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Categories of Semiconductor Memory

Volatile Non-volatile
memory

A\ 4 v

RAM NVM

DRAM SRAM \ |
Charge-trapping
(CT) NOR, NAND,.:'
“and CT 3D

Dominate NVM
for the last 30

year l
v
Phase
High interest Change

O CT NAND are discussed here.




Flash Memory Applications

Flash Memory




NOR and NAND Flash Memory

NOR Flash NAND Flash

Control
gate

Floating
gate

Source

Single cell structure

O Due to the excellent scalability and performances,
NAND Flash has enjoyed the highest density

OO NOR Flash scaling is much slower than NAND so far



NAND Flash Scaling Roadmap
— CT and 3D
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O NAND Flash has been scaled to 25nm (TLC, 3b/c) so
far, even faster than ITRS prediction.

(CT) device is a possible
solution to continue NAND Flash scaling below 1Xnm
node. 7



NAND Demand Forecast

NAND Flash Applications Demand

Source: forward insig

Other
Tablet
Solid State Drives
Digital Video Camcorder
Personal Navigation Device
M Digital Still Camera
B Mobile Phone
MP3/PMP Player
M USB Flash Drive

M Flash Memaory Card

2009 2010 2011 2012 2013 2014 2015 2016

NAND Flash enjoys a ~70% CAGR recently
Major driving force: Mobile application, Tablets, and SSD......



MLC/TLC/QLC

NAND Flash Demand by Architecture
Source: forward insight
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It is forecasted that the 16LC (4b/c) will only appear in a short period.
are the major products, while SLC keeps a
small portion.
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Endurance and Retention Forecast

NAND Flash Endurance
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Table 1.

ECC Require

ments for Multi-level NAND Flash Memories

Figure 26.

Number of Program/Erase Cycles
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NAND Flash Endurance (32Znm Process Technology)

NAND Flash Retention at 32nm

Retention (Years)
SLC MLC

8LC

According to the JEDEC specification, retention is specified at 10% of the endurance
specification. Fora 100k P/E cycle SLC part, the retention is 10 years after cycling the
part 10k times. Figure 26 shows the data retention as a function of program/erase
cycles for 32nm multi-bit per cell NAND devices. As can be seen, the retention time
decreases with cycling. For 10 year retention for a 4-bit/cell device, it is estimated the
part can be cycled at most a few times.

ECC Requirements

90nm

70nm

Sxnm

43nm

3xnm

2xnm

5LC

1-bit/5128B

1-bit/512B

1-bit/512B

1-bit/5128

4-hit/5128

4-hit/5128

MLC
3-bit/cell

4-hit/512B

4-bit/512B

8-bit/512B
8-bit/512B

24-bit/1kB
24-bit/1kB

24-bit/1kB
40-bit/1kB

24-bit/1kB

40-bit/1kB

Endurance and retention
continue to degrade. More
than 40-bit ECC/page is
necessary at 2X node.




Will NAND Flash Scale to 1X nm?

E'it_"f'i cult to scale
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or oxide tIiI.

IPD ONO thickness scales below 11nm
High-K IPD?

Tox scales below 7nm?

Thinner FG height and STI depth?
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NAND Flash is going to run out of electrons!

=8=—Electrons on FG for a

TVt GLO Few electron number

=®—Electrons on FG for a
3V Vt (MLC)

=@~ Electron lost per year is the fundamental

for a 20% V1t Shift (1V)

Number of Electrons

Electron lost per year

B brick wall, especially
for multi level cell

N I I FG interference is
===l hvoc 0% at
® 20nm node.

Sall Interface
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Scaling Issue - Physical Limitation

0 Gate stack leaning governed by Laplace pressure: DR >25nm
- Even with low surface tension IPA (y=21.7mN/m, just 1/3 of water)
O IPD leakage and CP void inhibit scaling of FG cell beyond 30nm

BL-direction WL-direction

40
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Deformation 3yH 1

by Laplace & = <=5
pressure* 8WSEp 3 Design rule [nm]

y: surface tension of liquid, E: Young’s modulus of poly-5Si, p: density of poly-Si

CD,~DR

*T. Abe, et. al, Journal of MEMS, vol. 4, no. 2, pp. 66-75, 1995

The 27 International Memory Workshop 4/35 May 16, 2010 JungDal Choi

Source: J. Choi, IMW Short Course

ELECTROMJCS




Challenge of Cell Unlformlty
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1 Scaling generally makes uniformity very worse
1 Controlling cell uniformity is critical in overall

performances 14



Challenge of Tail Bit

F -

cycle-1, ‘/

cycle-10K N\ -]
"'-.,, b L ]

Lol

o [ 3
UV erase--_«*
N T

e,

P. Cappelletti, et al, IEDMTech. Dig., p.291, 1994.

4 FG always has tail bits......
] More severe as Tox scales.....

1 NOR don’t have tolerance

1 NAND has more tolerance > ECC and many system-level
design

15



Summary of FG Scaling Challenges

1. Geometry difficulty = gap filling and
gate leaning

2. Reliability &> Retention/endurance,
noise....

3. Interference

4. High voltage and WL-WL breakdown..

However, scaling efforts never stop......
16
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Brief Comparison of 2D FG and CT

T ; dil!

Gap filling difficulty and — 1. Near-Planar structure
complicated topology

FG-FG interference and disturbs = 2 Discrete traps, no FG

i n

Few-electron retention and — 3. Deep traps (High E,). Immune
sensitivity to oxide defect (SILC) to point defect in tunnel oxide

O CT is simpler in topology

O More immunity to tunnel oxide defect and SILC i



Problem of Conventional SONOS

H. T. Lue (Macronix), et al, ICSICT, 2008.

(a) Erase Speed (b) Retention

150 °C Baking

—m— BE-SONOS
—@— SONOS (01=2 nm)
—A— SONOS (01=2.5 nm

LT

Erase field ~11MV/cm for all samples

—e— BE-SONOS: -18V

~~~~~ v SONOS (O1=2 nm): -15V

- SONOS (01=2.5 nm): -16V
104 10% 102

Erase Time (Sec)

104 103 102 10" 10° 10' 102 103 10%
Baking Time (Hour)

O When O1> 25A, the erase becomes too slow (gate
injection current is larger!)

O When O1< 25A, data retention is too poor!
O

19



Charge-Trapping Devices Need BE Tox or
High-K Top Dielectric

SONOS MANOS BE-SONOS
C. H. Lee, IEDM 2003. H. T. Lue, IEDM 2005.
Top omd.te injection  High-K .te injection Top OXId.te injection
SiN trap . SiN trap . SIN trap
layer P i o de- -trapping layer : ! de -trapping  layer
BOttO_ BOttO_ i o
Eo,=Eo,, and gate injection is By higher-K top oxide, E, is _
Iact)'zgerc;}lan electron de-trapping > smaller, leading to smaller gate 5°f_I.E°.1’ oI BIiTox TEE (BT
no memory window for erase injection during erase. ole injection than gate injection

O Unlike FG, CT device is designed in a

design.

O Bottom tunnel oxide (E,,) has the same E field with top oxide (E,),
leading to small memory window during the erase.

O High-K top dielectric can reduce the gate injection

O BE Tox can improve the hole injection for faster erase 20



Glance over various CT Devices

H. T. Lue et al (Macronix), IEEE TDMR 2010.

(a) SONOS/MONOS (b) MANOS/TANOS ¢) BE-MAONOS
with oxide buffer layer

Poly Gate or| TaN or other

metal gate metal gate Poltjglg;: or
. me e
60A 510, 150A Al,O,

Theoretically

the highest
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60A SIN O SN 4400221555 o performance
40A SiO, .

25 A 502
20 & SiM
13 A 8102

s\
C) BE-SONO:X (d) BE-MANOS General Bandgap-

Engineered CTNF
Poly gate or Poly gate or

Metal gate metal gate l\l;etal Ga

60 & 810,

150 A ALO, K3

03
B0 A S
' 60 A SiN N2
25 A 30 -
: 25 A 5102 B
125‘&‘&31851% 20 & SN _
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y s/ \p
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Best reported
reliability

- No new materials, fast learning time




BE-SONOS NAND Flash

SIN liner : 4

*-PolyyGate (SN

*ONONO

P*-Poly Gate

ONONG#

H. T. Lue et al (Macronix), IMW, 2010.
O A 75nm BE-SONOS NAND Flash test chip has been demonstrated.

O Near planar STI. Conventional materials (oxide, nitride, poly)
O A highly reliable 38nm node BE-SONOS NAND will be published at
IEDM 2010. 22
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BE-SONOS NAND Performances

H. T. Lue, (Macronix), IMW short course

—A— 75nm FG NAND Program (+20V, 200usec) 75nm BE'SONOS NAND ‘

—— 75nm BE-SONOS NAND Program (+20V, 200usec)

-@- vLc, PEE=10 :

o =Y~ MLC after 1K cycled | :
. Dumb program v ‘ :

' disturbéd

104 } without verify 10 EI\S/ urbe

=N
o
w

2
Bit Counts

O Our BE-SONOS NAND programming distribution can be tighter
than FG due to simpler topology that minimizes the variation.
O Good programming and read performances.

O MLC operation of BE-SONOS NAND test chip is successful.



Retention of BE-SONOS NAND

C. C. Hsieh, (Macronix), IEDM 2010.

75nm BE-SONOS (non-cut ONO), P/E=100 75nm BE-SONOS (Non-cut-ONO), P/E=1K

5 5
10 O ascycled 10 —O— Before bake

Disturbed 10min PV state Disturbed EV.  —z— 10min

120min 8 %, 100min
1200min d L;“ ”\\ 1100min
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O Retention is excellent and no single tail bit found.

O The best reported CT reliability so far.

O No so called issue (with our
optimized SiN trapping layer and process integration)



We have developed a successful

2D CT BE-SONOS NAND with
excellent reliability

However, current FG NAND has already scaled
to ~25nm node with TLC

Therefore, CT NAND must look for further
scaling below 1X nm node

25



Scaling Challenge of 2D CT NAND
Below 20nm Node

O Lithography difficulty below 1X nm

[0 Few-electron storage and

O RTN (noise)

O Interference of CT NAND is still observed
[0 High voltage requirement is approximately
the same with FG

- 2D CT NAND probably has a similar (or a little
more) scalability with FG NAND

26
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“Simply Stacked” 3D NAND Flash

Bil Linc iLLine ; “ s > Top |
i , 4 : v i T « . Top layer |

‘;?,Top layer \ o
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Bottom layer-_./
Fig. 4 Vertical SEM photograps of the fabricated 3D stacked
NAND cell string. The 2™ active layer is SOI like perfect single

Fig. 3 Channel-length direction of Fig. 4 Channel-width direction of
CI‘}-’SIBI. double-layer TFT NAND devices. double-layer TFT NAND devices.
3D TANOS devices 3D TFT BE-SONOS devices
Samsung: IEDM 2006 Macronix: IEDM 2006

O 3D stackable NAND Flash using charge-trapping devices were
firstly demonstrated in 2006.

O Charge-trapping (CT) TANOS and BE-SONOS devices were used.
O To stack many layers may linearly increase the cost - Not good
when more than 4 layers are used.

O However, for <4 layers the cost is reduced. The process seems
doable in principle for 2X nm node.... )8



Bit-cost scalable (BiCS) NAND Flash

3D Stacked .-
NAND .-~

b b

SG
Memory array
(b) 2F
L <+>
Bit Line

BiCS Flash

Relative Bit Cost

O000O000O0O0O
O NWAUUNGON OO RKREKERHN

Upper SG
(row select line)

Fig. 3 (a) Birds-eye view of BiCS flash 1234567 8 910111213141516

memory, (b) Top down view of BiCS flash
memory array. Number of Layer

TOSHIBA: VLSI Symposia 2007

OA was proposed by TOSHIBA.

O It uses a only one critical contact drill hole for many layers, thus the
bit cost is scalable when more than 16 layers are used.

O 3D NAND is a way to bypass the difficulty in lateral scaling

O Also keep the electron number...... 29



3D NAND Flash Architectures

P-BiCS TCAT VSAT VG
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Fig 1 Schematic of P-BiCS5 flash memory.
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Ryota K., et. Jaehoon J., Jiyoung Kim, Wonjoo Kim,
al. 2009 VLSI et. al. 2009 et. al. 2009 et. al. 2009
VLSI VLSI VLSI
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3D NAND Flash Comparison
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Cell Shape

cell Size In X, Y1 6F2 (3F*2F) 6F2 (3F*2F) 6F2(3F*2F) 4F?2 (2F*2F)
irection

Gate

Gate first Gate last Gate First Gate Last
Process

Current Flow

) . U-turn Vertical Multi-U-turn Horizontal
direction

Device
Structure GAA GAA Planar Dﬂubli%tte
~ ://

Possible

. . ~50 nm ~50 nm ~50 nm
minimal F

[

[P-BiCS] R. Katsumata, et al, VLSI Symposia, pp. 136-137, 2009. [TCAT] J. Jang, et al, VLSI Symposia, pp. 192-193, 2009. [VSAT] 31
J. Kim, et al, VLSI Symposia, pp. 186-187, 2009. [VG] W. Kim, et al, VLSI Symposia, pp. 188-189, 2009.




3D NAND Bit Cost Analysis — More
realistic calculation

—@— F=66nm, 6F2
—— F=50nm, 6F2

—O— F=35nm, 4F° o
+ F=22:2, 4|:2 PS. Addltlonal

—A— F=25nm, 6F> and

when adding one
more memory layer
are considered....
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Ref. (25nm MLC FG NAND)

Log scale

Number of Layer for 3D stacks

O If 3D starts from >65nm 6F2 cell size, it is hard to compete with
current 25 nm FG NAND
O
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Previous VG NAND Architecture
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O Relative large pitch. (>0.3um)

O WL and BL located at the bottom.

O The array decoding method (in-layer multiplex
decoder) is very complicated, and wastes array
efficiency 33



Modified VG NAND Architecture

az United States Patent (10) Patent No.: US 6,906,940 B1
Lue =

45) Date of Patent: Jun. 14, 2005

*  Source line

SSL
“Plane-decoding”

H. T. Lue, et al (Macronix), VLSI 2010.

O Conventional WL, BL are grouped into “planes”.

O One additional SSL's device also grouped into “planes”.
O Three planes select a memory cell.

O WL and BL can be at top. 34



Array X-Direction

H. T. Lue et al, VLSI 2010.

0.15um pitch P*-Poly Gate

¥ BE-SONOS

PL‘ BBOA 3
Poly Silicon
Channel

¢cN
CO/IN/1O

Poly Silicon

Channel rogs

PIM . o4

50 nm | 1021A g *

= 75n half-pitch, 8-layer device is fabricated
- Equivalent cell size =
O Each device is a double-gate TFT BE-SONOS device




Device characteristics of VG NAND

Programming

-2
108 107 10% 10° 10*

Programming Time (sec)

V., shift (V)

Bit Counts (#)

>
104 10° 102 10" 100
Erasing Time (sec)

Solid: P/E=1
Dash: P/E=1K

321012 3 456 7 8

Ve (V)

Program inhibit

—&— A: selected cell
—v— B

Vpass=6V
V.=3.5V
10usec/shot

I PGM from erased state (Vt~ -1V)

| TN TN TN NN TN TN SO NN TR NN TN NN T NN SO N1

10 11 12 13 14 15 16 17 18 19 20
Viem (V)

Retention

150C Baking

—@— PGM: P/E=1K
—¥— ERS: P/IE=1K
—— PGM: P/E=1
—— ERS: PIE=1

102 103 10* 105 106 R
Baking time (sec)




Scaling Simulation to 25nm

25nm VG
Soild: Fresh
Dash: Z Interference

FZ=30nm
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O Scalability to 25nm is feasible based on the simulation.
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Summary of 3D NAND

O Many 3D memory architectures

O Scalability of cell size is important
[0 Basic device physics is mostly known

O Decoding methods are key issues

O Processing for the deep hole/trench is
critical
O Variability of TFT

38



Thank You for Your Attention!
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