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1. Overview of RSA Encryption / Decryption 

In public-key cryptography, each individual has a pair of keys, (e, d), where e is the public key known 
to the others, and d is the private key known merely to the owner. The public key is used to encrypt 
the message sent (or signing the message), and the private key is used to decrypt the ciphertext (or 
verifying the message). Likewise to secret key algorithms, public key algorithms take a plain message 
and perform a irreversible transformation on it. RSA, namely after its three inventors, Rivest, Shamir, 
and Adleman [6], is a public key cryptographic algorithms that may perform both encryption and 
decryption. RSA is frequently used in applications such as e-mail, e-banking, remote login, etc, where 
security of digital data is a primary concern. Over years, numerous attacks on RSA illustrating RSA’s 
present and potential vulnerability have brought our attention to the security issues of RSA 
cryptosystem. We will investigate some essential attacks in later section.  
 
Before looking at the attacks, we firstly describe a simplified version of RSA algorithm. Let N be the 
product of two large prime numbers, N = p∗q, where p, q are of the same size in term of bits in binary 
representation, and N is called the RSA modulus. Let e, d be two integers, such that e∗d = 1 mod 
M(N). M(N) = (p-1)∗(q-1) is the number of primes in the interval of [1..N-1]. Now, we obtained the 
public key, <N,e>, which is used for encryption; and the private key, <N,d>, which is known only to 
the recipient of the encrypted messages.  

Here is how RSA encryption and decryption works. To encrypt a message M (<N), one computes: 
     C := M^e mod N 

To decrypt the ciphertext C, the receiver (owner of d) computes: 
      M:= C^d = M^(ed) = mod N 
Using the above equality, RSA function is defined as x  x^e mod N. If d is known, RSA function can 
be easily inverted. The term, breaking RSA, refers to inverting RSA function without any notion of d. 
Throughout this report, we use “Alice” to denote the message sender, “Bob” to denote the legitimate 
receiver, and “Marvin” for the attacker. 
 

2. Two Categories of Attacks On RSA 

There is a straight method, to enumerate all element in the multiplicative group of N until M is found, 
but such method results in an exponential running time, O(n^e). Therefore, we are interested mostly in 
‘efficient’ algorithms with a substantial lower running time. During the past years of attacking on 
RSA, such efficient algorithms can be classified into two categories: Mathematical Attacks and 
Implementation Attacks.  

2.1 Mathematical Attacks on RSA 
Mathematical attacks focus on attacking the underlying structure of RSA function. The first intuitive 
attack is the attempt to factor the modulus N. Because knowing the factorization of N, one may easily 
obtain M(N), from which d can be determined by d = 1/e mod M(N). However, at present, the fastest 
factoring algorithm runs in exponential time. Our objective is to survey RSA attacks that decrypts  
message without directly factoring N.  
 
a) Elementary attacks 

Generally speaking, Elementary attacks revealed blatant misuse of RSA. One common example of 
such misuse would be choosing common modulus N to serve multiple users. Let’s assume the same N 
is used by all users, and Alice is sending a message M to Bob, which has been encrypted by the RSA 
function, C = M^(eb) mod N. It looks like Marvin can not decrypt C since he does not know db. 
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However, in fact, Marvin is able to use his own keys, em and dm, to factor N, and in turn recover Bob’s 
private key, db. So the resulting system is no longer secure! 
 
b) Small Private Key attacks 

To improve the RSA decryption performance in the matter of running-time, Alice might tend to use a 
small value of da, rather than a large random number. A small private key indeed will improve 
performance dramatically, but unfortunately, a attack posed by M.Wiener [5] shows that a small d  
leads to a total collapse of RSA cryptosystem. This break of RSA is base on Wiener’s Theorem, which 
in general provides a lower constraint for d. Wiener has proved that Marvin may efficiently find d 
when d < 1/3 ∗N^(1/4).   
In addition to his success in RSA-attack, Wiener also discovered a number of techniques that enable 
fast decryption and are not susceptible to his attack. Two sample techniques are illustrated as the 
following. 
Choosing large public key:  Replacing e by e’, where e’= e + t ∗ M(N) for some large t. When e’ is 
sufficient large, i.e. e’>N^0.5, then Weiner’s attack can not be mounted regardless of how small d is. 
 
Using Chinese Remainder Theorem:  Suppose one chooses d such that both dp = d mod (p − 1) and 
dq = d mod (q − 1) are small, then a fast decryption of C can be carried out as follows: first compute  
Mp = C^dp mod p and Mq = C^dq mod q. Then use the CRT to compute the unique value M∈Zù 
satisfying M = Mp mod p and M = Mq mod q. The resulting M satisfies M = C ^ d mod N as required. The 
point is that the attack by Wiener’s Theorem does not apply here because the value of d mod  M(N) can 
be large.  
 
c) Small Public Key Attacks 

Similar to the private key preferences, to reduce encryption time, it is customary to use a small public 
key (e), but unlike the previous situation, attacks on small e turn out to be much less effective. The 
most powerful attacks on small e are based on Coppersmith’s Theorem [3]. This theorem provides an 
algorithm for efficiently finding all roots of N that are less than x = N^(1/d). For brevity reason, we 
will bypass the details of Coppersmith’s Theorem, rather focus on its impact. One example of 
applications based on this theorem is known as “Hastad’s Broadcast Attack”[4].   

 
Hastad’s Broadcast Attack   
Suppose Bob wishes to send an encrypted message M to a number of parties P1; P2;…; Pk. Each 
party has its own RSA key, < Ni, ei >. Hastad showed that a linear-padding to M prior to encryption is 
insecure, and further more, by eavesdropping Marvin learns Ci = fi (M)^ei mod Ni for i = 1..k, if enough 
parties are involved, Marvin can recover the plaintext Mi  from all the ciphertext [4]. His discovery 
stands on the mathematical analysis on solving system of equations: gi (M) = 0 mod Ni (1). He proved 
that a system of univariate equations modulo relatively prime composites, such as (1), could be 
efficiently solved if sufficiently many such equations are provided.   

2.2 Implementation Attacks on RSA  

Securely implementing RSA is not a trivial task. Attacks falling into this category take on the 
implementation pitfalls of RSA cryptosystems. A clever attack posed by Kocher, known as “Timing 
Attacks”[2], is a typical example of attacks on the RSA implementation.  
 
Suppose a smartcard that stores a private RSA key is used, and Marvin may not be able to examine its 
contents and expose the key. However, by precisely measuring the time it takes the smartcard to 
perform an RSA decryption, Marvin can quickly discover the private decryption exponent d. This is 
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referred to as “Timing Attacks”. Marvin can attack against a simple implementation of RSA using the 
“repeated squaring algorithm”. 
 
The algorithm works as follows: 
    Let d = dndn−1, …,d0 
    Set z equal to M and C equal to 1. 
  For (i = 0 to n) do these steps: 

1. If di = 1, set C equal to Cz mod N. 
2. Set z equal to z^2 mod N. 

     At the end, C has the value Md mod N.  
 
To mount the attack, Marvin asks the smartcard to generate signatures on a large number of random 
messages M1,…,Mk ∈ multiplicative group of N, and measures the time Ti it takes the card to generate 
each of the signatures.  
The attack recovers bits of d one at a time. Since we knew that d is prime, d must be odd number, thus 
the least significant bit d0 must be 1. The following description illustrates how Marvin can actually 
find out what d is bit-by-bit. 
 
 Marvin begins with the least significant bit, d0 = 1 
 For  i = 2 to n  
  If the measure on {ti} and {Ti} are correlated   
           di = 1 
  else   di = 0 
 
 Finally, Marvin recovers all di, where i =1,…,n. 
   

3. Summary on the RSA Defends 

• RSA modulus N, should not be used by more than one entity. 
• One can improve decryption performance by using large e, or using CRT to decrypt C, both of 

which may stand against Weiner’s attack. 
• Linear padding to M prior to encryption can not form a defense against Hastad’s Broadcast 

Attack. One must use a randomized pad [1] rather than a fixed one. 
• Adding appropriate time-delay when generating each signatures so that modular exponentiation 

always takes a fixed amount of time, will prevent against Timing Attack. 
 

4. Conclusion 

Ever since RSA’s initial publication (1977), the past twenty-seven years of research in breaking RSA 
has produced some insightful attacks, yet no devastating attacks have been found by now. From these 
attacks, we learned how to avoid the major pitfalls when implementing RSA, and derive 
methodologies to defend RSA cryptosystems against attacks. The ongoing research that might bring in 
new security issues and challenges to RSA become our essential tool to enhance the degree of security 
of RSA cryptosystems. 
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