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Abstract  
 
Theories of allostatic load postulate that an important pathway connecting the social 
environment with health involves biological responses to stressful stimuli and subsequent 
dysregulation of interrelated physiological systems. We formulate a new measure for 
cumulative physiological dysregulation using a grade of membership model estimated 
with biodemographic data from a national sample of older Taiwanese. We investigate 
associations between the measure and physical, psychological, and cognitive function. 
The results provide insights into the relationships between a set of biological profiles and 
various health outcomes, identify limitations of earlier approaches, and underscore next 
steps in the development of improved formulations of physiological dysregulation. 
 
Abstract word count: 101
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1 Introduction 
A vast literature accumulated over many years demonstrates strong associations between 

the social environment and health (Adler et al. 1999; Seeman and Crimmins 2001).  More 

recently, researchers have begun to focus on the biological mechanisms through which these two 

sets of factors are interrelated.  Theories of allostatic load (McEwen 1998b; McEwen and Stellar 

1993) postulate that individuals’ physiological responses to stressful stimuli are likely to 

constitute an important pathway linking social factors to health.  These physiological 

mechanisms of the stress response involve the neuroendocrine, sympathetic nervous, immune, 

and cardiovascular systems, as well as metabolic pathways.  Health-related manifestations of 

allostatic load are hypothesized to result from both cumulative exposure to levels of intense 

physiological activity (e.g., repeated stress responses) and chronic exposure of physiological 

parameters outside normal operating ranges (McEwen 1998a).  Such forms of stimulation may 

result in dysregulation of interrelated physiological systems over time and, ultimately, in poor 

physical, psychological and cognitive functioning.  From a demographer’s perspective, 

physiological dysregulation can be viewed as an early indicator of more conventional measures 

of morbidity and mortality.   

McEwen and Seeman (McEwen and Seeman 1999) and McEwen (McEwen 2002) 

develop a theoretical framework that organizes physiological system parameters into several 

groups.  The groups reflect the relative position of each system in a sequence of physiological 

events originating with stimulation of the stress response and ending with disease.  In this 

framework hormonal factors are defined as “primary mediators.”  These primary mediators 

include markers of stress-related sympathetic nervous system (SNS) activity (e.g., epinephrine 

and norepinephrine), hypothalamic-pituitary-adrenal (HPA) axis activity (e.g., cortisol), and 
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related inflammation (e.g., interleukin-6) and growth hormone (e.g., insulin-like growth factor-1) 

responses.  Although the precise function of dehydroepiandrosterone sulfate (DHEA-S) is not 

well understood, researchers hypothesize that DHEA-S plays an important mediating role among 

these factors;  low levels are associated with both worse mental health and poorer physical 

functioning (Berr et al. 1996; Mazat et al. 2001; Svec and Lopez 1989).  According to this 

framework of allostatic load, these hormonal factors have “primary” effects on tissues and 

organs, leading to “secondary outcomes” at the system level.  One important secondary outcome 

is the metabolic syndrome – i.e.,  “syndrome X” (Meigs 2003; Reaven 1988) – which can be 

assessed by several cardiovascular disease risk factors (e.g., blood pressure, sugar, and 

cholesterol levels, body mass index, and waist-to-hip ratio).  Disease endpoints (e.g., coronary 

heart disease) that result from secondary outcomes are termed “tertiary outcomes.”  In this paper, 

we use this theoretical framework that underlies the concept of allostatic load, together with 

recently collected survey data, to develop a new approach to measuring physiological 

dysregulation. 

The measurement of allostatic load involves identifying and combining the effects of 

dysregulation across multiple physiological systems related to the stress response. The original, 

and most frequently used, index of allostatic load (Seeman et al. 1997) is a sum of the number of 

biomarkers (out of 10) for which an individual falls into the “highest risk” quartile. Two 

alternative formulations, developed to overcome some of the limitations of the original measure, 

are more complex.  The first uses canonical correlation analyses to determine the linear 

combination of biomarker scores that is maximally correlated with declines in functional status 

(Karlamangla et al. 2002).  The second uses recursive partitioning to classify persons into 

categories by identifying the biomarker (and accompanying cutpoint) that best differentiates the 
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survival experiences among the categories; the procedure is repeated successively, drawing from 

a set of potential biomarkers, and results in pathways (i.e., Boolean statements) that define high, 

intermediate and low categories of allostatic load, typically on the basis of a subset of the 

biomarkers considered for inclusion (Singer, Ryff and Seeman Forthcoming).  Researchers have 

demonstrated that these measures of allostatic load are associated with diverse health outcomes, 

including mortality, declines in cognitive and physical functioning, and cardiovascular disease 

(Karlamangla et al. 2002; Seeman et al. 2001; Seeman et al. 1997), as well as with various 

dimensions of the social environment (Schnorpfeil et al. 2003; Seeman et al. 2002).  Recent 

studies have also provided evidence that both primary mediators and secondary outcomes 

contribute significantly to the association between these measures of allostatic load and health 

outcomes (Karlamangla et al. 2002; Seeman et al. 2001).   

Nevertheless, the current formulations of allostatic load have several drawbacks that limit 

their usefulness as measures of cumulative physiological dysregulation.  First, the ten-item index 

and canonical correlation approaches capture risk at only one end of each biomarker distribution, 

despite evidence that extreme high and low levels of many primary mediators and secondary 

outcomes are likely to be associated with adverse outcomes (Seplaki et al. 2004).  Second, even 

though biomarker values and their effects are known to differ between men and women (e.g., 

Mazat et al. 2001; McEwen 2002), approaches that are based on the use of cutpoints of elevated 

risk (i.e., the 10-point index and recursive partitioning) have not used sex-specific values of the 

biomarkers.  Third, the samples used in prior analyses of allostatic load are not representative of 

general populations: many results are based on the high-functioning sample of older individuals 

in the MacArthur Study of Aging (Seeman et al. 1997).  Fourth, with the exception of some 

recent work that includes additional biomarkers in the conventional formulation (Crimmins et al. 
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2003; Schnorpfeil et al. 2003), most operationalizations of allostatic load have not incorporated 

measures of immune function.  Lastly, the formulations based on canonical correlation and 

recursive partitioning use information on subsequent health outcomes to “optimize” the 

predictive power of the resulting measure. This approach is problematic when the measure is 

derived from and applied to the same dataset. 

In this analysis we use data from a national sample of older Taiwanese to examine a new 

approach to the measurement of cumulative physiological dysregulation.  We explore its 

association with five measures of physical and mental functioning that are hypothesized to result 

from such dysregulation and compare these findings with those based on the commonly-used 

ten-item index.  Our formulation differentiates between the potentially distinct roles of primary 

mediators and secondary outcomes and overcomes many of the limitations described above.  In 

particular, it allows for effects at both extremes of biomarker distributions (where appropriate), 

incorporates separate cutpoints by sex, avoids using observed outcomes of physical and mental 

functioning to operationalize the measure, comprises a broad array of biomarkers that includes 

measures of immune function, and is estimated on a national sample.  We also derive the 

measure under two distinct sets of cutpoints in order to assess the robustness of our findings. 

2 Methods 
2.1 Data 

We use data from the 2000 Social Environment and Biomarkers of Aging Study 

(SEBAS).  These data are based on the Taiwan Survey of Health and Living Status, a 

longitudinal study of a nationally-representative probability sample that began in 1989 with 

persons aged 60 and over, and included follow-ups in 1993, 1996, and 1999.  A new sample of 

middle-aged persons (age 50 to 66) was added for the 1996 wave.  As part of SEBAS, a random 

subsample of 1,713 persons drawn from both cohorts was selected to be surveyed in 2000; 
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persons over age 70 in 2000 and those in urban areas were oversampled.  This sampling design 

forms the basis for the two age groups used in this analysis (≤70 and >70).  SEBAS consisted of 

two parts: an in-home survey (N=1,497, a 92% response rate among survivors) and a hospital 

medical exam conducted by a physician (N=1,023, 68% of those interviewed).  Participants in 

the in-home survey provided data on their health and health history, while those in the medical 

exam subset also provided fasting blood and 12-hour overnight urine specimens as well as blood 

pressure and anthropometric measurements from a physical examination.   

Compliance by those completing the medical exam was extremely high: all but ten 

individuals followed the urine protocol, provided a sufficient volume of blood suitable for 

analysis, and completed the medical exam.  A comparison of the characteristics of 

nonparticipants and participants in the medical exam suggests that, in the presence of controls for 

age, estimates derived from clinical information are unlikely to be seriously biased (Goldman et 

al. 2003).  Specifically, although persons over age 70 were less likely to participate in the 

medical exam than younger respondents, sex and various measures of socioeconomic status were 

not significantly related to participation.  Persons who received the medical exam reported the 

same average self-assessed health status (five-point scale) as those who did not.  

Among the 1,023 persons participating in the medical exam, ten individuals who were 

missing data on at least one of the biomarkers were excluded from this analysis.  In addition, a 

small number of individuals were missing values for at least one of the self-reported functional 

outcomes.  These modifications yield a sample of 972 individuals (571 males and 401 females) 

for our analysis. 

2.2 Measures 
A total of sixteen biological measures are used in this analysis, representing both primary 

mediators and secondary outcomes (Appendix Table A-1).  Primary mediators comprise 



  6 

epinephrine, norepinephrine, dopamine, cortisol, DHEA-S, IGF-1, and IL-6.  Secondary 

outcomes comprise average systolic and diastolic blood pressures, total serum cholesterol, the 

ratio of total to high-density lipoprotein (HDL) cholesterol, triglycerides, fasting glucose and 

glycosylated hemoglobin (a measure of the percentage of hemoglobin molecules in the blood 

that are bound to glucose), body mass index (BMI), and waist-to-hip ratio. 

Measures are derived from the urine and blood specimens, as well as the physical 

examination.  Twelve-hour urine specimens yielded measures on cortisol, norepinephrine, 

epinephrine, and dopamine (a 12-hour urine specimen is necessary to obtain integrated measures 

of these markers because of their diurnal variation).  Measurements for cortisol, epinephrine, and 

norepinephrine are reported as "micrograms per gram creatinine" in order to adjust for body size.  

The fasting blood specimens yielded assays of HDL cholesterol, total cholesterol, triglycerides, 

fasting glucose, glycosylated hemoglobin, DHEA-S, IGF-1, and IL-6.  The blood pressure and 

anthropometric measurements collected during the physical examination yielded systolic and 

diastolic blood pressures (each calculated as the average of two seated blood pressure readings, 

taken about one minute apart, using a mercury sphygmomanometer with the respondent in a 

seated position).  Measures were also taken for height, weight, and hip and waist 

circumference—the data used to calculate BMI (defined as weight in kilograms divided by 

height in meters squared) and the waist/hip ratio.   

Blood and urine specimens were sent to Union Clinical Laboratories (UCL) in Taipei for 

the assays.  In addition to the routine standardization and calibration tests performed by the 

laboratory, duplicate samples for a 10% subset of the specimens were submitted to UCL and to 

Quest Diagnostics in the US for analysis.  Data from these duplicates indicate good inter- and 
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intra-lab reliability, with intraclass correlations of 0.80 or higher for duplicates sent to UCL and 

inter-lab correlations of 0.76 or higher between results from UCL and Quest Diagnostics. 

We divide each biomarker measurement into three categories: low, middle, and high.  

The low and high categories are designed to capture values outside normal operating ranges and 

the potential for risk at both extremes of each biomarker distribution.  Two distinct sets of 

cutpoints are used to define these categories: 1) values below the 10th percentile, between the 10th 

and 90th percentiles, and above the 90th percentile; and 2) values below the 25th percentile, 

between the 25th and 75th percentiles, and above the 75th percentile.  The lower cutpoints for 

epinephrine and IL-6 are below assay sensitivity (B.A.S.) in several instances in Appendix Table 

A-1; assay sensitivity for epinephrine is < 2 µg/L, while assay sensitivity for IL-6 is < 0.1 

pg/mL.  As noted earlier, cutpoints are defined separately by sex.   

The functional outcomes examined in this analysis are selected to represent a spectrum of 

physical and mental functioning reflecting the multi-system dynamics of cumulative 

physiological dysregulation. They include: 1) self-assessed health (measured on a five-point 

scale, 1=poor, 2=not so good, 3=average, 4=good, 5=excellent); 2) an indicator for the presence 

of at least one impairment of an activity of daily living (ADL); 3) a count of mobility 

impairments; 4) an index of cognitive performance (a count of correct responses); and 5) a count 

of depressive symptoms.  ADLs comprise bathing, dressing, eating, getting out of bed/standing 

up/sitting in chair, moving around the house, and going to the toilet.  Mobility limitations 

comprise difficulty squatting, climbing 2-3 flights of stairs, lifting 11-12 kilograms, doing 

physical work at home, walking 200-300 meters, standing continuously for 15 minutes, and 

running a short distance (20-30 meters).  Depressive symptoms are measured by a 10-item 

version of the original 20-item Center for Epidemiologic Studies Depression (CES-D) scale 
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(Radloff 1977). Previous studies have demonstrated that a shortened form of the CES-D yields 

similar internal consistency, factor structure, and accuracy in detecting depressive symptoms as 

the full 20-item CES-D among elderly Chinese (Boey 1999) as well as other populations 

(Kohout et al. 1993; Shrout and Yager 1989).  Items forming the CES-D index used here 

(potential range of 0 to 30) include reports (in the past week) of no interest in eating, sleeping 

poorly, being in a terrible mood, feeling lonely, people not being nice, feeling anguished, having 

no energy to do things, feeling joyful (reverse coded), that doing anything is exhausting, and life 

is going well (reverse coded).  The measure of cognitive function (potential range of 0 to 24) 

includes twelve items adapted from three tests: the modified Short Portable Mental Status 

Questionnaire (Pfeiffer 1975), the modified Rey Auditory Verbal Learning Test (Lezak 1983), 

and a modification of the Digits Backward test (Wechsler 1981). 

2.3 Analysis 
The analysis consists of three parts.  The first stage uses a Grade of Membership (GOM) 

model (Manton, Woodbury and Tolley 1994) to estimate “GOM scores” for each respondent in 

the sample;  the resulting scores measure individuals’ similarity to five distinct profiles of 

biomarker combinations.  In the second stage of the analysis, the GOM scores are used to predict 

each of the five health outcomes described above (in separate regression models).  In the third 

stage of the analysis, a single GOM index is calculated from the GOM scores and is evaluated 

alongside the conventional ten-item index of allostatic load as predictors of the five health 

outcomes.  All three stages are estimated for both sets of biomarker cutpoints (the 10/90 and 

25/75 percentiles). These three components of the analysis are elaborated below. 

GOM is an analytic technique that has been used in the past to describe the complex 

comorbid physical and mental health status of older populations (Berkman, Singer and Manton 

1989; Seplaki et al. 2004).  In the present analysis, GOM is used to depict physiological 
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dysregulation of the older population.  The procedure synthesizes information from a large 

number of correlated variables – i.e., variables indicating whether each individual displays low, 

moderate, or high values on each of 16 biological parameters – into a small set of archetypal 

profiles. In this analysis, four profiles are defined to reflect alternative manifestations of elevated 

risk of poor health outcomes (e.g., low versus high values of primary mediators and low versus 

high values of secondary outcomes), while a fifth “reference” profile is defined to represent the 

lowest risk (e.g., moderate values on all biomarkers).  The resulting estimates from the GOM 

model consist of 1) a collection of response probabilities corresponding to the levels of each 

biomarker, for each of the five profiles (known in GOM as pure-types ), and 2) individual 

vectors of five GOM scores (i.e., one vector for each of the 972 respondents).  Each of the GOM 

scores lies between zero and one and measures the similarity of the individual’s biomarker 

values to the corresponding pure-type profile. Because the sum of the scores for a given 

individual is equal to one, each person’s physiological status can be viewed as a weighted 

average of these five pure-type profiles.  In principle, the pure-type profiles can either be defined 

exogenously (as is done here) or estimated iteratively with GOM scores.  Additional details on 

GOM models are provided elsewhere (Berkman et al. 1989; Manton et al. 1994).  All GOM 

analyses reported here are performed using the software by Charpentier (Charpentier 1996). 

In the next stage of the analysis, the individual GOM scores, along with controls for age 

and sex, are used to predict each of the five health outcomes in separate regression models.  An 

ordered probit model is used to predict self-rated health and a logit model is used for the 

probability of an ADL impairment.  Ordinary least squares is used to predict the count of 

mobility limitations, CES-D score, and cognitive score. Robust variance estimates (from the 

Huber/White estimator) are used to correct for the potential effects of heteroskedasticity and 
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potential clustering by primary sampling unit.  Simulated predicted values are calculated from 

each model to assist in the interpretation of results.  For each biomarker, the simulated 

probabilities are obtained by: 1) sequentially assigning all individuals to the first GOM profile, 

followed by the second profile, and so on, while leaving age and sex at their observed values, 

and 2) in each case averaging the predicted values across individuals.  All regression analyses are 

carried out using Stata 8.2 (StataCorp 2003). 

In the final stage of the analysis, four of the five GOM scores (i.e., excluding the score 

measuring similarity to the low risk or reference profile) are summed to create a single GOM-

based index. Because the five scores sum to unity, this sum measures dissimilarity to the low risk 

profile.  The conventional index is calculated as the number of the following ten biomarkers for 

which an individual is in the highest risk quartile: cortisol, epinephrine, norepinephrine, DHEA-

S, HDL cholesterol, the ratio of total-to-HDL cholesterol, glycosylated hemoglobin, systolic 

blood pressure, diastolic blood pressure, and the waist-hip ratio (Seeman et al. 1997).  The 

performance of these two indices – the single GOM score and the 10-item index –  is compared 

by considering each as a predictor in separate regression models. 

3 Results 
Overall, the mean age of the analysis sample is 67.7 (45% are over the age of 70) and 

41% of the sample is female.  This atypical, male-biased sex ratio reflects the approximately one 

million Nationalist military and civilian supporters who migrated to Taiwan from the Mainland 

in 1949 (Gates 1981; Tsai 1992).  Table 1 provides descriptive information on the sample by sex.  

This table demonstrates that although men in the sample have a slightly higher mean age than 

women, they are also healthier on average.  The sex-specific cutpoints used to define the risk 

categories for each biomarker comprising the GOM measure are given in Appendix Table A-1, 
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as are the overall cutpoints that define the risk categories of the ten-item index.  This table 

reveals the extensive variation in cutpoint values between males and females for many of the 

biomarkers, underscoring the potential importance of conditioning cutpoints on sex. 

3.1 GOM Estimation 
On the basis of allostatic load theory and exploratory analyses supporting the distinction 

between primary mediators and secondary outcomes, we developed five pure types consisting of 

distinct combinations of primary mediators and secondary outcomes that are hypothesized to 

reflect varying levels of physiological dysregulation.  Specifically, these five pure types are 

defined to identify the potential independent roles of both high and low values of groups of 

primary mediators and secondary outcomes. With some simplification (discussed below), the 

five pure-type profiles denote: (I) “not at risk” moderate levels of all biomarkers;  (II) “at risk” 

low levels of primary mediators (with “not at risk” secondary outcome levels);  (III) “at risk” 

high  levels of primary mediators (with “not at risk” secondary outcomes);  (IV) “at risk” low  

levels of secondary outcomes (with “not at risk” primary mediators);  and (V) “at risk” high 

levels of secondary outcomes (with “not at risk” primary mediators). 

The full characterizations of each pure-type profile are given in Table 2.  These are more 

complex than indicated by the preceding summary of profiles because of the one-tailed risks 

associated with DHEA-S and the total-to-HDL cholesterol ratio. In contrast to evidence 

suggesting potential risks associated with both low and high values of most of the biomarkers 

included here, the medical literature suggests that only low values of DHEA-S and high values of 

the ratio of total-to-HDL cholesterol represent elevated risk.   

Each cell entry in Table 2 defines one or more levels (low, middle, or high) for each 

subset of biomarkers (primary mediators and secondary outcomes).  Cell entries in bold italics 

denote profile characteristics that are hypothesized to be associated with an elevated risk of poor 
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health outcomes.  Entries that specify two levels (e.g., low/middle) indicate that the probability 

of response for the associated profile is defined to be divided evenly between those levels (1/2 

for each); these combinations are selected to denote the complement of the single tail of DHEA-

S or the ratio of total-to-HDL cholesterol that embodies high risk for poor health.  Cell entries 

that reflect all levels (low/middle/high) signify that the associated pure-type is defined to have an 

equal probability (1/3) of being associated with each of the three possible levels (i.e., the profile 

can be considered neutral with respect to that biomarker). 

Pure-type I is characterized by middle-level values for most biomarkers, high or middle 

DHEA-S, and a low or middle ratio of total-to-HDL cholesterol ratio – theoretically, this profile 

represents the lowest level of risk of poor health outcomes.  Pure-type II is characterized by “at 

risk” low values of the primary mediators, including DHEA-S, and by “not at risk” values for the 

secondary outcomes (middle-level for most secondary outcomes and a low or middle cholesterol 

ratio).  Alternatively, pure type III is characterized by “at risk” high values for most of the 

primary mediators, except DHEA-S, and by the same “not at risk” values for the secondary 

outcomes as pure-type II.  No particular level of DHEA-S is identified with this profile.  Pure-

types IV and V correspond to pure-types II and III respectively, but focus on “at risk” values of 

the secondary outcomes instead of the primary mediators.  Pure-type IV combines low values for 

most secondary outcomes, except the total-to-HDL cholesterol ratio, with “not at risk” values of 

the primary mediators.  Pure-type V pairs high values for all of the secondary outcomes, 

including the total-to-HDL cholesterol ratio, with the same “not at risk” values for the primary 

mediators as in pure-type IV.   

The distribution of individuals across the various mixes of the five profiles is presented in 

Table 3, for both sets of cutpoints.  These estimates are based on the assumption that individuals 
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are described as a single pure-type if their GOM score for that type is at least 0.9 and that they 

are described as a given mix of (between two and five) pure-types if the sum of their GOM 

scores is at least 0.9 for that particular combination.   

The results reveal that very few individuals can be described by a single biomarker profile, 

but that a sizeable fraction can be depicted by a combination of two or three profiles.  Extreme 

values of both primary mediators and secondary outcomes are prominent in these profiles.  In 

light of the fact that the 10/90 cutpoints define only one-fifth of individuals as being in an 

extreme category of a given biomarker in contrast to one-half for the 25/75 cutpoints, it is not 

surprising that the specific mixes differ considerably between these two sets of estimates. In 

particular, use of the 10/90 cutpoints, as compared with the 25/75 cutpoints, results in a much 

higher proportion of individuals being described in part by the low-risk profile (profile I).  

Results for the 25/75 cutpoints suggest a substantial number of persons who have low or high 

values of secondary outcomes –i.e., profile IV or V but not both – combined with extreme values 

of primary mediators – i.e., low and/or high values.   

3.2 Prediction of Health Outcomes and Comparison with Existing Measure 
Results from the regression models are shown in Table 4.  In these models, GOM score 

coefficients are relative to the omitted score for pure-type I.  Because larger values for self-

assessed health and the cognitive function score signify better health, we anticipate negative 

GOM score coefficients for these two health outcomes. In contrast, we anticipate positive GOM 

score coefficients for the remaining three outcomes: the presence of an ADL impairment, count 

of mobility limitations, and CES-D score.  The coefficient for the female variable represents the 

association between being female and the outcome net of biological factors that are encompassed 

within the sex-specific cutpoints.  
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These results highlight three general findings. First, extreme values for both primary 

mediators and secondary outcomes are significantly and independently associated with diverse 

measures of physical and mental functioning.  Second, both tails of the biomarkers matter – i.e., 

high and low values are each significantly and independently associated with functioning.  (Note 

that all of the results refer to groups of biomarkers rather than to individual biomarkers – i.e., 

although we cannot determine whether both low and high values of an individual biomarker are 

related to functioning, we see that low and high values of the set of primary mediators – or  

secondary outcomes – are related to functioning.)  And third, different health outcomes appear to 

be associated with different sets of biomarkers.  

A more detailed assessment of the coefficients in Table 4 reveals contrasts between the 

primary mediators and the secondary outcomes.  For the secondary outcomes, high biomarker 

values are more often associated with adverse functioning than low values.  For example, 

whereas scores representing high values of the secondary outcomes (score V) are significantly 

associated with every health outcome considered, GOM scores reflecting low values of the 

secondary outcomes (score IV) are significantly associated with two or three of the five 

outcomes (depending on the cutpoints).  In contrast, significant associations resulting from 

extreme values of the primary mediators (GOM scores II and III) are as likely to result from low 

as from high values.   

The estimates in Table 4 also suggest variation across the five health outcomes.  For 

example, although most of the high-risk profile scores are significantly related to mobility 

limitations and to depression scores, only the profile score reflecting high secondary outcomes is 

significantly associated with cognitive performance.  
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The magnitude and pattern of these associations are illustrated by the predicted values in 

Table 5. The profile characterized by high values of secondary outcomes (score V) is generally 

associated with the poorest health outcomes, with the exception of depressive symptoms.  

Conversely, as hypothesized, profile I demonstrates the most favorable outcomes in all cases 

with the single exception of the cognitive score (for the 10/90 cutpoints). 

The final set of analyses compares the associations found using the GOM-based measure 

of physiological dysregulation with those resulting from the conventional ten-item index of 

allostatic load (Table 6).  This comparison is facilitated by aggregating the four “at risk” GOM 

profile scores (scores II through V) into a single score or index that represents the dissimilarity of 

each individual to profile I.  Two versions of the GOM index are shown:  one based on the 10th 

and 90th percentile cutpoints and a second based on the 25th and 75th percentile cutpoints; the 

latter operationalization is more comparable to the ten-item index, which uses quartiles to 

identify the high-risk categories.  Three regression models are estimated for each health 

outcome. Each model includes controls for age and sex along with a single index (i.e., the 10-

item index, the GOM index based on the 10/90 cutpoints, and the GOM index based on the 25/75 

cutpoints, respectively).  

The estimated coefficients in Table 6 demonstrate that the ten-item index is significantly 

associated (p<0.05) with three of the five outcomes (self-assessed health, mobility limitations 

and cognitive score, but not ADL limitations and the CES-D score).  The GOM index based on 

the 10/90 cutpoints is significantly associated with four of the five outcomes (all except cognitive 

score), whereas the GOM index based on the 25/75 cutpoints is significantly associated with all 

five outcomes.  Overall, the R2 (or pseudo- R2) values suggest that the GOM indices account for 

more variation in the outcomes than the ten-item index, and that the 10/90 variant accounts for 
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more variation than the 25/75 variant. Exploratory analyses (not presented here) suggest that the 

improvement of the GOM-based index relative to the conventional index results in part from the 

inclusion of additional biomarkers and the use of two tails of risk. Nevertheless, the R2 values 

and the associated increments are generally small.  

4 Discussion 
This paper contributes to the existing literature on cumulative physiological dysregulation 

in three important ways.  First, this research provides empirical support for the framework of 

allostatic load introduced by McEwen and Seeman (McEwen and Seeman 1999) and McEwen 

(McEwen 2002).  Specifically, the results confirm the utility of distinguishing between groups of 

primary mediators and secondary outcomes—each subset of biomarkers is significantly and 

independently related to a broad range of outcomes.  The findings also corroborate previous 

research demonstrating that measures of cumulative physiological dysregulation may be 

significantly associated with health outcomes, even though individual biomarkers may not 

demonstrate significant associations with such outcomes. (See Seplaki et al. (2004) for an 

analysis of the association between individual biomarkers and health outcomes, based on the 

SEBAS sample.) 

The second contribution of this work is the development of a measure of cumulative 

physiological dysregulation that embodies several improvements over prior measures.  The new 

measure recognizes both high and low biomarker values and incorporates more biomarkers than 

the conventional measure.  As a consequence, the new measure reveals somewhat stronger 

associations with a broad set of health outcomes hypothesized to result from physiological 

dysregulation.  Despite the fact that alternative sets of cutpoints produce very different profile 

descriptions of the sample, the associations between the GOM-based measure and the health 
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outcomes are generally robust to the two sets of cutpoints explored here.  In addition, because the 

new measure does not rely on information on “downstream” physical and mental functioning, it 

is not subject to the endogeneity concerns that characterize some of the other formulations.   

The third contribution of this research is the derivation of a measure that encompasses 

distinct and biologically meaningful components of physiological dysregulation. Although the 

measure can be represented as a single index, it was developed theoretically as a set of four 

related indices that quantify the similarity of an individual to different configurations of primary 

mediators and secondary outcomes.  Because these profiles reflect different types and stages of 

dysregulation, the full set of GOM scores may provide more insights than current formulations 

into mechanisms that link the social environment with poor health, while still capturing the 

cumulative aspects of dysregulation across multiple systems. 

There are several limitations of this study.  First, these analyses are cross-sectional, so 

inferences cannot be made regarding the direction of the association between the biomarker 

profile scores and health outcomes.  For example, although it is tempting to suggest, as much of 

the scientific and popular literature does, that low levels of DHEA-S lead to poor health and a 

short life span, it is also possible that certain illnesses reduce the levels of DHEA-S (Berr et al. 

1996; Yaffe et al. 1998).  Second, although almost all of the findings discussed in this analysis 

are robust to the use of the two sets of cutpoints, several of the coefficients and associated z-

statistics are sensitive to the alternative specifications. This is especially problematic because the 

selection of these two sets of cutpoints is largely arbitrary.  A third limitation is that the results 

presented here focus on associations involving single biological profiles (i.e., the five pure types) 

rather than the complex mixes among profiles that characterize most individuals.   
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These drawbacks underscore the need for future research in two domains.  One important 

task is the establishment of systematic criteria for defining what is outside a “normal” or “low 

risk” range for measurements of biological dysregulation.  Clinically-defined cutpoints do not 

exist for many of these biomarkers and would, in any case, not be suitable for this endeavor 

given the emphasis of allostatic load on providing “early warnings” for future negative health 

outcomes.  Another needed area of research is an examination of how more complex 

combinations (sets) of biomarkers are related to health outcomes.  The results in Table 3 provide 

a useful starting point for such an endeavor.  For example, preliminary estimates (not presented 

here) reveal that individuals whose biological profiles can be described as a mix of low primary 

mediators and high secondary outcomes, or as a mix of high primary mediators and high 

secondary outcomes, are generally characterized by poorer health outcomes than others.  The 

challenge here is to define all persons in the sample by a relatively simple, exhaustive, mutually 

exclusive, and meaningful set of profile combinations.  The ultimate objective would be to 

provide a new measure of allostatic load that takes advantage of the richness of the GOM-

estimates and outperforms the simple aggregated GOM-score introduced in this paper as well as 

other current formulations.   

During the past few years, social scientists and epidemiologists have been expending 

considerable effort to design and field population-based surveys that incorporate rich social and 

biological information along with longitudinal information on health and survival. The future 

availability of several data sets of this type will permit researchers to accomplish the proposed 

tasks described above.  These data would provide the opportunity to (1) identify meaningful 

cutpoints for biomarkers and develop improved measures of physiological dysregulation on a 

given longitudinal data set; and (2) use a distinct longitudinal data set to validate the resulting 



  19 

measures and compare them with currently available formulations. The second part of this 

exercise could entail using the measures of physiological dysregulation as predictors of future 

health and survival and as outcomes in models that examine the consequences of chronic 

stressful experiences.  Research on the measurement of physiological dysregulation has been 

greatly hampered by the dearth of such validation efforts. 
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Table 1:  Descriptive Sample Information 
  Males (N=571)  Females (N=401) 

  Mean S.D. Min Max  Mean S.D. Min Max
Age 68.2 8.3 54 90 67.1 8.6 54 90 
Self-assessed Health 3.17 1.0 1 5 2.94 1.0 1 5 
Any ADL Impairment 0.03 0.2 0 1 0.05 0.2 0 1 
Count of Mobility Limitations 1.17 1.9 0 7 2.41 2.4 0 7 
CES-D Score 4.89 4.9 0 27 6.32 6.0 0 28 
Cognitive Performance Score 17.1 3.0 2 24 15.9 4.1 1 24 
Allostatic Load 10-item Index 2.38 1.6 0 7  2.84 1.6 0 7 
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Table 2:  GOM Model Pure-type Definitionsa 

Pure-type Primary Mediators Secondary Outcomes 

I Middle  
(with high/middle DHEA-S) b 

Middle  
(with low/middle Cholesterol Ratio) b 

II Low  
(with low DHEA-S) 

Middle  
(with low/middle Cholesterol Ratio) b 

III High 
 (with low/middle/high DHEA-S)c 

Middle 
 (with low/middle Cholesterol Ratio) b 

IV Middle  
(with high/middle DHEA-S) b 

Low  
(with low/middle/high Cholesterol Ratio)c

V Middle  
(with high/middle DHEA-S) b 

High  
(with high Cholesterol Ratio) 

aCell entries in bold italics denote profile characteristics that are hypothesized to be associated 
with elevated risk of poor health outcomes.  bDescriptions that include two levels (e.g., 
low/middle) signify that the pure-type has a probability of response that is split evenly between 
those levels (1/2 for each). cDescriptions that include all levels (e.g. low/middle/high) signify 
that the pure-type has an equal probability of being associated with the three possible levels (1/3 
for each).   
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Table 3:  Distribution of Individuals Across Pure-type Mixesa,b,c  
  10th and 90th Percentile Cutpoints  25th and 75th Percentile Cutpoints 

  Males % Males Females % Females Males % Males Females % Females
Pure-types          
I 17 3.0% 8 2.0% 1 0.2% 1 0.2%
Total 17 3.0% 8 2.0% 1 0.2% 1 0.2%
          
Two-type mixes          
I & II 47 8.2% 31 7.7% 0 0 
I & III 19 3.3% 17 4.2% 0 0 
I & IV 38 6.7% 25 6.2% 2 0.4% 1 0.2%
I & V 29 5.1% 16 4.0% 2 0.4% 0 
II & IV 2 0.4% 0  9 1.6% 1 0.2%
II & V 1 0.2% 3 0.7% 11 1.9% 8 2.0%
III & IV 2 0.4% 3 0.7% 13 2.3% 10 2.5%
III & V 2 0.4% 0  8 1.4% 4 1.0%
Total 140 24.5% 95 23.7% 45 7.9% 24 6.0%
          
Three-type mixes          
I & II & III 33 5.8% 14 3.5% 4 0.7% 2 0.5%
I & II & IV 59 10.3% 44 11.0% 11 1.9% 11 2.7%
I & II & V 67 11.7% 47 11.7% 9 1.6% 9 2.2%
I & III & IV 30 5.3% 29 7.2% 8 1.4% 14 3.5%
I & III & V 35 6.1% 14 3.5% 8 1.4% 9 2.2%
I & IV & V 9 1.6% 19 4.7% 2 0.4% 3 0.7%
II & III & IV 6 1.1% 2 0.5% 80 14.0% 47 11.7%
II & III & V 4 0.7% 4 1.0% 62 10.9% 46 11.5%
II & IV & V 1 0.2% 3 0.7% 28 4.9% 25 6.2%
III & IV & V 1 0.2% 0  29 5.1% 20 5.0%
Total 245 42.9% 176 43.9% 241 42.2% 186 46.4%
          
Four-type mixes          
I & II & III & IV 49 8.6% 29 7.2% 27 4.7% 13 3.2%
I & II & III & V 38 6.7% 40 10.0% 23 4.0% 14 3.5%
I & II & IV & V 36 6.3% 18 4.5% 29 5.1% 13 3.2%
I & III & IV & V 17 3.0% 11 2.7% 22 3.9% 17 4.2%
II & III & IV & V 5 0.9% 6 1.5% 134 23.5% 104 25.9%
Total 145 25.4% 104 25.9% 235 41.2% 161 40.1%
          
Five-type Mixes 24 4.2% 18 4.5% 49 8.6% 29 7.2%
Total 24 4.2% 18 4.5%  49 8.6% 29 7.2%
aMale N = 571, Female N = 401   

 bIndividuals are defined as a pure type if any one of their GOM scores equals or exceeds 0.9.  Individuals 
are defined as a two- (or three- or four-) type mix if the respective sum of their GOM scores equals or 
exceeds 0.9.  The balance of the sample, by definition, reflect mixes among all five of the pure-types.  In 
the event of ambiguity between two potential classifications for a given individual, he or she is assigned 
randomly to an eligible group (this occurred for one individual under the 10th and 90th percentile cutpoints 
and for six individuals under the 25th and 75th percentile cutpoints).   
cSee Table 2 for profile descriptions. 
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Table 4: Regression resultsa predicting health outcomes as a function of GOM profile scores, age and sex 
  Regression models based on 10% & 90% cutpoints    Regression models based on 25% & 75% cutpoints

  

Self-
Assessed 
Health 

(Ordered 
Probit) 

Any ADL 
Impairment 

(Logit) 

Count of 
Mobility 

Limitations 
(OLS) 

CES-D 
Score 
(OLS) 

Cognitive 
Performance 

Score 
(OLS)    

Self-
Assessed 
Health 

(Ordered 
Probit) 

Any ADL 
Impairment 

(Logit) 

Count of 
Mobility 

Limitations 
(OLS) 

CES-D 
Score 
(OLS) 

Cognitive 
Performance 

Score 
(OLS) 

Age > 70 -0.15* 0.69* 1.38** 0.73* -1.79**  -0.15* 0.73* 1.39** 0.79* -1.75** 
 [2.16] [1.96] [10.70] [2.06] [8.03]  [2.21] [2.03] [10.57] [2.17] [7.78] 
Female -0.26** 0.74* 1.34** 1.42** -1.40**  -0.27** 0.78* 1.37** 1.52** -1.38** 
 [3.66] [2.13] [10.27] [3.94] [6.02]  [3.83] [2.31] [10.44] [4.17] [5.93] 
GOM score II: Low primary mediators, 
Middle secondary outcomesb -0.64** 1.63 1.16* 2.51* 0.76  -0.64* 3.2 1.20* 2.67 -1 
 [2.68] [1.17] [2.41] [2.00] [0.94]  [2.40] [1.70] [2.39] [1.91] [1.16] 
GOM score III:  High primary mediators, 
Middle secondary outcomesb -0.37 2.3 1.40** 4.72** -0.96  -0.17 2.82 1.36** 3.17* -1.41 
 [1.22] [1.72] [2.81] [3.36] [0.96]  [0.62] [1.40] [2.83] [2.42] [1.67] 
GOM score IV: Middle primary mediators, 
Low secondary outcomesb -0.27 2.46* 0.93 2.74* 0.36  -0.57* 3.92* 0.69 3.58** -0.73 
 [1.09] [2.16] [1.90] [2.14] [0.48]  [2.21] [2.29] [1.51] [2.91] [0.94] 
GOM score V: Middle primary mediators, 
High secondary outcomesb -0.93** 4.57** 2.39** 4.10** -2.45**  -0.90** 4.91* 1.68** 2.91* -1.82* 
 [3.19] [4.49] [4.36] [2.78] [2.64]  [3.38] [2.56] [3.67] [2.27] [2.35] 
            
Constant  -5.37** -0.14 3.03** 18.21**   -7.46** -0.6 1.75* 19.10** 
  [9.94] [1.00] [7.74] [71.08]   [4.55] [1.95] [2.14] [35.22] 
            
Test for joint significance of GOM scores           
Wald χ2 Statisticc 17.85 21.25 - - -  14.91 8.25 - - - 
F-Statisticc - - 7.75 5.94 2.67  - - 4.69 3.04 1.86 
p-value < 0.01 < 0.01 < 0.01 < 0.01 0.03    < 0.01 0.08 < 0.01 0.02 0.12 
aHuber-White robust z statistics in brackets; each profile coefficient is relative to Profile I; * significant at 5%; **significant at 1%.   
bSee Table 2 for additional characterizations of the profile descriptions.  
cWald and F-statistics are used to conduct the joint hypothesis test for the significance of the GOM scores.  The Wald statistic applies 
to the likelihood-based models (ordered probit and logit) while the F-statistic applies to the linear regression models.  
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Table 5: Simulated Predicted Values for Each of the Five Pure-types by Health Outcomesa,b 

Outcome 

Regression models 
based on 10% & 90% 

cutpoints 

Regression models 
based on 25% & 75% 

cutpoints 
Probability that Self-assessed Health is Poor or Not So Good 

All assigned to pure-type I 0.19 0.13 
All assigned to pure-type II 0.41 0.31 

All assigned to pure-type III 0.31 0.17 
All assigned to pure-type IV 0.27 0.28 
All assigned to pure-type V 0.51 0.40 

Probability of any ADL Limitations 
All assigned to pure-type I 0.01 0.00 

All assigned to pure-type II 0.05 0.03 
All assigned to pure-type III 0.09 0.02 
All assigned to pure-type IV 0.10 0.06 
All assigned to pure-type V 0.45 0.14 

Expected Number of Mobility Limitations 
All assigned to pure-type I 1.03 0.59 

All assigned to pure-type II 2.19 1.78 
All assigned to pure-type III 2.43 1.95 
All assigned to pure-type IV 1.97 1.28 
All assigned to pure-type V 3.42 2.27 

Expected Number of Depressive Symptoms (CES-D Score) 
All assigned to pure-type I 3.94 2.73 

All assigned to pure-type II 6.45 5.40 
All assigned to pure-type III 8.66 5.89 
All assigned to pure-type IV 6.68 6.31 
All assigned to pure-type V 8.04 5.63 

Predicted Cognitive Performance Score 
All assigned to pure-type I 16.84 17.75 

All assigned to pure-type II 17.59 16.75 
All assigned to pure-type III 15.87 16.33 
All assigned to pure-type IV 17.19 17.02 
All assigned to pure-type V 14.39 15.93 

aBoldface indicates values significantly different from pure-type I (p<0.05), as given in Table 4.   
bPredicted values are obtained by assigning all individuals to a given GOM profile (leaving age 
and sex at their observed values) and averaging the resulting predicted values across individuals.
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Table 6:  Comparison of Single GOM Score with Ten-item Allostatic Load Measurea 

  
Self-Assessed Health  

(Ordered Probit)  
Any ADL Impairment 

(Logit)  
Count of Mobility Limitations

(OLS) 
Age > 70  -0.16* -0.15* -0.16* 0.71* 0.66 0.71* 1.37** 1.38** 1.40** 
  [2.24] [2.22] [2.30] [2.07] [1.93] [2.09] [10.56] [10.67] [10.80] 
Female  -0.24** -0.25** -0.27** 0.70* 0.70* 0.77* 1.29** 1.33** 1.37** 
  [3.46] [3.61] [3.84] [2.01] [2.07] [2.29] [9.71] [10.15] [10.39] 
           

 -0.05*   0.14   0.18**   Ten-item Allostatic Loadc 
Index  [2.10]   [1.52]   [4.48]   

  -0.54**   2.78**   1.44**  
Sum of GOM scores II to V, 
10/90th percentile cutpointsb   

[3.64]   [3.64]   [5.11] 
 

   -0.58**   3.83*   1.25** 
Sum of GOM scores II to V, 
25/75th percentile cutpointsb    

[2.93]   [2.26]   [3.60] 

           
Constant     -4.31** -5.37** -7.50** 0.08 -0.13 -0.62* 
     [11.00] [9.95] [4.57] [0.69] [0.96] [2.03] 
           
R2 or Pseudo-R2  0.009 0.013 0.010 0.036 0.080 0.052 0.199 0.207 0.191 
Change in R2 from restricted 
model (age & sex)  0.002 0.006 0.003  0.006 0.050 0.022  0.016 0.024 0.008 
aHuber-White robust z statistics in brackets; * significant at 5%; ** significant at 1%.  
bThe sum of GOM scores II through V represents dissimilarity to pure-type I (based on either the 10th and 90th percentile cutpoints or 
the 25th and 75th percentile cutpoints, as noted).  
cThe ten-item index uses HDL cholesterol in place of the ratio of total to HDL cholesterol, and cutpoints at the 75th (or 25th) percentile 
that are the same for men and women. 
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Table 6 (continued):  Comparison of Single GOM Score with Ten-item Allostatic Load Measurea 

  
CES-D Score  

(OLS)  
Cognitive Performance Score 

(OLS) 
Age > 70  0.76* 0.71* 0.76* -1.72** -1.76** -1.75** 
  [2.16] [2.01] [2.15] [7.73] [7.95] [7.91] 
Female  1.42** 1.40** 1.51** -1.29** -1.37** -1.38** 
  [3.87] [3.89] [4.15] [5.52] [5.88] [5.94] 
        

 0.19   -0.19**   Ten-item Allostatic Loadc 
Index  [1.65]   [2.63]   

  3.46**   -0.48  
Sum of GOM scores II to V, 
10/90th percentile cutpointsb   

[4.69]   [0.98] 
 

   3.08**   -1.26* 
Sum of GOM scores II to V, 
25/75th percentile cutpointsb    

[3.37]   [2.10] 

        
Constant  4.07** 3.02** 1.77* 18.44** 18.21** 19.12** 
  [11.14] [7.73] [2.17] [87.37] [70.55] [35.37] 
        
R2 or Pseudo-R2  0.026 0.045 0.031 0.098 0.092 0.094 
Change in R2 from restricted 
model (age & sex)  0.003 0.022 0.008  0.007 0.001 0.003 
aHuber-White robust z statistics in brackets; * significant at 5%; ** significant at 1%.  
bThe sum of GOM scores II through V represents dissimilarity to pure-type I (based on either the 10th and 90th percentile cutpoints or 
the 25th and 75th percentile cutpoints, as noted).  
cThe ten-item index uses HDL cholesterol in place of the ratio of total to HDL cholesterol, and cutpoints at the 75th (or 25th) percentile 
that are the same for men and women.
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Appendix Table A-1:  Biomarker Cutpoint Valuesa 
Biomarker 
Category Biomarker   Percentile (N=1023c) 

           
Cutpoints (sexes combined)  25th 75th      

 Epinephrine (µg/g creatinine)b  0.78 3.67      
 Norepinephrine (µg/g creatinine)  15.02 27.09      
 Cortisol (µg/g creatinine)  12.53 29.98      

Primary 
Mediators 

 DHEA-S (µg/dL)  40.80 107.90      
           

 Systolic Blood Pressure (mmHG)  123.00 150.00      
 Diastolic Blood Pressure (mmHG) 75.00 90.00      
 Ratio of Total Cholesterol to HDL  3.40 5.11      
 HDL Cholesterol (mg/dL)  39.00 57.00      
 Glycosylated Hemoglobin  5.10 5.80      

Secondary 
Outcomes 

 Waist/Hip Ratio  0.84 0.93      
                       

 Males (N=590 c) Females (N=433 c) Cutpoints by Sex 
 10th 25th 75th 90th 10th 25th 75th 90th

           
 Epinephrine (µg/g creatinine)b  B.A.S. 0.85 3.41 4.90 B.A.S. 0.63 4.09 6.65
 Norepinephrine (µg/g creatinine)  10.42 13.89 24.23 32.91 12.88 17.71 30.30 36.16
 Dopamine (µg/L)  46.20 72.25 178.15 264.70 41.70 61.20 162.20 258.70
 Cortisol (µg/g creatinine)  7.87 11.47 25.40 43.04 10.06 14.51 34.35 53.61
 DHEA-S (µg/dL)  32.00 53.45 125.30 172.10 13.00 29.20 78.20 118.00
 IGF-1 (ng/mL)  54.30 73.45 137.15 173.70 49.80 66.80 121.30 151.90

Primary 
Mediators 

 IL-6 (pg/mL)b  B.A.S. B.A.S. 1.40 3.10 B.A.S. B.A.S. 1.50 3.80
           

 Systolic Blood Pressure (mmHG)  113.00 123.00 149.00 164.00 114.00 125.00 152.00 170.00

 Diastolic Blood Pressue (mmHG)  69.50 75.00 90.00 96.00 70.00 74.00 90.00 97.00

 Total Cholesterol (mg/dL)  148.00 170.00 218.00 242.00 163.00 182.00 232.00 263.00
 Ratio of Total Cholesterol to HDL  2.77 3.40 5.21 6.19 2.86 3.35 4.98 5.98

 Triglycerides (mg/dL)  52.00 67.00 139.00 199.00 60.00 79.00 155.00 209.00

 Fasting Glucose (mg/dL)  84.00 88.00 105.00 127.00 85.00 89.00 113.00 164.00

 Glycosylated Hemoglobin  4.80 5.10 5.70 6.50 4.90 5.10 6.10 8.10

 BMI  19.66 21.78 26.03 28.20 20.44 22.37 27.11 30.38

Secondary 
Outcomes 

 Waist/Hip Ratio   0.84 0.87 0.94 0.97 0.78 0.81 0.90 0.94
aPercentile calculations based on all nonmissing observations from the full sample.  
bThreshold values for epinephrine and IL-6 are below assay sensitivity (B.A.S.); assay sensitivity for 
epinephrine is < 2 µg/L, while assay sensitivity for IL-6 is < 0.1 pg/mL.  
cCounts represent the maximum number of observations over which the percentiles for any one of the 
biomarkers are calculated; the number of missing observations varies across the biomarkers. 
 


