process:

Understanding Optimizer Statistics with Oracle Database 12c

13

1. Seed column usage

Oracle must observe a representative workload in order to determine the appropriate column

groups. The workload can be provided in a SQL Tuning Set or by monitoring a running

system. The new procedure, DBMS_STATS.SEED_COL_USAGE, should be used it indicate the

workload and to tell Oracle how long it should observe that workload. The following example

turns on monitoring for 5 minutes or 300 seconds for the current system.

Figure 15. Enabling automatic column group detection

The monitoring procedure records different information from the traditional column usage

information you see in sys.col_usage$ and stores it in sys.col_group_usage$. Information is

stored for any SQL statement that is executed or explained during the monitoring window.

Once the monitoring window has finished, it is possible to review the column usage

information recorded for a specific table using the new function

DBMS_STATS.REPORT_COL_USAGE. This function generates a report, which lists what

columns from the table were seen in filter predicates, join predicates and group by clauses in

the workload. It is also possible to view a report for all the tables in a specific schema by

running DBMS_STATS.REPORT_COL_USAGE and providing just the schema name and NULL

for the table name.

Figure 16. Enabling automatic column group detection

2. Create the column groups

Calling the DBMS_STATS.CREATE_EXTENDED_STATS function for each table will

automatically create the necessary column groups based on the usage information captured

during the monitoring window. Once the extended statistics have been created, they will be

automatically maintained whenever statistics are gathered on the table.

Alternatively, the column groups can be manually creating by specifying the group as the third

argument in the DBMS_STATS.CREATE_EXTENDED_STATS function.

Understanding Optimizer Statistics with Oracle Database 12c

14

Figure 17. Create the automatically detected column groups

3. Regather statistics

The final step is to regather statistics on the affected tables so that the newly created column

groups will have statistics created for them.

Figure 18. Column group statistics are automatically maintained every time statistics are gathered

Expression Statistics

It is also possible to create extended statistics for an expression (including functions), to help the

Optimizer to estimate the cardinality of a where clause predicate that has columns embedded inside

expressions. For example, if it is common to have a where clause predicate that uses the UPPER

function on a customer’s last name, UPPER(CUST_LAST_NAME)=:B1, then it would be beneficial to

create extended statistics for the expression UPPER(CUST_LAST_NAME)(Figure 19).

Figure 19. Extended statistics can also be created on expressions

Just as with column groups, statistics need to be re-gathered on the table after the expression statistics

have been defined. After the statistics have been gathered, an additional column with a system-

generated name will appear in the dictionary view USER_TAB_COL_STATISTICS representing the

expression statistics. Just like for column groups, the detailed information about expression statistics

can be found in USER_STAT_EXTENSIONS.

Restrictions on Extended Statistics

Extended statistics can only be used when the where clause predicates are equalities or in-lists.

Extended statistics will not be used if there are histograms present on the underlying columns and

there is no histogram present on the column group.

Index Statistics

Index statistics provide information on the number of distinct values in the index (distinct keys), the

depth of the index (blevel), the number of leaf blocks in the index (leaf_blocks), and the clustering

Understanding Optimizer Statistics with Oracle Database 12c

15

factor2. The Optimizer uses this information in conjunction with other statistics to determine the cost

of an index access. For example, the Optimizer will use b-level, leaf_blocks and the table statistics

num_rows to determine the cost of an index range scan (when all predicates are on the leading edge of

the index).

Gathering Statistics

For database objects that are constantly changing, statistics must be regularly gathered so that they

accurately describe the database object. The PL/SQL package, DBMS_STATS, is Oracle’s preferred

method for gathering statistics, and replaces the now obsolete ANALYZE3 command for collecting

statistics. The DBMS_STATS package contains over 50 different procedures for gathering and managing

statistics. The most important procedures are the GATHER_*_STATS procedures, which can be used

to gather table, column, and index statistics. You will need to be the owner of the object or have the

ANALYZE ANY system privilege or the DBA role to run these procedures. The parameters used by

these procedures are nearly identical, so this paper will focus on the GATHER_TABLE_STATS

procedure.

GATHER_TABLE_STATS

The DBMS_STATS.GATHER_TABLE_STATS procedure allows you to gather table, partition, index, and

column statistics. Although it takes 15 different parameters, only the first two or three parameters need

to be specified to run the procedure, and are sufficient for most customers;

 The name of the schema containing the table

 The name of the table

 A specific partition name if it’s a partitioned table and you only want to collect statistics for a

specific partition (optional)

Figure 20. Using the DBMS_STATS.GATHER_TABLE_STATS procedure

The remaining parameters can be left at their default values in most cases. Out of the remaining 12

parameters, the following are often changed from their default and warrant some explanation here.

2 Chapter 11 of the Oracle® Database Performance Tuning Guide

3 ANALYZE command is still used to VALIDATE or LIST CHAINED ROWS.

http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/optimops.htm

Understanding Optimizer Statistics with Oracle Database 12c

16

ESTIMATE_PERCENT parameter

The ESTIMATE_PERCENT parameter determines the percentage of rows used to calculate the statistics.

The most accurate statistics are gathered when all rows in the table are processed (i.e., 100% sample),

often referred to as computed statistics. Oracle Database 11g introduced a new sampling algorithm

that is hash based and provides deterministic statistics. This new approach has the accuracy close to a

100% sample but with the cost of, at most, a 10% sample. The new algorithm is used when

ESTIMATE_PERCENT is set to AUTO_SAMPLE_SIZE (the default) in any of the

DBMS_STATS.GATHER_*_STATS procedures. Historically, customers have set the

ESTIMATE_PRECENT parameter to a low value to ensure that the statistics will be gathered quickly.

However, without detailed testing, it is difficult to know which sample size to use to get accurate

statistics. It is highly recommended that from Oracle Database 11g onward you let

ESTIMATE_PRECENT default (i.e., not set explicitly).

METHOD_OPT parameter

The METHOD_OPT parameter controls the creation of histograms during statistics collection.

Histograms are a special type of column statistic created when the data in a table column has a non-

uniform distribution, as discussed in the previous section of this paper. With the default value of FOR

ALL COLUMNS SIZE AUTO, Oracle automatically determines which columns require histograms and

the number of buckets that will be used based on the column usage information

(DBMS_STATS.REPORT_COL_USAGE) and the number of distinct values in the column. The column

usage information reflects an analysis of all the SQL operations the database has processed for a given

object. Column usage tracking is enabled by default.

A column is a candidate for a histogram if it has been seen in a where clause predicate, e.g., an equality,

range, LIKE, etc. Oracle also verifies if the column data is skewed before creating a histogram. For

example, a unique column will not have a histogram created on it if it is only seen in equality

predicates. It is strongly recommended you let the METHOD_OPT parameter default in the

GATHER_*_STATS procedures.

DEGREE parameter

The DEGREE parameter controls the number of parallel server processes that will be used to gather the

statistics. By default, Oracle uses the same number of parallel server processes specified as an attribute

of the table in the data dictionary (Degree of Parallelism). By default, all tables in an Oracle database

have this attribute set to 1, so it may be useful to set this parameter if statistics are being gathered on a

large table to speed up statistics collection. By setting the parameter DEGREE to AUTO_DEGREE, Oracle

will automatically determine the appropriate number of parallel server processes that should be used to

gather statistics, based on the size of an object. The value can be between 1 (serial execution) for small

objects to DEFAULT_DEGREE (PARALLEL_THREADS_PER_CPU X CPU_COUNT) for larger objects.

GRANULARITY parameter

The GRANULARITY parameter dictates the levels at which statistics are gathered on a partitioned table.

The possible levels are table (global), partition, or sub-partition. By default Oracle will determine which

levels are necessary, based on the table’s partitioning strategy. Statistics are always gathered on the first

Understanding Optimizer Statistics with Oracle Database 12c

17

level of partitioning regardless of the partitioning type used. Sub-partition statistics are gathered when

the subpartitioning type is LIST or RANGE. This parameter is ignored if the table is not partitioned.

CASCADE parameter

The CASCADE parameter determines whether or not statistics are gathered for the indexes on a table.

When the CASCADE parameter is set to the default, AUTO_CASCADE, Oracle will only re-gather statistics

for indexes whose table statistics are stale. Cascade is often set to false when a large direct path data

load is done and the indexes are disabled. After the load has been completed, the indexes are rebuilt

and statistics will be automatically created for them, negating the need to gather index statistics when

the table statistics are gathered.

NO_INVALIDATE parameter

The NO_INVALIDATE parameter determines if dependent cursors (cursors that access the table whose

statistics are being re-gathered) will be invalidated immediately after statistics are gathered or not. With

the default setting of DBMS_STATS.AUTO_INVALIDATE, cursors (statements that have already been

parsed) will not be invalidated immediately. They will continue to use the plan built using the previous

statistics until Oracle decides to invalidate the dependent cursors based on internal heuristics. The

invalidations will happen gradually over time to ensure there is no performance impact on the shared

pool or spike in CPU usage as there could be if you have a large number of dependent cursors and all

of them were hard parsed at once.

Changing the default value for the parameters in DBMS_STATS.GATHER_*_STATS

You can specify a particular non-default parameter value for an individual
DBMS_STATS.GATHER_*_STATS command, or override the default value for your database. You can
override the default parameter values for DBMS_STATS.GATHER_*_STATS procedures using the
DBMS_STATS.SET_*_PREFS procedures. The list of parameters that can be changed are as follows:

AUTOSTATS_TARGET (SET_GLOBAL_PREFS only as it relates to the auto stats job)
CONCURRENT (SET_GLOBAL_PREFS only)

CASCADE

DEGREE

ESTIMATE_PERCENT

GLOBAL_TEMP_TABLE_STATS

GRANULARITY

INCREMENTAL

INCREMENTAL_LEVEL

INCREMENTAL_STALENESS

METHOD_OPT

NO_INVALIDATE

PUBLISH

STALE_PERCENT

OPTIONS

You can override the default settings for each parameter at a table, schema, database, or global level

using one of the following DBMS_STATS.SET_*_PREFS procedures, with the exception of

AUTOSTATS_TARGET and CONCURRENT, which can only be modified at the global level.

SET_TABLE_PREFS

Understanding Optimizer Statistics with Oracle Database 12c

18

SET_SCHEMA_PREFS

SET_DATABASE_PREFS

SET_GLOBAL_PREFS

The SET_TABLE_PREFS procedure allows you to change the default values of the parameters used by

the DBMS_STATS.GATHER_*_STATS procedures for the specified table only.

The SET_SCHEMA_PREFS procedure allows you to change the default values of the parameters used by

the DBMS_STATS.GATHER_*_STATS procedures for all of the existing tables in the specified schema.

This procedure actually calls the SET_TABLE_PREFS procedure for each of the tables in the specified

schema. Since it uses SET_TABLE_PREFS, calling this procedure will not affect any new objects

created after it has been run. New objects will pick up the GLOBAL preference values for all parameters.

The SET_DATABASE_PREFS procedure allows you to change the default values of the parameters used

by the DBMS_STATS.GATHER_*_STATS procedures for all of the user-defined schemas in the database.

This procedure actually calls the SET_TABLE_PREFS procedure for each table in each user-defined

schema. Since it uses SET_TABLE_PREFS, this procedure will not affect any new objects created after

it has been run. New objects will pick up the GLOBAL preference values for all parameters. It is also

possible to include the Oracle owned schemas (sys, system, etc) by setting the ADD_SYS parameter to

TRUE.

The SET_GLOBAL_PREFS procedure allows you to change the default values of the parameters used by

the DBMS_STATS.GATHER_*_STATS procedures for any object in the database that does not have an

existing table preference. All parameters default to the global setting unless there is a table preference

set, or the parameter is explicitly set in the GATHER_*_STATS command. Changes made by this

procedure will affect any new objects created after it has been run. New objects will pick up the

GLOBAL_PREFS values for all parameters.

With SET_GLOBAL_PREFS it is also possible to set a default value for two additional parameters,

AUTOSTAT_TARGET and CONCURRENT. AUTOSTAT_TARGET controls what objects the automatic

statistic gathering job (that runs in the nightly maintenance window) will look after. The possible values

for this parameter are ALL,ORACLE, and AUTO. The default value is AUTO. A more in-depth discussion

about the automatic statistics collection can be found in the statistics management section of this

paper.

The CONCURRENT parameter controls whether or not statistics will be gathered on multiple tables in a

schema (or database), and multiple (sub)partitions within a table concurrently. It is set to OFF by

default. A more in-depth discussion about concurrent statistics gathering can be found in the

Improving the efficiency of Gathering Statistics section of this paper.

The DBMS_STATS.GATHER_*_STATS procedures and the automatic statistics gathering job obeys the

following hierarchy for parameter values; parameter values explicitly set in the command overrule

everything else. If the parameter has not been set in the command, we check for a table level

preference. If there is no table preference set, we use the GLOBAL preference.

Understanding Optimizer Statistics with Oracle Database 12c

19

Figure 21. DBMS_STATS.GATHER_*_STATS hierarchy for parameter values

If you are unsure of what preferences have been set, you can use the DBMS_STATS.GET_PREFS

function to check. The function takes three arguments; the name of the parameter, the schema name,

and the table name. In the example below (figure 22), we first check the value of STALE_PRECENT on

the SH.SALES table. Then we set a table level preference, and check that it took effect using

DBMS_STATS.GET_PREFS.

Figure 22. Using DBMS_STATS.SET_PREFS procedure to change the parameter stale_percent for the sales table

Automatic Statistics Gathering Job

Oracle will automatically collect statistics for all database objects, which are missing statistics or have

stale statistics, by running an Oracle AutoTask task during a predefined maintenance window (10pm to

2am weekdays and 6am to 2am at the weekends).

This AutoTask gathers Optimizer statistics by calling the internal procedure

DBMS_STATS.GATHER_DATABASE_STATS_JOB_PROC. This procedure operates in a very similar

Understanding Optimizer Statistics with Oracle Database 12c

20

fashion to the DBMS_STATS.GATHER_DATABASE_STATS procedure using the GATHER AUTO option.

The primary difference is that Oracle internally prioritizes the database objects that require statistics;

objects which most need updated statistics are processed first. You can verify that the automatic

statistics gathering job exists by querying the DBA_AUTOTASK_CLIENT_JOB view or through

Enterprise Manager (Figure 23). You can also change the maintenance window that the job will run in

through Enterprise Manager.

Figure 23. Checking that the automatic statistics gathering job is enabled

Statistics on a table are considered stale when more than STALE_PERCENT (default 10%) of the rows

are changed (total number of inserts, deletes, updates) in the table. Oracle monitors the DML activity

for all tables and records it in the SGA. The monitoring information is periodically flushed to disk, and

is exposed in the *_TAB_MODIFICATIONS view.

Understanding Optimizer Statistics with Oracle Database 12c

21

Figure 24. Querying USER_TAB_MODIFICATIONS view to check DML activity on the PRODUCTS2 table

It is possible to manually flush this data by calling the procedure

DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO if you want to get up-to-date information at
query time (internally the monitoring data is flushed before all statistics collection operations). You can
then see which tables have stale statistics by querying the STALE_STATS column in the
USER_TAB_STATISTICS view.

Figure 25. Querying USER_TAB_STATISTICS to see if any tables have stale statistics

Tables where STALE_STATS is set to NO, have up to date statistics. Tables where STALE_STATS is set

to YES, have stale statistics. Tables where STALE_STATS is not set are missing statistics altogether.

If you already have a well-established statistics gathering procedure, or if for some other reason you

want to disable automatic statistics gathering for your main application schema, consider leaving it on

for the dictionary tables. You can do this by changing the value of AUTOSTATS_TARGET to ORACLE

instead of AUTO using DBMS_STATS.SET_GLOBAL_PREFS procedure.

BEGIN

 DBMS_STATS.SET_GLOBAL_PREFS(‘AUTOSTATS_TARGET’,’ ORACLE’);

END;

/

To disable the task altogether:

BEGIN

 DBMS_AUTO_TASK_ADMIN.DISABLE(

 client_name => 'auto optimizer stats collection',

 operation => NULL,

 window_name => NULL);

END;

/

Understanding Optimizer Statistics with Oracle Database 12c

22

Improving the efficiency of Gathering Statistics

Once you define the statistics you are interested in, you want to ensure to collect these statistics in a

timely manner. Traditionally, people have sped up statistics gathering by using parallel execution as

discussed above. However, what if all of the objects a schema were small and didn’t warrant parallel

execution, how could you speed up gathering statistics on that schema?

Concurrent Statistic gathering

Concurrent statistics gathering enables statistics to be gathered on multiple tables in a schema (or

database), and multiple (sub)partitions within a table concurrently. Gathering statistics on multiple

tables and (sub)partitions concurrently can reduce the overall time it takes to gather statistics by

allowing Oracle to fully utilize a multi-processor environment.

Concurrent statistics gathering is controlled by the global preference, CONCURRENT, which can be set to

MANUAL, AUTOMATIC, ALL, OFF. By default it is set to OFF. When CONCURRENT is enabled, Oracle

employs Oracle Job Scheduler and Advanced Queuing components to create and manage multiple

statistics gathering jobs concurrently.

Calling DBMS_STATS.GATHER_TABLE_STATS on a partitioned table when CONCURRENT is set to

MANUAL or ALL, causes Oracle to create a separate statistics gathering job for each (sub)partition in

the table. How many of these jobs will execute concurrently, and how many will be queued is based on

the number of available job queue processes (JOB_QUEUE_PROCESSES initialization parameter, per

node on a RAC environment) and the available system resources. As the currently running jobs

complete, more jobs will be dequeued and executed until all of the (sub)partitions have had their

statistics gathered.

If you gather statistics using DBMS_STATS.GATHER_DATABASE_STATS,

DBMS_STATS.GATHER_SCHEMA_STATS, or DBMS_STATS.GATHER_DICTIONARY_STATS, then Oracle

will create a separate statistics gathering job for each non-partitioned table, and each (sub)partition for

the partitioned tables. Each partitioned table will also have a coordinator job that manages its

(sub)partition jobs. The database will then run as many concurrent jobs as possible, and queue the

remaining jobs until the executing jobs complete. However, to prevent possible deadlock scenarios

multiple partitioned tables cannot be processed simultaneously. Hence, if there are some jobs running

for a partitioned table, other partitioned tables in a schema (or database or dictionary) will be queued

until the current one completes. There is no such restriction for non-partitioned tables.

The following figure illustrates the creation of jobs at different levels, when a

DBMS_STATS.GATHER_SCHEMA_STATS command has been issued on the SH schema. Oracle will

create a statistics gathering job (Level 1 in Figure 26 for each of the non-partitioned tables;

CHANNELS,

COUNTRIES,

CUSTOMERS,

PRODUCTS,

PROMOTIONS,

TIMES

Understanding Optimizer Statistics with Oracle Database 12c

23

And, a coordinator job for each partitioned table, i.e., SALES and COSTS, which in turn creates a

statistics gathering job for each of partition in SALES and COSTS tables, respectively (Level 2 in Figure

26).

Figure 26. List of the statistics gathering job created when Concurrent Statistics Gathering occurs on the SH schema

Let’s assume that the parameter JOB_QUEUE_PROCESSES is set to 32. The Oracle Job Scheduler would

allow 32 statistics gathering jobs to start, and would queue the rest (assuming that there are sufficient

system resources for 32 jobs). Suppose that the first 29 jobs (one for each partition plus the

coordinator job) for the COSTS table get started, then three non-partitioned table statistics gathering

jobs would also be started. The statistics gathering jobs for the SALES table will be automatically

queued, because only one partitioned table is processed at any one time. As each job finishes, another

job will be dequeued and started, until all 64 jobs (6 level 1 jobs and 58 level 2 jobs) have been

completed. Each of the individual statistics gathering job can also take advantage of parallel execution

as described above under the parameter DEGREE.

You should note that if a table, partition, or sub-partition is very small or empty, the database may
automatically batch the object with other small objects into a single job to reduce the overhead of job
maintenance.

Configuration and Settings

The concurrency setting for statistics gathering is turned off by default. It can be turned using the

DBMS_STATS.SET_GLOBAL_PREFS procedure. For example,

BEGIN

DBMS_STATS.SET_GLOBAL_PREFS('CONCURRENT','ALL');

END;

/

You will also need some additional privileges above and beyond the regular privileges required to

gather statistics. The user must have the following Job Scheduler and AQ privileges:

CREATE JOB

MANAGE SCHEDULER

Understanding Optimizer Statistics with Oracle Database 12c

24

MANAGE ANY QUEUE

The SYSAUX tablespace should be online, as the Job Scheduler stores its internal tables and views in

SYSAUX tablespace. Finally, the JOB_QUEUE_PROCESSES parameter should be set to fully utilize all of

the system resources available (or allocated) for the statistics gathering process. If you don't plan to use

parallel execution you should set the JOB_QUEUE_PROCESSES to 2 X total number of CPU cores (this

is a per node parameter in a RAC environment). Please make sure that you set this parameter system-

wise (ALTER SYSTEM ... or in init.ora file) rather than at the session level (ALTER SESSION).

If you are going to use parallel execution as part of concurrent statistics gathering you should disable

the PARALLEL_ADAPTIVE_MULTI_USER initialization parameter. That is;

ALTER SYSTEM SET parallel_adaptive_multi_user=false;

It is also recommended that you enable parallel statement queuing. This requires Resource Manager to

be activated (if not already), and the creation of a temporary resource plan where the consumer group

"OTHER_GROUPS" should have queuing enabled. By default, Resource Manager is activated only during

the maintenance windows. The following script illustrates one way of creating a temporary resource

plan (pqq_test), and enabling the Resource Manager with this plan.

Figure 27. Steps required to setup Resource Manager and parallel statement queuing for concurrent statistics

gathering executed in parallel

If you want the automatic statistics gathering job to take advantage of concurrency, set CONCURRENT to

either AUTOMATIC or ALL. A new ORA$AUTOTASK consumer group has been added to the Resource

Manager plan used during the maintenance window, to ensure concurrent statistics gathering does not

use too much of the system resources.

Gathering Statistics on Partitioned tables

Gathering statistics on partitioned tables consists of gathering statistics at both the table level and

partition level. Prior to Oracle Database 11g, adding a new partition or modifying data in a few

Understanding Optimizer Statistics with Oracle Database 12c

25

partitions required scanning the entire table to refresh table-level statistics. If you skipped gathering the

global level statistics, the Optimizer would extrapolate the global level statistics based on the existing

partition level statistics. This approach is accurate for simple table statistics such as number of rows –

by aggregating the individual rowcount of all partitions - but other statistics cannot be determined

accurately. For example, it is not possible to accurately determine the number of distinct values for a

column (one of the most critical statistics used by the Optimizer) based on the individual statistics of

all partitions.

Oracle Database 11g enhanced the statistics collection for partitioned tables with the introduction of

incremental global statistics. If the INCREMENTAL preference for a partitioned table is set to TRUE, the

DBMS_STATS.GATHER_*_STATS parameter GRANULARITY includes GLOBAL, and

ESTIMATE_PERCENT is set to AUTO_SAMPLE_SIZE, Oracle will gather statistics on the new partition,

and accurately update all global level statistics by scanning only those partitions that have been added

or modified, and not the entire table.

Incremental global statistics works by storing a synopsis for each partition in the table. A synopsis is

statistical metadata for that partition and the columns in the partition. Each synopsis is stored in the

SYSAUX tablespace. Global statistics are then generated by aggregating the partition level statistics and

the synopses from each partition, thus eliminating the need to scan the entire table to gather table level

statistics (see Figure 28). When a new partition is added to the table, you only need to gather statistics

for the new partition. The global statistics will be automatically and accurately updated using the new

partition synopsis and the existing partitions’ synopses.

Figure 28. Incremental Statistics gathering on a range partitioned table

Below are the steps necessary to use incremental global statistics.

Begin by switching on incremental statistics at either the table or the global level.

BEGIN

DBMS_STATS.SET_TABLE_PREFS(‘SH’,’SALES’,‘INCREMENTAL’,’TRUE’);

Understanding Optimizer Statistics with Oracle Database 12c

26

END;

/

Gather statistics on the object(s) as normal, letting the ESTIMATE_PERCENT and GRANULARITY

parameters default.

BEGIN

DBMS_STATS.GATHER_TABLE_STATS(‘SH’,’SALES’);

END;

/

To check the current setting of INCREMENTAL for a given table, use DBMS_STATS.GET_PREFS.

SELECT DBMS_STATS.GET_PREFS(‘INCREMENTAL’,‘SH’,’SALES’)

FROM dual;

By default, when INCREMENTAL statistics are enabled, if a single row changes in a partition, then

statistics for that partition are considered stale and have to be re-gathered before they can be used to

generate global level statistics. This behavior can be changed by setting the new Oracle Database 12c

preference INCREMENTAL_STALENESS.

By setting INCREMENTAL_STALENESS to USE_STALE_PERCENT, the partition level statistics will be

used as long as the percentage of rows changed is less than the value of the preference

STALE_PRECENTAGE (10% by default). Alternatively it can be set to USE_LOCKED_STATS, which

means if statistics on a partition are locked, they will be used to generate global level statistics

regardless of how many rows have changed in that partition since statistics were last gathered.

Note that INCREMENTAL statistics does not apply to the sub-partitions. Statistics will be gathered as

normal on the sub-partitions and on the partitions. Only the partition statistics will be used to

determine the global or table level statistics.

Managing statistics

In addition to collecting appropriate statistics, it is equally important to provide a comprehensive

framework for managing them. Oracle offers a number of methods to do this, including the ability to

restore statistics to a previous version, the option to transfer statistics from one system to another, or

even manually setting the statistics values yourself. These options are extremely useful in specific cases,

but are not recommended to replace standard statistics gathering methods using the DBMS_STATS

package.

Restoring Statistics

From Oracle Database 10g onwards, when you gather statistics using DBMS_STATS, the original

statistics are automatically kept as a backup in dictionary tables, and can be easily restored by running

DBMS_STATS.RESTORE_TABLE_STATS if the newly gathered statistics lead to any kind of problem.

The dictionary view DBA_TAB_STATS_HISTORY contains a list of timestamps when statistics were

saved for each table.

The example below restores the statistics for the table SALES to what they were yesterday, and

automatically invalidates all of the cursors referencing the SALES table in the SHARED_POOL. We want

Understanding Optimizer Statistics with Oracle Database 12c

27

to invalidate all of the cursors; because we are restoring yesterday’s statistics and want them to impact

any cursor instantaneously. The value of the NO_INVALIDATE parameter determines if the cursors

referencing the table will be invalidated or not.

BEGIN

DBMS_STATS.RESTORE_TABLE_STATS(ownname => ‘SH’,

 tabname => ‘SALES’,

 as_of_timestamp => SYSTIMESTAMP-1

 force => FALSE,

 no_invalidate => FALSE);

END;

/

Pending Statistics

By default, when statistics are gathered, they are published (written) immediately to the appropriate

dictionary tables and begin to be used by the Optimizer. In Oracle Database 11g, it is possible to

gather Optimizer statistics but not have them published immediately; and instead store them in an

unpublished, ‘pending’ state. Instead of going into the usual dictionary tables, the statistics are stored in

pending tables so that they can be tested before they are published. These pending statistics can be

enabled for individual sessions, in a controlled fashion, which allows you to validate the statistics

before they are published. To activate pending statistics collection, you need to use one of the

DBMS_STATS.SET_*_PREFS procedures to change value of the parameter PUBLISH from TRUE

(default) to FALSE for the object(s) you wish to create pending statistics for.

BEGIN

DBMS_STATS.SET_TABLE_PREFS(‘SH’,’SALES’,‘PUBLISH’,’FALSE’);
END;

/

Gather statistics on the object(s) as normal.

BEGIN

DBMS_STATS.GATHER_TABLE_STATS(‘SH’,’SALES’);
END;

/

The statistics gathered for these objects can be displayed using the dictionary views called

USER_*_PENDING_STATS. You can tell the Optimizer to use pending statistics by issuing an ALTER

SESSION command to set the initialization parameter OPTIMIZER_USE_PENDING_STATS to TRUE and

running a SQL workload. For tables accessed in the workload that do not have pending statistics, the

Optimizer will use the current statistics in the standard data dictionary tables. Once you have validated

the pending statistics, you can publish them using the procedure

DBMS_STATS.PUBLISH_PENDING_STATS.

BEGIN

DBMS_STATS.PUBLISH_PENDING_STATS(‘SH’,’SALES’);

END;

/

Understanding Optimizer Statistics with Oracle Database 12c

28

Exporting / Importing Statistics

One of the most important aspects of rolling out a new application or a new part of an existing

application is testing it at scale. Ideally, you want the test system to be identical to production in terms

of hardware and data size. This is not always possible, most commonly due to the size of the

production environments. By copying the Optimizer statistics from a production database to any other

system running the same Oracle version, e.g., a scaled-down test database; you can emulate the

Optimizer behavior of a production environment. The production statistics can be copied to the test

database using the DBMS_STATS.EXPORT_*_STATS and DBMS_STATS.IMPORT_*_STATS procedures.

Before exporting statistics, you need to create a table to store the statistics using

DBMS_STATS.CREATE_STAT_TABLE. After the table has been created, you can export statistics from

the data dictionary using the DBMS_STATS.EXPORT_*_STATS procedures. Once the statistics have

been packed into the statistics table, you can then use datadump to extract the statistics table from the

production database, and import it into the test database. Once the statistics table is successfully

imported into the test system, you can import the statistics into the data dictionary using the

DBMS_STATS.IMPORT_*_STATS procedures. The following example creates a statistics table called

TAB1 and exports the statistics from the SH schema into the MYSTATS statistics table.

Understanding Optimizer Statistics with Oracle Database 12c

29

Figure 29. Exporting the Optimizer statistics for the SH schema

Copying Partition Statistics

When dealing with partitioned tables, the Optimizer relies on both the statistics for the entire table

(global statistics) as well as the statistics for the individual partitions (partition statistics) to select a

good execution plan for a SQL statement. If the query needs to access only a single partition, the

Optimizer uses only the statistics of the accessed partition. If the query access more than one partition,

it uses a combination of global and partition statistics.

It is very common with range partitioned tables to have a new partition added to an existing table, and

rows inserted into just that partition. If end-users start to query the newly inserted data before statistics

have been gathered, it is possible to get a suboptimal execution plan due to stale statistics. One of the

most common cases occurs when the value supplied in a where clause predicate is outside the domain

of values represented by the [minimum, maximum] column statistics. This is known as an ‘out-of-

range’ error. In this case, the Optimizer prorates the selectivity based on the distance between the

predicate value, and the maximum value (assuming the value is higher than the max), that is, the farther

the value is from the maximum or minimum value, the lower the selectivity will be.

Understanding Optimizer Statistics with Oracle Database 12c

30

The "Out of Range" condition can be prevented by using the DBMS_STATS.COPY_TABLE_STATS

procedure (available from Oracle Database 10.2.0.4 onwards). This procedure copies the statistics of a

representative source [sub] partition to the newly created and empty destination [sub] partition. It also

copies the statistics of the dependent objects: columns, local (partitioned) indexes, etc. The minimum

and maximum values of the partitioning column are adjusted as follows;

 If the partitioning type is HASH the minimum and maximum values of the destination partition are

same as that of the source partition.

 If the partitioning type is LIST and the destination partition is a NOT DEFAULT partition, then the

minimum value of the destination partition is set to the minimum value of the value list that

describes the destination partition. The maximum value of the destination partition is set to the

maximum value of the value list that describes the destination partition

 If the partitioning type is LIST and the destination partition is a DEFAULT partition, then the

minimum value of the destination partition is set to the minimum value of the source partition. The

maximum value of the destination partition is set to the maximum value of the source partition

 If the partitioning type is RANGE, then the minimum value of the destination partition is set to the

high bound of previous partition and the maximum value of the destination partition is set to the

high bound of the destination partition unless the high bound of the destination partition is

MAXVALUE, in which case the maximum value of the destination partition is set to the high bound

of the previous partition

It can also scale the statistics (such as the number of blocks, or number of rows) based on the given

scale_factor. The following command copies the statistics from SALES_Q3_2011 range partition to the

SALES_Q4_2011 partition of the SALES table and scales the basic statistics by a factor of 2.

BEGIN

DBMS_STATS.COPY_TABLE_STATS('SH','SALES','SALES_Q3_2002','SALES_Q4_2002', 2);

END;

/

Index statistics are only copied if the index partition names are the same as the table partition names

(this is the default). Global or table level statistics are not updated by default. The only time global level

statistics would be impacted by the DBMS_STATS.COPY_TABLE_STATS procedure would be if no

statistics existed at the global level and global statistics were being generated via aggregation.

Comparing Statistics

One of the key reasons an execution plan can differ from one system to another is because the

Optimizer statistics on each system are different - for example when data on a test system is not 100%

in sync with real production system. To identify differences in statistics, the

DBMS_STATS.DIFF_TABLE_STATS_* functions can be used to compare statistics for a table from two

different sources. The statistic sources can be:

 A user statistics table and the current statistics in the data dictionary

 A single user statistics table containing two sets of statistics that can be identified using statids

Understanding Optimizer Statistics with Oracle Database 12c

31

 Two different user statistics tables

 Two points in history

 Current statistics and a point in history

 Pending Statistics with the current statistics in the dictionary

 Pending Statistics with a user statistics table

The function also compares the statistics of the dependent objects (indexes, columns, partitions), and

displays all the statistics for the object(s) from both sources if the difference between the statistics

exceeds a specified threshold. The threshold can be specified as an argument to the function; the

default value is 10%. The statistics corresponding to the first source will be used as the basis for

computing the differential percentage.

In the example below, we compare the current dictionary statistics for the EMP table with the statistics

for EMP in the statistics table TAB1; the SQL statement will generate a report as shown in Figure 30.

SELECT report, maxdiffpct

FROM table(DBMS_STATS.DIFF_TABLE_STATS_IN_STATTAB(‘SCOTT’,’EMP’,’TAB1’));

Figure 30. Report output after comparing the statistics for table SCOTT.EMP in the statistics table TAB1 and the

current statistics in the dictionary.

Locking Statistics

In some cases, you may want to prevent any new statistics from being gathered on a table or schema by

locking the statistics. Once statistics are locked, no modifications can be made to those statistics until

the statistics have been unlocked or unless the FORCE parameter of the GATHER_*_STATS procedures

has been set to TRUE.

Understanding Optimizer Statistics with Oracle Database 12c

32

Figure 31 Locking and unlocking table statistics

Statistics can be locked and unlocked at either the table or partition level.

BEGIN

DBMS_STATS.LOCK_PARTITION_STATS(‘SH’,’SALES’, 'SALES_Q3_2000');

END;

You should note there is a hierarchy with locked statistics. For example, if you lock the statistic on a

partitioned table, and then unlocked statistics on just one partition in order to re-gather statistics on

that one partition, it will fail with an error ORA-20005. The error occurs because the table level lock

will still be honored even though the partition has been unlocked. The statistics gather for the partition

will only be successfully if the FORCE parameter is set to TRUE.

Understanding Optimizer Statistics with Oracle Database 12c

33

Figure 32. Hierarchy with locked statistics; table level lock trumps partition level unlock

Manually setting Statistics

Under rare circumstances, it may be beneficial to manually set the Optimizer statistics in the data

dictionary. One such example could be a highly volatile global temporary table (note that while

manually setting statistics is discussed in this paper, it is not generally recommended, because

inaccurate or inconsistent statistics can lead to poor performing execution plans). Statistics can be

manually set using DBMS_STATS.SET_*_STATS procedures.

Understanding Optimizer Statistics with Oracle Database 12c

34

Other Types of Statistics

In addition to basic table, column, and index statistics, the Optimizer uses additional information to

determine the execution plan of a statement. This additional information can come in the form of

dynamic sampling and system statistics.

Dynamic Statistics (previously known as dynamic sampling)

Dynamic sampling was introduced in Oracle Database 9i Release 2 to collect additional statement-

specific object statistics during the optimization of a SQL statement. The most common

misconception is that dynamic sampling can be used as a substitute for Optimizer statistics. The goal

of dynamic sampling is to augment the existing statistics; it is used when regular statistics are not

sufficient to get good quality cardinality estimates.

In Oracle Database 12c, dynamic sampling has been enhanced to become dynamic statistics. Dynamic

statistics allow the optimizer to augment existing statistics to get more accurate cardinality estimates for

not only single table accesses, but also joins and group-by predicates

So, how and when will dynamic statistics be used? During the compilation of a SQL statement, the

Optimizer decides whether to use dynamic statistics or not by considering whether the available

statistics are sufficient to generate a good execution plan. If the available statistics are not enough,

dynamic sampling will be used. It is typically used to compensate for missing or insufficient statistics

that would otherwise lead to a very bad plan. For the case where one or more of the tables in the query

does not have statistics, dynamic sampling is used by the Optimizer to gather basic statistics on these

tables before optimizing the statement. The statistics gathered in this case are not as high a quality or as

complete as the statistics gathered using the DBMS_STATS package. This trade off is made to limit the

impact on the compile time of the statement.

The second scenario where dynamic statistics can be used is when the statement contains a complex

predicate expression, and extended statistics are not available, or cannot be used. For example, if you

had a query that has non-equality where clause predicates on two correlated columns, standard

statistics would not be sufficient in this case, and extended statistics could not be used. In this simple

query against the SALES table, the Optimizer assumes that each of the where clause predicates will

reduce the number of rows returned by the query, and based on the standard statistics, determines the

cardinality to be 20,197, when in fact, the number of rows returned is ten times higher at 210,420.

SELECT count(*)

FROM sh.Sales

WHERE cust_id < 2222

AND prod_id > 5;

Understanding Optimizer Statistics with Oracle Database 12c

35

Figure 33. Execution plan for complex predicates without dynamic sampling

With standard statistics, the Optimizer is not aware of the correlation between the CUST_ID and

PROD_ID in the SALES table. By setting OPTIMIZER_DYNAMIC_SAMPLING to level 6, the Optimizer

will use dynamic sampling to gather additional information about the complex predicate expression.

The additional information provided by dynamic statistics allows the Optimizer to generate a more

accurate cardinality estimate, and therefore a better performing execution plan.

Figure 34. Execution plan for complex predicates with dynamic sampling level 6

As seen in this example, dynamic sampling is controlled by the parameter

OPTIMIZER_DYNAMIC_SAMPLING, which can be set to different levels (0-11). These levels control two

different things; when dynamic sampling kicks in, and how large a sample size will be used to gather

the statistics. The greater the sample size, the bigger impact dynamic sampling has on the compilation

time of a query.

When set to 11 the Optimizer will automatically decide if dynamic statistics will be useful, and what

dynamic sampling level will be used for SQL statements The optimizer bases its decision to use

dynamic statistics on the complexity of the predicates used, the existing base statistics, and the total

execution time expected for the SQL statement. For example, dynamic statistics will kick in for

situations where the Optimizer previously would have used a guess. For example, queries with LIKE

predicates and wildcards.

Understanding Optimizer Statistics with Oracle Database 12c

36

Figure 35. When OPTIMIZER_DYNAMIC_SAMPLING is set to level 11 dynamic sampling will be used instead of

guesses

Given these criteria, it’s likely that when set to level 11, dynamic sampling will kick-in more often than

it did before. This will extend the parse time of a statement. In order to minimize the performance

impact, the results of the dynamic sampling queries will be persisted in the cache, as dynamic statistics,

allowing other SQL statements to share these statistics.

System statistics

In Oracle Database 9i, system statistics were introduced to enable the Optimizer to more accurately

cost each operation in an execution plan by using information about the actual system hardware

executing the statement, such as CPU speed and IO performance.

System statistics are enabled by default, and are automatically initialized with default values; these

values are representative for most system. When system statistics, are gathered they will override these

initial values. To gather system statistics, you can use DBMS_STATS.GATHER_SYSTEM_STATS during a

representative workload time window, ideally at peak workload times.

System statistics need to be gathered only once. System statistics are not automatically collected as part

of the automatic statistics gathering job. You must have GATHER_SYSTEM_STATISTICS or the DBA

role to update system statistics.

Statistics on Dictionary Tables

Since the Cost Based Optimizer is now the only supported optimizer, all tables in the database need to

have statistics, including all of the dictionary tables (tables owned by ‘SYS’, SYSTEM, etc, and residing

in the system and SYSAUX tablespace). Statistics on the dictionary tables are maintained via the

Understanding Optimizer Statistics with Oracle Database 12c

37

automatic statistics gathering job run during the nightly maintenance window. If you choose to switch

off the automatic statistics gathering job for your main application schema, consider leaving it on for

the dictionary tables. You can do this by changing the value of AUTOSTATS_TARGET to ORACLE instead

of AUTO using the procedure DBMS_STATS.SET_GLOBAL_PREFS.

BEGIN

DBMS_STATS.SET_GLOBAL_PREFS('AUTOSTATS_TARGET','ORACLE');

END;

/

Statistics can be manually gathered on the dictionary tables using the

DBMS_STATS.GATHER_DICTIONARY_STATS procedure. You must have both the ANALYZE ANY

DICTIONARY, and ANALYZE ANY system privilege, or the DBA role to update dictionary statistics. It is

recommended that dictionary table statistics be maintained on a regular basis in a similar manner to

user schemas.

Statistics on Fixed Objects

You will also need to gather statistics on dynamic performance tables and their indexes (fixed objects).

These are the X$ tables on which the V$ views (V$SQL etc.) are built. Since V$ views can appear in

SQL statements like any other user table or views, it is important to gather optimizer statistics on these

tables to help the optimizer generate good execution plans. However, unlike other database tables,

dynamic sampling is not automatically use for SQL statement involving X$ tables when optimizer

statistics are missing. The Optimizer uses predefined default values for the statistics if they are missing.

These defaults may not be representative and could potentially lead to a suboptimal execution plan,

which could cause severe performance problems in your system. It is for this reason that we strongly

recommend you gather fixed objects statistics.

Fixed object statistics are not gathered or maintained by the automatic statistics gathering job. You can

collect statistics on fixed objects using DBMS_STATS.GATHER_FIXED_OBJECTS_STATS procedure.

BEGIN

DBMS_STATS.GATHER_FIXED_OBJECTS_STATS;

END;

/

The DBMS_STATS.GATHER_FIXED_OBJECTS_STATS procedure gathers the same statistics as

DBMS_STATS.GATHER_TABLE_STATS except for the number of blocks. Blocks is always set to 0 since

the x$ tables are in memory structures only and are not stored on disk. Because of the transient nature

of the x$ tables, it is import that you gather fixed object statistics when there is a representative

workload on the system. You must have the ANALYZE ANY DICTIONARY system privilege or the DBA

role to update fixed object statistics. It is recommend that you re-gather fixed object statistics if you do

a major database or application upgrade.

Understanding Optimizer Statistics with Oracle Database 12c

38

Conclusion

In order for the Cost Based Optimizer to accurately determine the cost for an execution plan, it must

have information about all of the objects (table and indexes) accessed in the SQL statement, and

information about the system on which the SQL statement will be run. This necessary information is

commonly referred to as Optimizer statistics. Understanding and managing statistics is key to optimal

SQL execution. Knowing when and how to gather statistics in a timely manner is critical to maintaining

good performance.

By using a combination of the automatic statistics gathering job and the DBMS_STATS package, a DBA

can maintain an accurate set of statistics for a system, ensuring the Optimizer will have the best

possible source of information to determine the execution plan.

Understanding Optimizer Statistics with Oracle

Database 12c

June 2013

Author: Maria Colgan

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and

are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are

trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0612

