

Upgrading from Oracle Database
9i to 10g: What to expect from the
Optimizer

An Oracle White Paper

July 2008

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 2

NOTE:

The following is intended to outline our general product direction. It is intended

for information purposes only, and may not be incorporated into any contract. It is

not a commitment to deliver any material, code, or functionality, and should not be

relied upon in making purchasing decisions. The development, release, and timing

of any features or functionality described for Oracle’s products remains at the sole

discretion of Oracle.

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 3

Upgrading from Oracle Database 9i to 10g: What to expect

from the Optimizer

Note:.. 2

Executive Summary .. 4

Introduction ... 4

New Optimizer and Statistics Features in 10g.. 5

Init.ora parameters.. 5

Optimizer_ mode... 5

Optimizer_dynamic_sampling ... 5

Optimizer_secure_view_merging .. 5

Changes to the DBMS_STATS package .. 6

New subprograms in the DBMS_STATS package............................. 6

New default parameter values for
DBMS_STATS.GATHER_*_STATS.. 9

Histograms... 10

Histograms and Bind Peeking.. 11

Automatic statistics gathering job .. 11

Parallel execution plans.. 12

Cost Based Transformations .. 13

Extensions to the DBMS_XPLAN package.. 14

Plan output from additional sources ... 14

Extended and more granular plan output .. 15

SQL Test Case Builder... 16

Optimizer Features Enable ... 16

Preparing to Upgrade ... 17

Testing your application .. 17

Pre-Upgrade Checklist ... 18

After the upgrade .. 18

Post-Upgrade Checklist ... 18

Conclusion.. 19

APPENDIX A: stored outlines Can provide plan stability...................... 20

Prior to Upgrade Steps .. 20

After the Upgrade... 21

APPENDIX B: the new DIFF_TABLE_STATS_* FUNCTION........ 23

References .. 26

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 4

Upgrading from Oracle Database 9i to 10g: What to expect

from the Optimizer

EXECUTIVE SUMMARY

Since its introduction in Oracle 7.0, people have been fascinated and intimidated by

the cost-based optimizer (CBO) and the statistics that feed it. It has long been felt

that the internals of the CBO were shrouded in mystery and that a degree in

wizardry was needed to work with it. One of the most daunting activities a DBA

can therefore undertake is upgrading the database to a new version. Having to

comprehend all of the new features and to deal with potential plan changes can be

overwhelming. This paper aims to dispel the mystery by explaining in detail what to

expect from the CBO when you upgrade from Oracle database 9i to 10g.

One key area that has changed in Oracle Database 10g is the Optimizer statistics,

specifically the DBMS_STATS package. New types of statistics have been introduced;

default parameter values have changed and there is a new automatic statistics

gathering job.

INTRODUCTION

The purpose of the Cost Based Optimizer (CBO) is to determine the most efficient

execution plan for your queries. It makes these decisions based on the statistical

information it has about your data and by leveraging Oracle database features such

as hash joins, parallel query, and Oracle Partitioning. After an upgrade, the CBO is

expected to generate the same or a better performing execution plan for most SQL

statements. Still it is inevitable that the CBO will generate a sub-optimal plan for

some SQL statements in the new release compared to the prior release. This paper

aims to prepare you to upgrade the Optimizer from Oracle Database 9i to Oracle

Database 10g by introducing the new features and what steps you should take

before and after the upgrade to minimize plan regressions and help you deal any

plan changes that do occur.

The paper is divided into three sections: the first outlines the new features in the

Optimizer and statistics areas, the second explains what pre-upgrade steps you need

to execute, and the third covers what to expect after the upgrade. This paper is by

no means a complete guide for upgrading your Oracle Database 9i. You should

refer to the Oracle Database Upgrade Guide for complete details and guidelines for

your upgrade.

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 5

NEW OPTIMIZER AND STATISTICS FEATURES IN 10G

Init.ora parameters

Several of the initialization parameters that govern Optimizer behavior have new

default values in Oracle Database 10g. There is also one new initialization

parameter. Below are the details on what parameters have new default values and

details on the new parameter.

Optimizer_ mode

The parameter optimizer_mode has a new default value of ALL_ROWS in Oracle

database 10g.

This means the Optimizer will no longer operate under RULE mode (RBO) when

a table has no statistics. In Oracle database 10g the Optimizer operates under

ALL_ROWS mode (CBO) and will use dynamic sampling to get statistics for any

tables that do not have statistics and will use CBO. The other possible values are

FIRST_ROWS_1, FIRST_ROWS_10, FIRST_ROWS_100, and

FIRST_ROWS_1000. The CHOOSE, RULE, and FIRST_ROWS modes have been

deprecated.

Optimizer_dynamic_sampling

The parameter optimizer_dynamic_sampling has a new default value of 2 in

Oracle Database 10g.

This means dynamic sampling will be applied to all unanalyzed tables. It also means

that twice the number of blocks will be use to calculate statistics than were used in

Oracle database 9i. The default value for dynamic sampling in 9i was 1.

Optimizer_secure_view_merging

A new init.ora parameter called optimizer_secure_view_merging has been

introduced in Oracle Database 10g with a default value of TRUE. The setting of this

parameter disables some unsafe view merging capabilities that were present in

Oracle Database 9i.

When a SQL statement that refers to a view is parsed, the view referenced in a

query is expanded into a separate query block, which represents the view definition,

and therefore the result of the view. The view text is then merged into the original

SQL statement and the new combined query is optimized as a whole. View merging

is a SQL transformation that is completely internal to the Optimizer and

transparent to the end user.

While merging views does not change the actual result of a query, it can potentially

change the internal order of the various operations that have to take place to

process the SQL statement. Prior to Oracle Database 10g, some view merging

could have taken place where the new ordering could create a potential security

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 6

breach. With optimizer_secure_view_merging set to true additional

conservative security checks will be applied and will prevent any view merging that

could be regarded as such a breach. It is important to understand that while the

Optimizer disallows certain view merging operations, these do not have to be actual

security breaches but rather that the Optimizer cannot guarantee the integrity of a

potential view merging – e.g. with some embedded PL/SQL functions - thus it

disallows it to begin with.

With the new security checks it’s possible that the execution plan for a SQL

statement that refers to a view or contains an inline view will change after the

migration from Oracle Database 9i to Oracle Database 10g. If you do not have any

security concerns with your application or any possibility of a malicious database

user, you can disable the additional checks and revert to the old Oracle Database 9i

behavior by setting this new initialization parameter

optimizer_secure_view_merging to FALSE.

Parameter 9.2
Value

10gR2
Value

Optimizer_mode CHOOSE ALL_ROWS

Optimizer_dynamic_sampling 1 2

Optimizer_secure_view_merging N/A TRUE

Table 1 Summary of init.ora parameter changes between 9i and 10g

Changes to the DBMS_STATS package

In Oracle 8i a new PL/SQL package, called DBMS_STATS was introduced to gather

and manage optimizer statistics. DBMS_STATS is Oracle’s preferred method for

gathering statistics and replaces the ANALYZE command for collecting statistics.

The DBMS_STATS package has been extended in Oracle Database 10g to

accommodate new types of statistics and monitoring data that can now be

collected. Changes have also been made to the default value for several of the

parameters used in the gather statistics procedures. There is also a new automatic

statistics gathering job that is enabled by default in 10g.

New subprograms in the DBMS_STATS package

System statistics

In Oracle Database 9i system statistics were introduce to enable the CBO to

effectively cost each operation in an execution plan, by using information about the

actual system hardware executing the statement, such as CPU speed and IO

performance. However, if system statistics were not gathered in 9i the CBO would

revert back to the costing model present in Oracle Database 8i.

The ANALYZE command has been officially

obsolete for gathering statistics. Use the

DBMS_STATS package instead.

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 7

In Oracle Database 10g the use of systems statistics is enabled by default and

system statistics are automatically initialized with heuristic default values; these

values do not represent your actual system. When you gather system statistics in

Oracle Database 10g they will override these initial values. To gather system

statistics you can use DBMS_STATS.GATHER_SYSTEM_STATS during your peak

workload time window.

At the beginning of the peak workload window execute the following command:

BEGIN
DBMS_STATS.GATHER_SYSTEM_STATS(‘START’);
END;
/

At the end of the peak workload window execute the following command:

BEGIN
DBMS_STATS.GATHER_SYSTEM_STATS(‘END’);
END;
/

Oracle recommends gathering system statistics during a representative workload,

ideally at peak workload time. You only have to gather system statistics once.

System statistics are not automatically collected as part of the new statistics gather

job (see the automatic statistics gathering job section below for more details).

Statistics on Dictionary Tables

Since the default value for optimizer_mode in Oracle Database 10g forces the

use of the CBO, all tables in the database need to have statistics including all of the

dictionary tables (tables owned by ‘sys’ and residing in the system tablespace).

During the upgrade process Oracle will automatically gathers statistics on the

dictionary tables. Appendix C of the Oracle® Database Upgrade Guide provides

scripts that collect optimizer statistics for dictionary objects. By running these

scripts prior to performing the actual database upgrade, you can decrease the

amount of downtime incurred during the database upgrade.

Statistics on the dictionary tables will be maintained via the automatic statistics

gathering job run during the nightly maintance window. If you choose to switch off

the automatic statistics gathering job for your main application schema consider

leaving it on for the dictionary tables. You can do this by changing the value of

AUTOSTATS_TARGET to ORACLE instead of AUTO using the procedure

DBMS_STATS.SET_PARAM.

BEGIN
DBMS_STATS.SET_PARAM(AUTOSTATS_TARGET,'ORACLE');
END;
/

Statistics on Fixed Objects

You will also need to gather statistics on dynamic performance tables (fixed

objects) these are the X$ tables on which the V$ view (V$SQL etc.) are built. Fixed

objects now need statistics due to the new default value for optimizer_mode. It’s

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 8

important to gather statistics on the fixed objects as they are often queried to

supply information to Statspack and the new Automatic Workload Repository

(AWR) in Oracle Database 10g and you need to give the CBO accurate statistics

for these objects. You only need to gather fixed objects statistics once for a

representative workload and they are not updated by the automatic statistics

gathering job. You can collect statistics on fixed objects using

DBMS_STATS.GATHER_FIXED_OBJECTS_STATS.

BEGIN
DBMS_STATS.GATHER_FIXED_OBJECTS_STATS;
END;
/

Restoring Statistics

In Oracle Database 10g when you gather statistics using DBMS_STATS, the

original statistics are automatically kept as a backup in dictionary tables and can be

easily restored by running DBMS_STATS.RESTORE_TABLE_STATS if the newly

gathered statistics prove to be suboptimal.

The example below restores the statistics for the table SALES back to what they

were yesterday and automatically invalidates all of the cursors referencing the

SALES table. We want to invalidate all of the cursors because we are restoring

yesterday’s statistics since today’s statistics gave us an unacceptable plan. The value

of the no_invalidate parameter determines if the cursors referencing the table will

be invalidated or not.

BEGIN
DBMS_STATS.RESTORE_TABLE_STATS('SH','SALES',SYSTIMESTAMP-
1,false, false);
END;
/

Comparing Statistics

When it comes to deploying a new application or application module it is standard

practice to test and tune the application in a test environment before it is moved to

production. However, even with testing it’s possible that SQL statements in the

application will have different execution plans in production then they did on the

test system. One of the key reasons an execution plan can differ from one system to

another (from test and production) is because the optimizer statistics on each

system are different. In Oracle Database 10g Release 2, 1the

DIFF_TABLE_STATS_* functions can be used to compare statistics for a table

from two different sources. The statistics can be from:

• A user statistics table and current statistics in the dictionary

• A single user statistics table containing two sets of statistics that can be

identified using statids

1 Only available in Oracle Database 10g Release 2 patch set 3 10.2.0.4.

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 9

• Two different user statistics tables

• Two points in history

The function also compares the statistics of the dependent objects (indexes,

columns, partitions). The function displays statistics for the object(s) from both

sources if the difference between the statistics exceeds a certain threshold (%). The

threshold can be specified as an argument to the function; the default value is 10%.

The statistics corresponding to the first source will be used as the basis for

computing the differential percentage.

In the example below we compare the current dictionary statistics for the table EMP

with the statistics for EMP in the stats table tab1; the SQL statement will generate a

report-like output on the screen.

SQL> select report, maxdiffpct from

 table(dbms_stats.diff_table_stats_in_stattab(‘SCOTT’,’EMP’,’TAB1’));

More examples of how to use the new DIFF_TABLE_STATS_* functions and an

example of it’s output can be found in Appendix B.

New default parameter values for DBMS_STATS.GATHER_*_STATS

The default value for a number of the parameters used in the DBMS_STATS gathers

statistics subprograms have changed in Oracle Database 10g. Table 2 below

highlights these changes.

Parameter 9.2 Value 10gR2 Value
METHOD_OPT FOR ALL COLUMNS SIZE 1 FOR ALL COLUMNS SIZE AUTO

ESTIMATE_PRECENT 100 (Compute) DBMS_STATS.AUTO_SAMPLE_SIZ
E

GRANULARITY DEFAULT(Table&Partition) AUTO

CASCADE FALSE DBMS_STATS.AUTO_CASCADE

NO_VALIDATE FALSE DBMS_STATS.AUTO_INVALIDATE

Table 2 Default values for parameters used in DBMS_STATS

The METHOD_OPT parameter controls the creation of histograms during statistics

collection. With the new default value of FOR ALL COLUMNS SIZE AUTO, Oracle

automatically determines which columns require histograms and the number of

buckets that will be used based on the column’s usage statistics. A column is a

candidate for a histogram if it has been seen in a where clause predicate e.g. an

equality, range, LIKE, etc. Oracle will verify whether the column is skewed before

creating a histogram, for example a unique column will not have a histogram

created on it.

The ESTIMATE_PERCENT parameter determines the percentage of rows used to

calculate the statistics. In Oracle Database 9i the default percentage was 100% or

all of the rows in the table. However, in Oracle Database 10g statistics are gathered

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 10

using a sampling method. Oracle automatically determines the appropriate sample

size for every table in order to get accurate statistics.

The GRANULARITY parameter dictates at which level statistics will be gathered. The

possible levels are table (global), partition, or subpartition. With the new default

setting of AUTO Oracle will determine the granularity based on the objects

partitioning type.

The CASCADE parameter determines whether or not statistics are gathered for the

indexes on a table. In Oracle Database 10g, this parameter is set to

DBMS_STATS.AUTO_CASCADE by default, which means Oracle will determine

whether index statistics need to be collected or not.

In Oracle Database 9i the NO_INVALIDATE parameter determined if the dependent

cursors will be invalidated immediately after statistics are gathered or not. With the

new setting of DBMS_STATS.AUTO_INVALIDATE in Oracle database 10g, cursors

that have already been parsed will not be invalidated immediately. They will

continue to use the plan that was obtained using the original statistics until Oracle

decides to invalidate the dependent cursors. The invalidations will happen gradually

over time to ensure there is no performance impact on the shared pool as there

could be if all of the dependent cursors were hard parsed all at once.

Changing the default parameter values for DBMS_STATS

To change the default value for any of the parameters used by the DBMS_STATS

subprograms, use the DBMS_STATS.SET_PARAM procedure, e.g:

BEGIN
DBMS_STATS.SET_PARAM('CASCADE','DBMS_STATS.AUTO_CASCADE');
END;
/

Histograms

With the new default setting for the METHOD_OPT parameter Oracle will

automatically determine which columns should have histograms created on them

when gathering statistics.

Oracle bases the decision to create a histogram on internal information recorded

about column usage, such as what number and type of WHERE clause predicates (=

< > Like etc.) were used for each column. Histograms allow the Optimizer to

better estimate the cardinality of a particular column after applying all where clause

predicates. A histogram is a series of buckets, where the number of values

occurring within a range is tracked in these buckets. The range for each bucket is

established during statistics collection. Histograms are potentially useful when:

Histograms are probably the statistics that

help and hinder the CBO the most.

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 11

1. The column is used in an equality predicate or an equi-join predicate AND

there are frequency skews in the column data.

2. The column is used in a range or like predicate AND there are either or

both frequency skews or range skews in the column.

Information about existing histograms can be viewed in *_TAB_HISTOGRAMS and
*_TAB_COL_STATISTICS.

SELECT S.TABLE_NAME, S.COLUMN_NAME, S.HISTOGRAM
FROM USER_TAB_COL_STATISTICS S;

Histograms and Bind Peeking

When optimizing a SQL statement that contains bind variables in the WHERE clause

the Optimizer peeks at the values of these bind variables on the first execution

(during hard parse). The Optimizer determines the execution plan based on the

initial bind values. On subsequent executions of the query, no peeking takes place

(no hard parse happens), so the original execution plan will be used by all future

executions, even if the value of the bind variables change. The presence of a

histogram on the column used in the expression with the bind variable may cause a

different execution plan to be generated for the statement depending on the initial

value of the bind variabl being peeked, so the execution plan could vary depending

on the values of the bind variables on its first invocation. This issue may surface in

light of the change in the default behavior in DBMS_STATS (see the section on the

METHOD_OPT parameter in New Default Parameter Values for DBMS_STATS) If

this change causes performance problems then you can regather statistics on this

table without histograms or change the value of METHOD_OPT parameter.

Automatic statistics gathering job

Oracle will automatically collect statistics for all database objects, which are missing

statistics or have stale statistics by running an Oracle Scheduler job

(GATHER_STATS_JOB) during a predefined maintenance window (10 pm to 6 am

weekdays and all day at the weekends). You can adjust the predefined maintenance

windows to a time suitable to your database environment using the

DBMS_SCHEDULER.SET_ATTRIBUTE procedure. For example, the following

statement moves the WEEKNIGHT_WINDOW to midnight through to 8 a.m. every

weekday morning:

EXECUTE DBMS_SCHEDULER.SET_ATTRIBUTE(

'WEEKNIGHT_WINDOW',

'repeat_interval',

'freq=daily;byday=MON, TUE, WED, THU,
FRI;byhour=0;byminute=0;bysecond=0');

This job gathers optimizer statistics by calling the internal procedure

DBMS_STATS.GATHER_DATABASE_STATS_JOB_PROC. This procedure operates

in a very similar fashion to the DBMS_STATS.GATHER_DATABASE_STATS

procedure using the GATHER AUTO option. The primary difference is that Oracle

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 12

internally prioritizes the database objects that require statistics, so that those

objects, which most need updated statistics, are processed first. You can verify that

the automatic statistics gathering job exists by viewing the DBA_SCHEDULER_JOBS

view:

SELECT * FROM DBA_SCHEDULER_JOBS WHERE JOB_NAME =
'GATHER_STATS_JOB';

Statistics on a table are considered stale when more than 10% of the rows are

changed (total # of inserts, deletes, updates) in the table. Oracle monitors the DML

activity for all objects and records it in the SGA. The monitoring information is

periodically flushed to disk and is exposed in the *_tab_modifications view.

SELECT TABLE_NAME, INSERTS, UPDATES, DELETES
FROM USER_TAB_MODIFICATIONS;

It is also possible to manually flush this data by calling the procedure

DBMS_STATS.FLUSH_MONITORING_INFO.

The automatic statistics gathering job uses the default parameter values for the

DBMS_STATS procedures. If you wish to change these defalut values you can use

the DBMS_STATS.SET_PARAM procedure. Remember these values will be used for

all schemas including ‘SYS’. To change the 'ESTIMATE_PERCENT' you can use

BEGIN
DBMS_STATS.SET_PARAM('ESTIMATE_PERCENT','5');
END;
/

If you already have a well established statistics gather procedure or if for some

other reason you need to disable automatic statistics gathering altogether, the most

direct approach is to disable the GATHER_STATS_JOB as follows:

BEGIN
DBMS_SCHEDULER.DISABLE('GATHER_STATS_JOB');
END;

/

If you choose to switch off the automatic statistics gathering job for your main

application schema consider leaving it on for the dictionary tables. You can do this

by changing the value of AUTOSTATS_TARGET to ORACLE instead of AUTO using

DBMS_STATS.SET_PARAM.

Parallel execution plans

In Oracle Database 10g the parallel execution model for queries has changed from

a slave SQL model to a parallel single cursor (PSC) model. Instead of having the

query coordinator (QC) build different SQL statements for each individual block of

parallel operations in a query plan, and having each slave set parsing and executing

his own cursor, we now build and compile just one cursor that contains all the

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 13

information required for the entire parallel statement. All of the slaves now share

this single cursor2.

The new model of a single parallel plan means that more SQL statements can now

be parallelized. If your Oracle Database 9i environment uses parallel query because

you had explicitly set a parallel degree on the one or more tables, then its possible

you will see an increase in the number of queries being executed in parallel on your

system in 10g. If you only enable parallel query through the use of hints in certain

SQL statement then you will not see any change in the number of statements being

executed in parallel. In order to ensure you have enough parallel slave resources in

10g, you should make a note of the maximum number of parallel slaves being used

on your systems during peek times across the course of a week. You will need to

ensure that you set the initialization parameter PARALLEL_MAX_SERVERS to be

greater than your maximum value used in Oracle Database 9i. Note also that the

default value for PARALLEL_MAX_SERVERS has changed from Oracle

Database 9i to Oracle Database 10g; it has gone from a fixed value of 10 to an

automatically derived value. You have to manually set this parameter to 10 to

revert back to the default behavior in Oracle Database 9i.

Cost Based Transformations

Oracle transforms SQL statements using a variety of sophisticated techniques

during query optimization. The purpose of this phase of query optimization is to

transform the original SQL statement into a semantically equivalent SQL statement

that can be processed more efficiently. In Oracle Database 9i the following

Optimizer transformations were heuristic based.

� Complex View Merging

� Subquery Unnesting

� Join Predicate Push Down

This means the transformations were applied to SQL statements based on the

structural properties of the query: e.g., number of tables, availability of indexes,

types of joins and filters, presence of grouping clauses, etc.; however, the selectivity,

cardinality, join order, and other related costs of various database operations, were

not taken into account.

In Oracle Database 10gR2 a new general framework for cost-based query

transformations was introduced, so that the three transformations mentioned

above became cost-based transformations. In cost-based transformation, queries

are rewritten or transformed into various forms and their costs are estimated. This

process is repeated multiple times applying a new set of transformations each time.

2 For a detailed description of Oracle's parallel execution capabilities, see the Oracle

documentation, namely the Data Warehousing Guide

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 14

The optimizer then selects the best execution plan based on the combination of one

or more transformations with the lowest cost.

The types of queries that are affected by the above three transformations can be

characterized by views with group-by clause or distinct key word (known in Oracle

as complex views), by subqueries with multiple tables or with aggregate functions,

and by multiple-table outer-joined views or views with UNION/UNION ALL.

Extensions to the DBMS_XPLAN package

Plan output from additional sources

An explain plan displays the execution plan chosen by the Optimizer for a given

SQL statement. Generating and displaying the execution plan of a SQL statement is

a common task for most DBAs. In Oracle Database 9i the PL/SQL package

DBMS_XPLAN was introduced to provide an easier way to format the output of the

EXPLAIN PLAN command. In Oracle Database 10g the DBMS_XPLAN package has

been extended to enable you to display execution plans from three additional

sources:

1. V$SQL_PLAN

2. Automatic Workload Repository (AWR)

3. SQL Tuning Set (STS)

The V$SQL_PLAN dictionary view introduced in Oracle 9i shows the execution plan

for a SQL statement that has been compiled into a cursor in the cursor cache. The

advantage of looking at the execution plan from V$SQL_PLAN, rather than from

the EXPLAIN PLAN command, is that the value of any bind variable(s) are taken

into account during the plan generation process in V$SQL_PLAN but not in the

EXPLAIN PLAN command.

You can display an execution plan from V$SQL_PLAN by providing the SQL_ID to

the new DBMS_XPLAN.DISPLAY_CURSOR function or by running the following

query with the leading edge of your SQL text.

SELECY PLAN_TABLE_OUTPUT

FROM V$SQL s,

TABLE(DBMS_XPLAN.DISPLAY_CURSOR(s.SQL_ID, s.CHILD_NUMBER,‘BASIC’))t

 WHERE s.SQL_TEXT LIKE 'select * from emp%';

The Automatic Workload Repository (AWR) was introduced in Oracle Database

10g; it collects, processes, and maintains performance statistics for the database and

stores them in the database. It gathers and store performance information similar

to what is stored in the Statspack schema in 9i. Using the new

DBMS_XPLAN.DISPLAY_AWR function you can display an execution plan stored in

AWR based on its SQL_ID.

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 15

SELECT * FROM table

(DBMS_XPLAN.DISPLAY_AWR('gm9t6ycmb1yu6'));

A SQL Tuning Set (STS) is a database object that includes one or more SQL

statements along with their execution statistics and execution context. They were

introduced in Oracle Database 10g as part of the new manageability framework.

They can be used as input to the new SQL Tuning Advisor and are transportable

across databases. It’s possible to display the execution plan for a SQL statement

stored in a STS by supplying its SQL_ID to the new

DBMS_XPLAN.DISPLAY_SQLSET function.

SELECT * FROM table

(DBMS_XPLAN.DISPLAY_SQLSET('gm9t6ycmb1yu6'));

Extended and more granular plan output

Each of the DBMS_XPLAN.DISPLAY* functions takes a format parameter, the

valid values are basic, typical, all. The format parameter controls the amount of

detail displayed in the plan output, from a high level summary that only includes

the execution plan (format=>'basic'), to finer grained detail

(format=>'all'). The default is 'typical'. In Oracle 10g, additional options

can also be passed with the format parameter to selectively display the detailed

information, such as predicates used and the value of the bind variables used to

generate the execution plan. Take for example a simple SQL statement that run

against the SH sample schema.

SQL> SELECT prod_category, avg(amount_sold)

 2 FROM sales s, products p

 3 WHERE p.prod_id = s.prod_id

 4 AND prod_category != :pcat

 5 GROUP BY prod_category;

After running this statement you can look at the execution plan in V$SQL_PLAN
and see what the value of the bind variable :pcat was by running the following
query

SQL> select plan_table_output from

table(dbms_xplan.display_cursor(null,null,'typical +peeked_binds'));

PLAN_TABLE_OUTPUT

SQL_ID 4tatrz7dcp9kb, child number 0

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 16

select prod_category, avg(amount_sold) from sales s, products p where p. prod_id = s.

prod_id and prod_category != :pcat

group by prod_category

Plan hash value

| Id| Operation | Name | Rows| Bytes| Cost(%CPU)| Time | Pstart| Pstop

|--

| 0 | SELECT STATEMENT | | | | 555 (100)| | | |

| 1 | HASH GROUP BY | | 1 | 30 | 555 (13)| 00:00:07 | | |

|*2 | HASH JOIN | | 787K| 22M| 508 (5)| 00:00:07 | | |

|*3 | TABLE ACCESS FULL | PRODUCTS| 62 | 1302 | 3 (0)| 00:00:01 | | |

| 4 | PARTITION RANGE ALL| | 918K| 8075K| 498 (4)| 00:00:06 | 1 | 28 |

| 5 | TABLE ACCESS FULL | SALES | 918K| 8075K| 498 (4)| 00:00:06 | 1 | 28 |

Peeked Binds (identified by position):

 1 - :PCAT (VARCHAR2(30), CSID=178): 'Women'

Predicate Information (identified by operation id):

 2 - access("P"."PROD_ID"="S"."PROD_ID")

 3 - filter("PROD_CATEGORY"<>:PCAT)

SQL Test Case Builder
3

If you ever need to contact Oracle support about a SQL issue obtaining a

reproducible test case is the single most important factor to ensure a speedy

resolution. This can also be the longest and most painful step for a customer. A

new tool called the SQL Test Case Builder was introduced to help customers to

gather as much information as possible relating to a SQL incident and package it up

ready to send to Oracle. This package of information will allow a developer at

Oracle to reproduce the problem standalone on a different Oracle instance and

resolve the issue sooner. You can access the SQL Test Case Builder through the

PL/SQL package DBMS_SQLDIAG. There are two procedures;

DBMS_SQLDIAG.EXPORT_SQL_TESTCASE, which enables you to export a SQL

test case for a given SQL statement into a given directory and

DBMS_SQLDIAG.IMPORT_SQL_TESTCASE, which enables you to import a given

SQL test case from a given directory.

Optimizer Features Enable

The initialization parameter OPTIMIZER_FEATURES_ENABLE acts as an umbrella

parameter that can be used to enable or disable a series of optimizer-related

3 This functionality is generally available beginning with Oracle Database 10g patchset 3, a.k.a.

10.2.0.4

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 17

features for a given release. After you upgrade to Oracle Database 10g, if you

wanted to revert back to 9.2 optimizer behavior you can set

OPTIMIZER_FEATURES_ENABLE = 9.2.0

This would set the default value for dynamic sampling back to 1, revert the

optimizer costing model back to what it was in 9.2, and change all the cost based

transformations back to being heuristic based. However, you should note that it

would not change the PL/SQL package DBMS_STATS and its default parameter

values back to what they were in 9.2, nor will it change the new parallel execution

model or remove the new secure view merging feature. Details on how to revert

any of these features back to their 9.2 behavior is outline in the above appropriate

sections.

PREPARING TO UPGRADE

Undertaking a database upgrade is a daunting task for any DBA. Once the database

has been successfully upgraded you must still run the gauntlet of possible database

behavior changes. On the top of every DBA’s list of possible behavior changes are

execution plan changes. In order to easily detect these changes and rectify any

execution plans that may have regressed you need to have a very accurate

understanding of the execution plans and Optimizer statistics you had before you

began the upgrade. You also need to test your applications against the new release

before upgrading your production system.

Testing your application

• Ideally your pre-upgrade testing should be conducted on exactly the same

hardware you use in your production system. That means, the same CPU

brand, memory architecture, O/S release etc.

• Always use a copy of the 'live' data from the production system for testing.

Never test with just a small percentage of the real data or with 'hand-

crafted' data sets. This can lead to an unrealistic sense of security and will

not prepare you for what changes may occur on production.

• Ensure all important queries and reports are tested.

• Check for increases in batch job execution times as it may indicate

problems or plan changes in one or more steps in the job.

• Make sure you have comparable test results from your current Oracle

Database releases (elapsed times, execution plans, Statspack reports,

system statistics). This may mean having to run the tests on both the

current and new release.

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 18

Pre-Upgrade Checklist

Before you upgrade your production system to Oracle Database 10g you must

collect and save the following pieces of information

1. Gather Instance-wide performance statistics from the Production database

(during peak load times) as a baseline. These baselines may be used for future

comparison if the need arises. Instance-wide performance statistics include:

a. Statspack data and reports. Configure Statspack to take level 7

snapshots so you can collect segment statistics and plan information.

Schedule Statspack snapshots every hour for at least one week to

capture expensive SQL.

b. OS statistics including CPU, memory and IO (such as sar, vmstat,

iostat)

2. Be sure to perform all business critical transactions as well as month-end

processes and common ad-hoc queries during the baseline capture.

3. Export the Statspack schema owner, PERFSTAT. Keep the export file as

backup.

4. Export a complete set of Optimizer statistics into a statistics table, and export

the table as a backup.

5. Make a backup of your init.ora file.

6. Create Stored Outlines for all key SQL statements as a backup mechanism to

ensure you have a way to revert back to the 9i execution plan should the plan

regress in 10g. Key statements include the current Top SQL statements, and

any important SQL statements in the application. Detailed instruction on how

to do this can be found in Appendix A.

AFTER THE UPGRADE

Once you have successfully upgraded to Oracle Database 10g and your application

is running, you will have to monitor your environment careful to ensure you do not

encounter any performance issues or plan regressions. The steps below outline

what you should do.

 Post-Upgrade Checklist

1. Install or upgrade Statspack and set the level to 7. Follow Statspack

instructions specially if upgrading it.

2. Schedule Statspack snapshots every hour. This will let Statspack capture

expensive SQL in your 10g environment. If you have licensed the

Diagnostic Pack then you can use the new AWR reports, which will be

automatically captured hourly.

3. Capture OS statistics, which coincide with your Statspack reports.

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 19

4. Identify the expensive SQL (top SQL) using Statspack or AWR reports.

Compare these SQL statements to the top SQL statements you had prior

to the upgrade. If they are not the same you will need to investigate why.

a. If the pre-upgrade instance is still available, execute the source

transaction in both instances (9i and 10g) and compare the

execution plans, buffer gets, CPU time, and total elapse times.

b. If pre-upgrade instance is no longer available, use the export of

the PERFSTAT schema (you took as part of the pre-upgrade

check list) to find the SQL statement and its execution plan (use

script sprepsql.sql)

5. Determine root cause of sub optimal plans and take corrective action.

Corrective action may be in the form of: re-gathering statistics with

different parameter settings, use SQL Tuning Advisor, index creation,

creation of a SQL Profile, use of Optimizer hints, research of known

Bugs, logging an SR, etc.

6. In the short term you can use the 9i Store Outline you capture before the

upgrade to revert the execution plan back to what it was in 9i. See

Appendix A for details on how to activate a captured Stored Outline.

CONCLUSION

Since the introduction of the Cost Based Optimizer (CBO) in Oracle 7.0, people

have been fascinated by it and the statistics that feed it. In Oracle Database 10g the

CBO’s effectiveness and ease of use have been greatly improved. By outlining in

detail the changes made to the CBO and it’s statistics in this release we hope to

remove some of the mystery surround them and help make the upgrade process

smoother as forewarned is forearmed.

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 20

APPENDIX A: STORED OUTLINES CAN PROVIDE PLAN STABILITY

Capturing Stored Outlines for your mission critical SQL statements prior to your

upgrade to 10g provides a safety net or fallback method should the execution plan

for any of these statements regress.

There are two ways to capture Stored Outlines, you can either manually create one

for each SQL statement using the CREATE OUTLINE command or let Oracle

automatically create a Stored Outline for each SQL statement that is executed.

Below are the steps needed to let Oracle automatically create the Stored Outlines

for you in your Oracle Database 9i prior to your upgrade to 10g.

Prior to Upgrade Steps

1. You should begin by starting a new session and issuing the following

command to switch on the automatic capture of a Stored Outline for each

SQL statement that gets parsed from now on until you explicitly turn it

off.

 SQL > alter system set

CREATE_STORED_OUTLINES=OLDPLAN;

NOTE: Ensure that the schemas in which outlines are to be created have

the CREATE ANY OUTLINE privilege. If they don’t not Stored Outlines

will actually be captured.

2. Now execute your workload either by running your application or

manually issuing SQL statements. NOTE: if you manually issue the SQL

statements ensure you use the exact SQL text used by the application, if it

uses bind variables you will have to use them too.

3. Once you have executed your critical SQL statements you should turn off

the automatic capture by issuing the following command:

 SQL > alter system set CREATE_STORED_OUTLINES=false;

4. To confirm you have captured the necessary Stored Outlines issue the

following SQL statement.

 SQL> select name, sql_text, category

from user_outlines;

NOTE: Each Stored Outline should be in the OLDPLAN category.

5. The actual Stored Outlines are stored in the OUTLN schema. Before you

upgrade you should export this schema as a backup.

 exp outln/outln file=soutline.dmp owner=outln

rows=y

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 21

After the Upgrade

Once you have upgraded to 10g the captured Stored Outlines will act, as a

safety net for you should any of your SQL statements regress. The following

steps show you how you can use a Stored Outline to revert the changed

execution plan back to the plan you had in your 9i system.

1. Once you have identified a SQL statement whose plan has regressed you

will need to find it’s corresponding Stored Outline. This is a three step

process.

a. The sql_text for each stored outline is stored as a long and it is

not possible to use a LIKE predicate on a long column. So we

need to create a temporary table to convert the long to a clob.

SQL> Create table match_outlines (

 name varchar2(30),

 sql_text clob);

b. Then select the name and sql_text columns from the

user_outlines view and insert them into the new match_outlines

table.

SQL> Insert into match_outlines

Select name, to_lob(sql_text)

From user_outlines;

c. Finally retrieve the name of the corresponding stored outline by

searching the sql_text for the leading edge of your regressed SQL

statement.

SQL> select name

 From match_outlines

 Where sql_text like 'select prod_id%';

2. Once you identify the stored outline by name, you will need to change its

category from OLDPLAN to FIXPLAN.

SQL> alter outline <name> change category to

FIXPLAN;

3. Then set the parameter USE_STORED_OUTLINES to FIXPLAN.

 SQL> Alter system set USE_STORED_OUTLINES=FIXPLAN;

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 22

4. You can verify the SQL statement is using the Stored Outline by checking

the new notes section on the explain plan or by querying the

outline_category column in the V$SQL view.

SQL> select sql_text, outline_category

 From v$SQL

 Where sql_text like ‘select prod_id%’;

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 23

APPENDIX B: THE NEW DIFF_TABLE_STATS_* FUNCTION

In Oracle Database 10.2.0.4 the DBMS_STATS.DIFF_TABLE_STATS_* functions
can be used to compare statistics for a table from two different sources. The
statistics can be from:

• A user statistics table and the current dictionary statistics

• A single user statistics table containing two sets of statistics that can be
identified using different statids

• Two different user statistics tables

• Two different points in history

The functions are defined as

DBMS_STATS.DIFF_TABLE_STATS_IN_STATTAB(

ownname IN VARCHAR2,

tabname IN VARCHAR2,

stattab1 IN VARCHAR2,

stattab2 IN VARCHAR2 DEFAULT NULL,

pctthreshold IN NUMBER DEFAULT 10,

statid1 IN VARCHAR2 DEFAULT NULL,

statid2 IN VARCHAR2 DEFAULT NULL,

stattab1own IN VARCHAR2 DEFAULT NULL,

stattab2own IN VARCHAR2 DEFAULT NULL)

RETURN DiffRepTab pipelined;

DBMS_STATS.DIFF_TABLE_STATS_IN_HISTORY(

ownname IN VARCHAR2,

tabname IN VARCHAR2,

time1 IN TIMESTAMP WITH TIME ZONE,

time2 IN TIMESTAMP WITH TIME ZONE DEFAULT
NULL, pctthreshold IN NUMBER DEFAULT 10)

RETURN DiffRepTab pipelined;

Below are examples of possible use cases for the diff_table_stats functions.

Comparing statistics found in a user statistics table to those currently in

the dictionary for a given table

In this example we compare the statistics in the user statistic table TAB1 with the
current dictionary statistics for the table EMP.

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 24

SQL> select report, maxdiffpct from
table(dbms_stats.diff_table_stats_in_stattab(null,'emp','tab1
'));

Comparing two sets of statistics identified by different statids in the

same user statistics table

In this example we compare two different sets of statistics, for the table EMP, which
are stored in the user statistics table TAB1. Each set of statistics is identified by a
different statid (stats1, stats2)

SQL> select report, maxdiffpct from

table(dbms_stats.diff_table_stats_in_stattab(null,'emp','tab1

',NULL,10,'stats1','stats2'));

Comparing the current statistic for a table with those from a week ago

In this example we compare the current statistics for the table EMP with those from

a week ago.

SQL> select report, maxdiffpct from

table(dbms_stats.diff_table_stats_in_history(null,’emp’,

 systimestamp-7));

;

Example of a DBMS_STATS.DIFF_TABLE_STATS_* report

Below is an example of the report that is generated after running an of the

DBMS_STATS.DIFF_TABLE_STATS_* functions.

DBMS_STATS.DIFF_TABLE_STATS_IN_STATTAB(NULL,'EMP','TAB1')

STATISTICS DIFFERENCE REPORT FOR:

TABLE : EMP

OWNER : SCOTT

SOURCE A : User statistics table TAB1

 : Statid :

 : Owner : SCOTT

SOURCE B : Current Statistics in dictionary

PCTTHRESHOLD : 10

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer          Page 25 

NO DIFFERENCE IN TABLE / (SUB)PARTITION STATISTICS 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

COLUMN STATISTICS DIFFERENCE:

COL_NAME SRC NDV DENSITY HIST NULLS LEN MIN MAX SIZE

DEPTNO A 3 .333333333 NO 0 3

C10B C11F 14

 B 3 .035714285 YES 0

3 C10B C11F 14

Upgrading Oracle Database 9i to 10g:What to expect from the Optimizer Page 26

REFERENCES

Optimizer

Oracle® Database Performance Tuning Guide 10g Release 2 (10.2) Chapter 13

The Query Optimizer

Oracle® Database Performance Tuning Guide 10g Release 2 (10.2) Chapter 18

Using Plan Stability

Oracle® Database Performance Tuning Guide 10g Release 2 (10.2) Chapter 16

Using Optimizer Hints

Oracle® Database Concepts 10g Release 2 (10.2) Chapter 25 SQL, PL/SQL

Statistics

Oracle® Database PL/SQL Packages and Types Reference 10g Release 2 (10.2)

Chapter 103 DBMS_STATS

Oracle® Database Performance Tuning Guide 10g Release 2 (10.2) Chapter 14

Managing Optimizer Statistics

Automatic Statistic Gathering Job

Oracle® Database Performance Tuning Guide 10g Release 2 (10.2) Chapter 14

Managing Optimizer Statistics

Oracle® Database Administrator’s Guide 10g Release 2 (10.2) Chapter 23

Managing Automatic System Tasks Using the Maintenance Window.

Parallel Query

Oracle® Database Data Warehousing Guide 10g Release 2 (10.2) Chapter 25

Using Parallel Execution

Oracle® Database Performance Tuning Guide 10g Release 2 (10.2) Chapter 11

SQL Tuning Overview.

Initialization Parameters

Oracle® Database Reference 10g Release 2 (10.2) Chapter 1 Initialization

Parameters

Upgrading

Oracle® Database Upgrade Guide 10g Release 2 (10.2)

Upgrading from Oracle Database 9i to 10g: What to expect from the Optimizer

July 2008

Author: Maria Colgan

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2008, Oracle. All rights reserved.

This document is provided for information purposes only and the

contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any

other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations

are formed either directly or indirectly by this document. This document

may not be reproduced or transmitted in any form or by any means,

electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Other names may be trademarks of their respective owners.

