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Categories of Semiconductor Memory

Non-volatileVolatile Semiconductor
memory

Semiconductor
memory

RAM

DRAM SRAM

Floating
Gate (FG) 

NOR, NAND

Charge-trapping 
(CT) NOR, NAND, 
and CT 3D

Emerging ROM  &
Fuse

Phase
Change

FeRAM MRAM RRAM Polymer

Dominate NVM
for the last 30

year

NVM
(Charge storage MOSFET)

CT NOR in mass 
production

PCM in mass 
production

High interest 
recently

 CT NAND are discussed here.
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Flash
 

Memory

NOR
(Code)

NAND
(Data)

Flash Memory Applications
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NOR and NAND Flash Memory

Source

Oxide

Floating 
gate

Control 
gate

Drain

Single cell structure

ONO

~4F2~10F2



 
Due to the excellent scalability and performances, 

NAND Flash has enjoyed the highest density

 NOR Flash scaling is much slower than NAND so far
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NAND Flash Scaling Roadmap 
–

 
CT and 3D



 
NAND Flash has been scaled to 25nm (TLC, 3b/c) so 

far, even faster than ITRS prediction.


 
3D charge-trapping

 
(CT) device is a possible 

solution to continue NAND Flash scaling below 1Xnm 
node.

ITRS 2009
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NAND Demand Forecast

NAND Flash enjoys a ~70% CAGR recently
Major driving force: Mobile application, Tablets, and SSD……

Source: forward insight
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MLC/TLC/QLC

It is forecasted that the 16LC (4b/c) will only appear in a short period. 
TLC (3b/c) and MLC (2b/c)

 

are the major products, while SLC keeps a 
small portion.

Source: forward insight
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Endurance and Retention Forecast

Endurance and retention 
continue to degrade. More 
than 40-bit ECC/page is 
necessary at 2X node.

Source: forward insight
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Will NAND Flash Scale to 1X nm?

IPD ONO thickness scales below 11nm
High-K IPD?
Tox

 
scales below 7nm?

Thinner FG height and STI depth?
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NAND Flash is going to run out of electrons!

Few electron number 
is the fundamental 
brick wall, especially 
for multi level cell

FG interference is 
huge (>40%) at 
20nm node.
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Challenge of Cell Uniformity

班長一個人班長一個人
踢正步，很踢正步，很
簡單簡單

要讓每一個班兵要讓每一個班兵
在同一時間內，在同一時間內，
展現一致的動作展現一致的動作
，需要長時間的，需要長時間的
訓練與默契的培訓練與默契的培
養養

 Scaling generally makes uniformity very worseScaling generally makes uniformity very worse


 
Controlling cell uniformity is critical in overall Controlling cell uniformity is critical in overall 

performancesperformances
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Challenge of Tail Bit

P. Cappelletti, et al., IEDMTech. Dig., p.291, 1994.

 FG always has tail bitsFG always has tail bits…………(retention and P/E)(retention and P/E)
 More severe as More severe as ToxTox

 
scalesscales……....

 NOR donNOR don’’t have tolerancet have tolerance


 
NAND has more tolerance NAND has more tolerance 

 
ECC and many systemECC and many system--level level 

designdesign
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1.
 

Geometry difficulty 
 

gap filling and 
gate leaning

2.
 

Reliability  Retention/endurance, 
noise….

3.
 

Interference 
4.

 
High voltage and WL-WL breakdown..

*5. Lithography limitations for 1Xnm……

Summary of FG Scaling Challenges

However, scaling efforts never stop……
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Brief Comparison of 2D FG and CT

 CT is simpler in topology
 More immunity to tunnel oxide defect and SILC
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Problem of Conventional SONOS

150 0C Baking

Baking Time (Hour)
10-4 10-3 10-2 10-1 100 101 102 103 104

V F
B
 (V

)

-2

-1

0

1

2

3

4

BE-SONOS
SONOS (O1=2 nm)
SONOS (O1=2.5 nm)
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Erase Time (Sec)
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V
FB

 (V
)
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-1

0

BE-SONOS: -18V 
SONOS (O1=2 nm): -15V 
SONOS (O1=2.5 nm): -16V 

Erase field ~11MV/cm for all samples

(a) Erase Speed (b) Retention



 
When O1> 25A, the erase becomes too slow (gate 

injection current is larger!)
When O1< 25A, data retention is too poor!
 Erase and retention dilemma is the general issue

P+-poly gate

H. T. Lue (Macronix), et al, ICSICT, 2008.
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Charge-Trapping Devices Need BE Tox
 

or 
High-K Top Dielectric



 

Unlike FG, CT device is designed in a planar structure without GCR

 design.


 

Bottom tunnel oxide (EO1

 

) has the same E field with top oxide (EO2

 

), 
leading to small memory window during the erase.
 High-K top dielectric can reduce the gate injection
 BE Tox

 

can improve the hole injection for faster erase

gate

Top oxide

SiN

 

trap 
layer

Bottom oxide

S D

SONOS

e-

 

de-trapping

Gate injection

EO2

 

=EO1

 

, and gate injection is 
larger than electron de-trapping 

 

no memory window for erase

BE-SONOS

gate

Top oxide

SiN

 

trap 
layer

BE Tox

S D

Gate injection

EO2

 

=EO1

 

, but BE Tox

 

has larger 
hole injection than gate injection

hole injection

H. T. Lue, IEDM 2005.

gate

High-K

SiN

 

trap 
layer

Bottom oxide

S D

MANOS

e-

 

de-trapping

Gate injection

By higher-K top oxide, EO2

 

is 
smaller, leading to smaller gate 
injection during erase.

C. H. Lee, IEDM 2003.
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Glance over various CT Devices

Best reported 
reliability

Theoretically 
the highest 

performance

H. T. Lue et al (Macronix), IEEE TDMR 2010.

 No new materials, fast learning time



 

High-K CT devices (such TANOS) requires 
more learning time in reliability
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BE-SONOS NAND Flash

 A 75nm BE-SONOS NAND Flash test chip has been demonstrated.
 Near planar STI. Conventional materials (oxide, nitride, poly)


 

A highly reliable 38nm node BE-SONOS NAND will be published  at 
IEDM 2010.

H. T. Lue et al (Macronix),

 

IMW, 2010.
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BE-SONOS NAND Performances
75nm BE-SONOS NAND

VT(V)
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C
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s
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105 MLC , P/E=10
MLC after 1K cycled

PV1 PV2 PV3disturbed
EV



 

Our BE-SONOS NAND programming distribution can be tighter 
than FG due to simpler topology that minimizes the variation.
 Good programming and read performances.
 MLC operation of BE-SONOS NAND test chip is successful.

H. T. Lue, (Macronix), IMW short course
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Dumb program 
without verify
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Retention of BE-SONOS NAND

 Retention is excellent and no single tail bit found.
 The best reported CT reliability so far.


 
No so called charge lateral migration

 
issue (with our 

optimized SiN
 

trapping layer and process integration)

75nm BE-SONOS (Non-cut-ONO), P/E=1K
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C. C. Hsieh, (Macronix), IEDM 2010.
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We have developed a successful 
2D CT BE-SONOS NAND with 

excellent reliability

However, current FG NAND has already scaled 
to ~25nm node with TLC

Therefore, CT NAND must look for further 
scaling below 1X nm node
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Scaling Challenge of 2D CT NAND
 Below 20nm Node

 Lithography difficulty below 1X nm 
 Few-electron storage and statistics
 RTN (noise)
 Interference of CT NAND is still observed


 
High voltage requirement is approximately 

the same with FG

 2D CT NAND probably has a similar (or a little 
more) scalability with FG NAND
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““Simply StackedSimply Stacked””
 

3D NAND Flash3D NAND Flash

3D TANOS devices
Samsung: IEDM 2006

3D TFT BE-SONOS devices
Macronix: IEDM 2006



 

3D stackable NAND Flash using charge-trapping devices were 
firstly demonstrated in 2006.
 Charge-trapping (CT) TANOS and BE-SONOS devices were used.


 

To stack many layers may linearly increase the cost  Not good 
when more than 4 layers are used.


 

However, for <4 layers the cost is reduced. The process seems 
doable in principle for 2X nm node….
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Bit-cost scalable (BiCS) NAND Flash

TOSHIBA: VLSI Symposia 2007

 A break-through concept

 

was proposed by TOSHIBA.


 

It uses a only one critical contact drill hole for many layers,

 

thus the 
bit cost is scalable when more than 16 layers are used.
 3D NAND is a way to bypass the difficulty in lateral scaling
 Also keep the electron number……
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3D NAND Flash Architectures3D NAND Flash Architectures
VGP-BiCS

Ryota

 

K., et. 
al. 2009 VLSI

VSAT

Jiyoung

 

Kim, 
et. al. 2009 
VLSI

Wonjoo

 

Kim, 
et. al. 2009 
VLSI

Jaehoon

 

J., 
et. al. 2009 
VLSI

TCAT
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3D NAND Flash Comparison

[P-BiCS] R. Katsumata, et al, VLSI Symposia, pp. 136-137, 2009. [TCAT] J. Jang, et al, VLSI Symposia, pp. 192-193, 2009. [VSAT] 
J. Kim, et al, VLSI Symposia, pp. 186-187, 2009. [VG] W. Kim, et al, VLSI Symposia, pp. 188-189, 2009.
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3D NAND Bit Cost Analysis –
 

More 
realistic calculation

Number of Layer for 3D stacks
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VG possible

1
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g 
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e



 

If 3D starts from >65nm 6F2

 

cell size, it is hard to compete with 
current 25 nm FG NAND
 3D NAND is best to have cell size below 3X nm  VG is possible

PS: Additional 
processing cost

 

and 
array efficiency loss

 when adding one 
more memory layer  
are considered….
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Previous VG NAND Architecture

 Relative large pitch. (>0.3um)
WL and BL located at the bottom.


 
The array decoding method (in-layer multiplex 

decoder) is very complicated, and wastes array 
efficiency

W. Kim, et al, VLSI Symposia, pp. 188-189, 2009. 
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Modified VG NAND Architecture

 Conventional WL, BL are grouped into “planes”.
 One additional SSL’s

 
device also grouped into “planes”.

 Three planes select a memory cell.
WL and BL can be at top.

H. T. Lue, et al (Macronix), VLSI 2010.
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Array X-Direction

 75nm
 

half-pitch, 8-layer
 

device is fabricated
 Equivalent cell size = 0.001406

 
um2 (MLC)

 Each device is a double-gate TFT BE-SONOS device

H. T. Lue et al, VLSI 2010.
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Device characteristics of VG NAND
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Scaling Simulation
 

to 25nm

 Scalability to 25nm is feasible based on the simulation.
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Summary of 3D NAND


 
Many 3D memory architectures  Still hot 

topic


 
Scalability of cell size is important  Keep 

fewer memory stacks


 

Basic device physics is mostly known  No 
new materials except TFT
 Decoding methods are key issues 


 

Processing for the deep hole/trench is 
critical
 Variability of TFT
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Thank You for Your Attention!
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