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Abstract

Business information systems (BIS) comprise technological (e.g. programs), informational (e.g. content) and social
artifacts (e.g. collaboration structures). Typically, such systems are constantly and collectively developed
(co-developed) further by a variety of individuals within the organization. By recognizing these varying types of actors
(concerning their goals, technical expertise and language means) and their predominantly developed artifact type,
one can distinguish two types of subsystems: technical subsystemswherein the development of the system behavior is
conducted by software developers; and business subsystems dominated by end-users developing informational
artifacts. So far, co-development structures within and between these subsystems are not well understood, especially
the aspect that – potentially driven by appropriate measures such as the provision of domain-specific languages –
co-development might shift between these subsystems.
This paper presents an approach for characterizing the co-development of real-world BIS with respect to direct
participation from different kinds of contributors. This multilayered approach allows us to analyze the co-development
with programming languages, domain-specific languages and end-user tools. The approach is suited to assess the
direct participation of individuals from different subsystems in the development of evolving BIS. We focus on the
intersection of these subsystems, present appropriate metrics and a multilayered analysis scheme. Contributions to
artifacts are analyzed using social network analysis to detect structural properties of continuous co-development.
The application to Learn@WU, a real-world BIS, demonstrates how end-user enabling technologies have shifted the
co-development effort of the system from a small group of developers to a several orders of magnitude larger group
of contributors. We observed an increase of direct participation over time on both informational and executable
artifacts, while the number of technical experts was more or less constant.
Our approach may act as a trigger for the application and further development of rigorous instruments for assessing
co-development of BIS.
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1 Introduction andmotivation
As today’s organizations are coerced to continuously
evolve [1], the information systems that pervade through-
out these organizations are ever-changing, too. Con-
sequently, the information technology that supports
the organization is usually subject to ongoing (re-)
development as well [2]. Consider a large company in
the automotive industry as an exemplary organization.
Its environment (i.e. the economic situation, jurisdiction,
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technical innovations, ...) is constantly transforming the
spectrum of business requirements, and therefore the
organization has to be continuously developed further.
The information system, as a socio-technical subsystem
of the firm, not only supports but also forms its busi-
ness processes. Depending on the size of the firm, it
may comprise several thousand people, most of whom
contribute informational resources and actively use the
technology; but typically only a relatively small subset
(application and content developers) actively enhances the
system’s behavior. We assent to the view that a democ-
ratization of system development [3] has the potential
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to reveal important business benefits, as long as appro-
priate governance means are provided. We refer to the
continuous process of enhancing various aspects of the
system (informational, technical, social) bymanifold types
of organizational actors (ranging from developers to end-
users) as co-development of business information systems.
We strive towards enabling the users themselves to con-
tinuously co-develop evolutionary business information
systems [4].
One of the fundamental challenges in this research

field is to find means to increase the overall degree of
participation of the entirety of individuals in the design
and development of the system, including the informa-
tion it processes, the social structures it comprises, and
the enabling technology [4]. However, the inherent com-
plexity of real-world business information systems makes
it hard for researchers and practitioners to discern the
actual co-development structures within a given system
instance.
Traditional approaches often apply a singular perspec-

tive onto either the technical subsystems (e.g. code bases
and bug trackers) or the business subsystems (e.g. wiki co-
authorship networks). A comprehensive instrument that
facilitates fine-grained understanding of the participation
of stakeholders in the evolutionary co-development of
complex information systems is still missing. Hence, we
address primarily the following research question within
this paper: How can we reveal detailed co-development
structures within a business information system? Accord-
ingly, we present two main contributions of this paper:
Firstly, we propose an approach based on a multilayered
perspective for the analysis of co-development in busi-
ness information systems that facilitates to examine the
interplay of the business and technical subsystems via
a deliberate juxtaposition of the co-development struc-
tures among individuals in both subsystems. The goal
is to reveal detailed co-development structures within
business information systems, that can identify devel-
opment shifts between the subsystems and that can be
used to measure the effectiveness of domain-specific lan-
guages for co-development. A key property of the pre-
sented approach is that it explicitly identifies layers at the
intersection of these subsystems within the information
system. Secondly, we conducted an in-depth case study
that demonstrates an application of this approach to an
actual business information system. The approach and
its exemplary application provide a practicable template
for researchers and practitioners who aim at evaluating
the impact of end-user enabling measures taken in the
past.
The remainder of this document is structured as follows:

Section 2 touches important related research fields that
provide the background of this work. Section 3 reflects
on co-development of information systems in general.

The core contributions, i.e. the approach and its applica-
tion, are presented in Sections 4 and 5. Section 6 men-
tions related work and delimits our study from it. Finally,
Sections 7 and 8 discuss our work and conclude the paper.

2 Background and preliminaries
Social network analysis. In general, the understand-
ing of complex networks is an emerging and challeng-
ing research field [5]. The defining feature of a social
network, according to Wasserman and Faust [6], is the
relational information about the actors it comprises. For
example, scientific collaboration networks represent the
connections between (groups of) scientists based on the
papers they have published together [7]. Such sociomet-
ric relationships [8] can be revealed through various data
collection methods, ranging from prescribed communi-
cation lines, and subjective judgements of reputation, to
the observation of decision or general interaction pro-
cesses [9]. For example, Lim et al. [10] have developed
a method for analyzing social networks of stakeholders
of information systems based on recommendations. For
identifying key players in such networks, the concept of
centrality [11] plays an important role. As the research
field matures, the change over time within social networks
gains importance [12].

Software engineering. The discipline of software engi-
neering “is concerned with all aspects of software pro-
duction from the early stages of system specification
through to maintaining the system after it has gone into
use.” [13] It comprises core knowledge areas such as
software construction, design and testing, but is usually
distinguished from related disciplines like systems engi-
neering, computer science or computer engineering [14].
Domain-specific software engineering [15] is an impor-
tant future research direction towards a tighter integra-
tion of software systems with their application domain.
Domain-specific languages (DSLs) [16] are high-level, tai-
lored languages that are – compared to general purpose
languages – easier to understand and use by the people
within the respective application domain. End-user soft-
ware engineering [17] is a form of software engineering
conducted not by professional engineers, but by business
domain experts who need ad-hoc computational support
to fulfill their work tasks.

Information systems. An information system can be
seen as a system comprising human beings and/or
machines which use and/or produce information [18].
This view, which emphasizes the intertwining of people
and technology, is also referred to as the “ensemble view
of technology” [19]. The term recognizes the fact that
a social network is embedded within every information
system.
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Software plays a central role in computer-supported
information systems, which are the kind of systems that
most information systems research efforts typically focus
on [18]. Hence, while the information systems field is
heavily influenced by (and greatly influences) the soft-
ware engineering community, it often touches in addition
various other related fields such as cognitive science, man-
agement science, and systems engineering.
In general, a central purpose of information systems

is to facilitate collaboration by acting as communication
and coordination systems [20]. The construction-oriented
communities within the information systems research
field [21] have a tendency towards focusing on the soft-
ware engineering subarea.
Recently, renowned information systems researchers

have emphasized the demand for more comprehensive
views of the research object. For example, Lee et al. [22]
reflect on the development of the information systems
discipline within the last decades and conclude with a
call for more focus on systemic, organizational, and infor-
mational aspects. Based on this, Lee et al. [23] depart
from the traditional socio-technical perspective, and pro-
pose to reconceptualize the object of research as a com-
pound artifact that explicitly includes an informational
component.

3 Co-development of complex information
systems

In this section, we first introduce our perspective on
information systems as complex artifacts. The remain-
der of this section follows the conceptual division of Lee
et al. [23] and considers co-development of information
systems from an informational, a social, and a technologi-
cal perspective.

3.1 Information systems as complex artifacts
In his seminal book on the sciences of the artificial [24],
Simon describes an artifact as an “interface” between
an outer environment and an inner environment. Lee
et al. [23] summarize Simon’s [24] understanding of arti-
ficial things as: “anything that is made (‘synthesized’) by
human beings is an artifact”. This includes physical arti-
facts such as hardware devices, and abstract artifacts, the
“products of the human mind” [25], such as software. The
latter may, or may not, have a more (hardware) or less
(software) concrete, physical manifestation.
Following this view, we may perceive an information

system (an “implemented instantiation” [26]) as a com-
plex compound artifact of an organization that has at
least two important, interdependent outer environments:
firstly an outer business environment (containing other
organizations, markets, government) that influences the
goals and requirements of the business subsystems within

the information system; and secondly an outer techni-
cal environment that both on the one hand imposes
constraints and on the other hand acts as an enabling cat-
alyst for achieving the business goals. The latter contains
potentially usable hardware and software components.
According to this, the information system operates at the
intersection of, and mediates between, these two outer
environments, which ultimately induce the majority of
developments of the system. The inner environment of
the information system artifact can also be perceived to
have both more technically oriented subsystems andmore
business oriented subsystems. Both subsystems should
be considered “socio-technical-informational”, and inter-
connected. However, within the technical subsystems the
socio-technical aspects – and in the business subsystems
the “socio-informational” aspects, respectively – tend to
play a more dominant role. The contrived visualization
in Fig. 1 sketches this perception of complex information
system artifacts.

3.2 Information perspective on co-development
At the center of any information system are informational
artifacts. Hence, information is, of course, a fundamen-
tal concept in the information systems field [27]. The
exchange of information is the primordial reason for any

Fig. 1 Business information system. This contrived visualization of a
business information system as a complex compound artifact
illustrates its interconnected inner subsystems interwoven with its
outer environments in the form of a bipartite network comprising
artifacts and individuals
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business information system [18]. Therefore, designing
information and its reception means designing a funda-
mental artifact within the information system [23]. An
attempt to classify all kinds of information perceived and
produced by all of the system’s stakeholders remains out
of the scope of this paper, if at all possible.
Nevertheless, when reflecting the co-development of

informational artifacts, one can focus on at least three
interdependent aspects: information artifacts as a cause of
co-development, information artifacts arising during co-
development, and information artifacts as output of co-
development. In their seminal article, Germonprez et al.
[28] illustrate the concept of secondary design by provid-
ing an in-depth study of the collaborative construction of
an informational artifact.
In this article, we primarily adopt the token-view of

information, the predominant view within information
systems research: information is seen as “inputs and
outputs of processes, in minds, machines, or organiza-
tions” [27]. We focus on information artifacts as the
product of co-development activities.

3.3 Technology perspective on co-development
When discussing the technology perspective, we apply
the same conceptual triad: technology artifacts as enabler
of co-development, use of technology artifacts dur-
ing co-development, and technology as output of co-
development. There exists a large amount of research
outputs (technological artifacts [29]) aiming at enabling
co-development of information systems among contribu-
tors of different subsystems.
A prominent role have DSLs, which are specialized

languages tailored specifically to an application domain:
rather than being made for a general purpose, such lan-
guages capture precisely the domain’s semantics [30].
DSLs allow to express facts in the idiom and at the level
of abstraction of the problem domain. Therefore domain
experts may understand, validate, modify and develop
the system in a DSL [16]. Examples include high-level
workflow definitions [31] expressed in DSL that are easy
to understand by non-programmers. There are methods
for the rigorous design of DSL [32], which are both a
means for facilitating the direct contribution of domain
experts to software systems, as well as their collaboration
with technical experts [33]. Kelleher and Pausch provide
an overview of environments and languages that aim at
lowering the barriers to programming for novices [34].
Enterprise wiki systems [35] aim at facilitating contri-

butions to and collaboration on hypertextual informa-
tion artifacts. By providing end-users with means for
creating situational applications, enterprise mashup sys-
tems [36] adopt this idea for technological artifacts.
Evolutionary information systems [4] aim at combining
these properties, hence providing highly introspectable,

tailorable technology [37], thus ultimately enabling sec-
ondary design at all conceptual layers of the information
system.

3.4 Social perspective on co-development
In general, any stakeholder of the information system
may contribute to its development. Stakeholders are
“the people, groups, or organizations who affect or are
affected by a software system” [38], including, but not
limited to, software developers, employees, customers,
company owners. A traditional mindset considers the
technological artifacts of an information system as being
designed by software engineers, and subsequently used by
end-users.
One of the goals of agile software development method-

ologies [39] is establishing an environment that facil-
itates the coordination, collaboration and communica-
tion among the members of heterogeneous develop-
ment teams, consisting of technical and business domain
experts. The idea of participatory design [40] refers to
integrating non-programmers into the software design
process. However, not withstanding this notion of initially
engineered (potentially participatory) design, the idea of
secondary design treats end-users as “designers in their
own right," who are actively engaged in the ongoing design
of the information system within the context of use [28].
Following Barki and Hartwick [41], the construct ‘user
participation’ refers to “the activities performed by users
during systems development.”
Different stakeholders contribute with different inten-

sity and in different forms to the information system.
Types of contributions include the establishment of
cooperative work relationships, verbal improvement pro-
posals, technical, monetary or ethical requirements doc-
uments, software code, et cetera. For example, Lim et al.
[42] measure stakeholder involvement by recognizing sys-
tem usage, system development, financial investment,
managerial decision making, constraint imposition, and
threatening of system success. In the context of this paper
we broaden the definition of user participation of Barki
and Hartwick [41] to explicitly include secondary design:
we extend end user participation to refer to all activities
performed by stakeholders that contribute to the contin-
uous development of an information system. We focus on
collaboration structures as the matter of the social arti-
facts which arise in the course of co-development (most
importantly, contributions to technical and informational
artifacts) in the context of a business organization.Metrics
of social artifacts, such as the number of contributors and
the frequency of contributions, show that social structures
may influence the technological artifact, e.g. in terms of
software quality [43]; in contrast, Bird et al. [44] compared
distributed to collocated development in a large software
project and found no significant difference in terms of
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code quality. Open-source communities can be seen as
an example of social structures that are the result, or by-
product, of co-development of open-source software [45].

3.5 Challenges
As elaborated above, we position information systems
between the poles of the outer business and the outer
technical environments (see Fig. 1). The inner structure
of an information system can be understood as being
“narrow-waisted” hyperboloids: business domain experts
contribute to and collaborate in the business subsystems,
and technicians do so in the technical subsystems; at the
intersection of these subsystems, the “waist,” participa-
tion remains low. An information system technology that
would support all stakeholder groups equally according to
their respective level of expertise would show a broader
waist in such a contrived illustration. The forces of change
in the information system come from these poles but also
from inside the information system, when users of the
information system use it to reinvent and to re-engineer
their business functions, processes, and organizations.
However, within the information system many different
partial domains have to be addressed. Many of these have
different application and technical aspects, many of these
require certain skills and knowledge from both of these
poles, leading to an architecture with multiple layers and
diverse participation structures. We consider this as a piv-
otal problem for information systems research: the funda-
mental challenge, i.e. finding means to sustainably enable
participation of as many stakeholder groups as possible in
the continuous development of information systems [4], is
not only a stimulus for this work, but rather for a whole
range of research efforts, including, but not limited to, the
design of DSLs [32] and their collective integration [46]
towards domain-specific mashup systems [47].

4 An approach tomultilayered analysis of
continuous co-development of artifacts in
business information systems

In general, information systems “are so complex that it
is practically impossible to understand them as a whole”
[13]. The same is true for assessing the co-development
of several aspects of the information system, especially
when large groups of individuals (potentially many thou-
sand) contribute to it. To manage this complexity these
systems have to be viewed from various angles. In the fol-
lowing, we present a novel, multilayered approach that
aims for a better understanding of the participation of
individuals in the evolutionary co-development of busi-
ness information systems. The purpose of the approach is
to provide means for characterizing information systems
with respect to co-development by different stakeholder
groups. This approach helps to assess the degree of direct
participation at various layers of individuals from different

domains to the development of a constantly evolving
information system.
By actually applying this approach to an existing busi-

ness information system, we demonstrate in Section 5
how the provisioning of end-user technologies has shifted
the development efforts within this particular system
from a relatively small group of technical system devel-
opers to a (by orders of magnitude) larger group of
business domain experts. The study reveals the direct par-
ticipation of the domain experts, and sheds light on the
co-development structures of the business and technical
domain experts and on the affected layers.
The approach facilitates measuring the direct partici-

pation of users in the co-development of business infor-
mation systems. The direct participation is expressed by
the number of individuals providing ormodifying artifacts
without intermediation and by the number of provided
and co-developed artifacts, which are categorized in mul-
tiple layers ranging from source code over specifications
to content. The approach focuses on direct contributions,
where an individual either provides or modifies an arti-
fact stored in the system. The artifacts are divided roughly
into informational artifacts (content, data) and executable
artifacts (programs, executable specifications in domain-
specific languages). By modifying executable artifacts, the
functionality and behavior of an information system is
directly altered.
In Fig. 2 two hypothetical business information systems

are characterized based on the co-development structure.
It visualizes direct contributions to informational arti-
facts with light grey arrows, while direct contributions to
executable artifacts are illustrated with dark grey arrows.
In case A of Fig. 2 technical domain experts are solely

providing executable artifacts, while business domain
experts provide content and data. In this example tech-
nical and business domain experts co-develop the con-
ceptual schemata. The implication of this co-development
structure is that every modification of the system behav-
ior has to be performed by technical domain experts,
who have to interpret the specifications of the domain
experts and implement them. The consequence is that
the technical developers tend to become a bottleneck
especially when the set of specifications changes or
grows. In this kind of system, non-technical stake-
holders can only contribute indirectly to executable
artifacts.
In case B of Fig. 2, the situation is different, since in this

hypothetical information system, DSLs are used. Business
domain experts can contribute directly to the executable
artifacts. The direct manipulation [48] of executable arti-
facts is not only a means of cost reduction (compared
with the indirect manipulation), but finding representa-
tions suitable for direct manipulation is an enabler for
experimentation and insights. The domain expert is able
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Fig. 2 Different co-development structures in business information systems: business domain experts can contribute to executable artifacts either
only indirectly (case a) or also directly (case b)

to experiment with the system in a step-wise manner
for developing better solutions. Furthermore, the sys-
tem in case B enables more business domain experts to
contribute effectively to an information system.
The underlying conceptual model is based on a unified

perspective to the informational and executable artifacts
and is in contrast to co-development analysis approaches
that concentrate only on the informational [49] or on

the software-technical subsystem [50]. As the model
of Lee et al. [23] based on social, technological, and
informational artifacts is very abstract, our goal is to
identify actual instruments to measure and characterize
co-development structures. We argue that in the context
of co-development a unifying perspective onto executable
and informational artifacts is needed to gain a compre-
hensive picture.
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This leads us to a layering perspective: important stake-
holder groups at the intersection of the business and the
technical subsystems act on artifacts that have informa-
tional aspects, but which are executable in the information
system. A coalescence of informational and executable
artifacts can be observed, which is not only noticeable
but desirable. Typical examples are executable artifacts
specified in DSLs, as addressed in Section 3.3.

Layering. There are several ways to divide a system
into layers along the business to technical dimension.
Sommerville [13] identifies seven different layers within
socio-technical systems. Neumann et al. [4] differentiate
broadly between an execution environment, a technical
domain environment, and a business domain environ-
ment. We argue that in the context of co-development a
more detailed layering, particularly within Sommerville’s
application and business process layers, proves useful. We
have identified six layers for the characterization of the
co-development structure for information systems devel-
opment, which are depicted and related to Sommerville’s
view of socio-technical systems in Fig. 3.

Information layer: Content provided and maintained by
all kinds of users of the system (including end users).

Configuration layer: Parametrization of the system;
allows to choose predefined features, provide specific
setup for certain instances, usually via forms.

Fig. 3 Layering

Content schema layer: Definition of content (data) sche-
mata to model the application domain, defined in a DSL.

Workflow schema layer: Definitions of workflow sche-
mata to be executed by workflow engines, defined in a
DSL.

Application layer: Software components, programmed in
generic programming languages for application specific
purposes.

Infrastructure layer: Generic (application independent)
software components such as database systems, workflow
engines, middleware, web servers, operating system.

With respect to participation, artifacts at all of these
layers can be designed to enable participation. However,
we particularly refer to the two schema layers in Fig. 3
as participation-enabling layers, since these are means to
enable direct participation of domain experts in tasks that
traditionally required technical programming knowledge.

Metrics. In order to obtain a comprehensive, detailed
picture of the co-development structure in a business
information system, we propose to applying social net-
work analysis techniques at several conceptual layers. We
consider the following essential metrics to be of interest
for most analyses of information system co-development.
Contributors and artifacts are the basic types of entities.
Contributions and collaborations measure participation
in the form of relationships among these entities. These
metrics have to be adjusted and supplemented in the
course of a concrete research study.

Contributors: We consider a potential contributor as any
person who could reasonably contribute to the system.
This generally includes all stakeholder groups of the sys-
tem. A person who actually contributed to the informa-
tion system is a contributor. The contributor ratio is the
amount of actual contributors divided by the number of
potential contributors. This figure serves as an indicator
of the prevalence of the information system within the
organization.

Artifacts: Following the broad understanding of the term
artifact introduced earlier, it becomes clear that artifacts
exists ubiquitously within an information system. The
system itself, as well as its social structures are artifi-
cial things. However, social artifacts manifest themselves
as the actual collaboration structures that the social net-
work analysis reveals. For the purpose of this metric, one
is primarily interested in measurable manifestations of
informational and executable artifacts. Executable spec-
ifications are executable artifacts that explicitly aim at
empowering business domain experts to make direct con-
tributions to the system behavior.
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Contributions: A contribution is an activity that leads to
a modification or an enhancement of an artifact within
the information system. In other words, the contribution
leads to – thus manifests itself as – the addition, removal,
or modification of artifacts within the system. A contri-
bution establishes a a contribution relationship (ConRel)
between a contributor and an artifact, the intensity of
which can, of course, vary. Laniadio and Tasso [49] incor-
porate the size and longevity of edits into this measure.
Typically, one considers frequency and/or depth [51] as
factors to compute the intensity of such a relationship.
Particularly when focusing on software quality aspects,
the frequency of contributions can be considered to deter-
mine a (proportion of) ownership of the artifact [52].

Collaborations: There are several ways to understand the
concept collaboration. For example, Briggs et al. [53] iden-
tify seven different layers within the concept. Nunamaker
et al. [54] distinguish three levels of collaboration, i.e.
collective, coordinated, and concerted. Collective collab-
oration happens when people work individually towards
a common goal. More careful coordination of (still indi-
vidual) work becomes necessary, as soon as dependencies
of work increase. When any breaks in work synchro-
nization endanger the common undertaking, concerted
collaboration is required.

In general, collaboration can both boost [55] and
harm [56] productivity. Hence, while it serves as an
appropriate concept for measuring and understanding
information system co-development, it should not be mis-
understood as an organizational goal per se.

In accordance with our ambitions to define a com-
prehensive picture of an information system, one may
argue in favor of the broadest of these collaboration con-
cepts, i.e. collective collaboration. However, the level(s)
of collaboration to be investigated depend on the ques-
tions asked in a particular research effort that applies this
approach.

Evolution. Within the life time of a business information
system its requirements constantly evolve and the partic-
ipants can change. Hence, we argue that it is necessary
to investigate the evolution of co-development within the
system over time.We suggest that looking at the history of
such a system’s co-development patterns provides a very
natural way to gain insight. However, depending on the
research question, the particular system at hand, and the
available data, the time frame selected for investigation
may vary.

Scoping. Understanding an information system as an
ensemble of social, technical, and informational artifacts
implies that its boundaries are neither obvious nor sharp.
For example, it is not clear whether or not a customer,

or a hardware node, should be considered being part
of the system. We have sketched this roughly in Fig. 1.
As the focus of the framework lies on investigating co-
development, we propose to tell “inner” and “outer” arti-
facts apart as follows. The boundary with respect to
people (social artifact) can likely be directly inherited
from the business organization. With respect to tech-
nical artifacts, those which are continuously developed
further by members of the organization are of primary
interest. This excludes for example hardware components
and off-the-shelf software. The boundaries of the space of
informational artifacts are implicitly constrained to those
“captured” by the technology and the people involved.
Finally, one has to apply a temporal scoping as well, i.e. to
decide on the time frame to be investigated.

Data gathering. In general, potential sources for data
range from people’s answers to survey questions [57],
investigating communication in mailing lists [58], over
sourcing bug repositories [59], smart phone data [60],
software repositories [61] and databases, to log file anal-
ysis [62]. Regardless of the methods chosen for a par-
ticular study, for reaching an integrated picture of the
co-development patterns within the system, researchers
should strive for gaining access to data from both the
business and the technical subsystems.

5 Application to the educational business
information system Learn@WU

The following sections describe the application of our
approach through an in-depth exploration of the actual
co-development occurring within a real-world educa-
tional information system, namely the Learn@WU sys-
tem [63], a socio-technical system that supports and
enables the learning and teaching processes at the Vienna
University of Economics and Business [64].

5.1 Study overview
Methodological background. From a broad perspec-
tive this study is embedded within our ongoing efforts
to investigate analytics-driven, domain-specific informa-
tion systems [47]. Such a kind of multifaceted research
demands a pluralistic understanding [4, 65] of infor-
mation systems research, combining behavioral and
construction-oriented [66, 67] methods.
This particular study represents an in-depth, descrip-

tive, exploratory analysis focusing on a single case [68].
Lee and Baskerville [69] provide an extensive dis-
cussion about the generalizability of this kind of
research. We study several sources of data and com-
bine them into a common picture. By developing
an approach (i.e., a “method” in the terminology of
information systems research [29]), this research has
construction-oriented [21] elements as well. For example,
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Baskerville et al. [70] provide rationale for revealing
knowledge that applies to a class of problems through
construction of specific solutions.

Scoping of Learn@WU. We have defined the bound-
aries for our investigation of the Learn@WU system as
follows.

Informational: We have investigated all informational
artifacts stored within the content repository of the web
application framework.

Technological: From the technical perspective, we have
drawn the line within the infrastructure layer: the web and
database servers are used “as-is,” i.e. not co-developed by
members of the organization. However, there are packages
of the web application framework that both belong to the
infrastructure layer and are developed further internally.
The latter have been included in the investigation.

Social: The social boundaries in terms of stakeholder
groups are determined by the university, and have been
restricted to students, teachers, staff.

Temporal: We decided to investigate as much of the sys-
tems history as data would allow. As it is the case at many
educational institutions, system usage is strongly depen-
dent on the semester terms. For example, during summer
holidays system usage decreases significantly. Hence, the
university’s business years provided appropriate slots for
time boxing (note that e.g. the period 2014 should be read
as September 1, 2013 until August 31, 2014.)

Layering of Learn@WU. In the following we describe
the technological stack of the Learn@WU system accord-
ing to the layers of a co-developed information system as
defined in Section 4 (Fig. 3). It is built completely on open
source components and is running on the GNU Linux
operating system. Figure 4 assigns its components to the
respective layers, which are described in the following.

Information layer: The OpenACS system [71] provides a
generic content repository infrastructure, which is used by
practically all applications (forums, news, wiki, et cetera)
to store content items (informational artifacts).

Configuration layer: End-users can customize and para-
meterize various system aspects. These tasks are consid-
ered as end-user development as well [72, 73]. Although
the system allows for fine-grained parametrization and
customization of package instances, user-portals etc, an
analysis of this layer is outside the scope of this study.

Content schema layer: A flexible enterprise wiki engine
allows all stakeholders to define arbitrary content
schemata (somewhat similar to Wikipedia’s info boxes

Fig. 4 A layered perspective of the Learn@WU technology stack

[74]), which subsequently act as templates for information
instances.

Workflow schema layer: The workflow engine enables
technical and business stakeholders to define workflows
with the help of a DSL. These stakeholders can change
several aspects of the system’s behavior without having to
care about classical programming details.

Application layer: Practically all applications in the
Learn@WU system are implemented as so-called pack-
ages (installable components) for OpenACS, including
the OpenACS base packages or the packages of the learn-
ing management system DotLRN [75, 76]. The system
uses currently 148 packages (applications and infras-
tructure), about a third of which have been developed
in-house. Ten packages deserve our special attention,
as these have been designed with the goal to ease con-
tributions and to foster collaboration within the overall
system. Most importantly, these participation-enabling
packages include a workflow engine [77] and a wiki
engine.

Infrastructure layer: PostgreSQL [78] and NaviServer
[79] are employed as database management system and
web application server, respectively. OpenACS serves
as a comprehensive web application framework, and as
such, provides an infrastructure for community appli-
cations [80]. Demetriou et al. [81] have analyzed the
collaboration structure of the OpenACS project.

Metrics for Learn@WU. This section explains the con-
cepts and indicators that we have used in our analysis.
In this study we have analyzed more than 5 million con-
tributions from more than 37,000 contributors. All data
of this study is based on contributions to digital artifacts,
collected from a code repository and a content repository
over a period of 10 years. This dataset is the basis of the
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social network analysis used to reveal the (changes of the)
co-development structure.

Contributors: The most important contributors for
Learn@WU are students, teachers, developers. We have
calculated the amount of potential contributors for each
business year based on the actual amount of students,
academic and administration members of the university.
The upper limit for the potential users of the system is
the number of system accounts, which is determined
by the currently enrolled students and employees. Only
these have write access to the system and can actually
contribute. We have drawn these figures from the yearly
reports published by the university [82]. Note, that the
numbers of the academic and administration staff had to
be approximated, because the university only publishes
accurate head-counts for students. The academic and
administrative employees are partly declared as ‘full-time
equivalent’ positions, which are less than actual people.
Hence, the ratio of employees and students has been
approximated as 1:10. However, although an approxima-
tion, we are confident that this educated guess is more
than accurate enough for our purposes.

Artifacts: One of an educational information system’s pri-
mordial purposes is delivering learning content to the
learner [83]. Content developers continuously develop
informational artifacts such as electronic textbooks and
questions. However, information instances in such a sys-
tem are not restricted to learning content in the narrow
sense. Learners and teachers shape the overall learning
experience by contributing various informational artifacts
to the system, e.g. syllabi, calendar entries, forum post-
ings, chat messages, or news. Software developers con-
tribute both informational artifacts, e.g. in the form of
wiki pages, and source code. All these artifacts constitute
a core asset of the overall information system.

We have mainly considered two manifestation forms of
the plethora of artifacts at the various system layers: ‘files’
at the more technical layers (infrastructure/application),
and ‘information objects’ at the more informational layers
(workflow schema/content schema/information). In the
context of this study, we refer to workflow schemata and
content schemata as the executable specifications within
Learn@WU.

Contributions: The source code management system and
the web framework’s content repository allow us to mea-
sure contributions to technical and informational artifacts
in a relatively consistent manner. In general, we treat
off-the-shelf components as being part of the outer envi-
ronment. However, in contrast to other artifacts from
the outer technical environment, open source software
allows for ad-hoc contributions to originally “external”
artifacts, transforming them into internally developed

artifacts. Hence, we have not counted the first mere addi-
tion of an externally developed file as a contribution, but
its subsequent modifications.

AD, MD, AWD: We used the following degree based
metrics for bipartite contribution networks (contribu-
tors/artifacts). The average degree of contributions (AD)
refers to the average number of contribution relation-
ships of the contributors within the network. The cor-
responding metric median degree of contributions (MD)
is more robust against outliers. The average weighted
degree (AWD) incorporates edge weights into the cal-
culation, i.e. the amount of contributions to the same
artifact.

Collaborations: In order to gain a comprehensive picture,
we have decided to apply the broader notion of “collective
collaboration” [54], which includes weaker forms of col-
laboration, such as asynchronous changes, co-edits, and
even competing changes. Hence, each time two distinct
persons contribute to the very same artifact within a given
time period, we count this as a collaboration. Such col-
laborations establish a collaboration relationship (ColRel)
between the two actors; the artifact becomes a co-artifact.
When the same actors work together on another artifact,
this establishes a separate collaboration, and strengthens
the collaboration relationship. The weighted degree of
collaboration (CWD) incorporates these edge weights, i.e.
the amount of different artifacts two collaborators have
worked on, as a vertex metric. Hence, the collaborator
ratio is the amount of actual collaborators divided by the
number of potential collaborators, where the latter is the
actual contributors in the respective period and context
(subsystem/layer).

CAD, CMD, CAWD, CD: For unipartite collaboration
networks (collaborating contributors) we employ the
following metrics: The average degree of collaboration
(CAD) and median degree of collaboration (CMD) refer
to the average/mean number of collaboration relation-
ships of the collaborators within the network. The average
weighted degree of collaboration (CAWD) incorporates
edge weights, i.e. the amount of different artifacts two col-
laborators have worked on. The density of collaboration
(CD) is the ratio of potential collaboration relationships
to actual collaboration relationships.

Data of Learn@WU. In our study of the business
subsystems, we are concentrating on the direct con-
tributions and collaborations of stakeholders. We ana-
lyzed particularly the information, content schema, work-
flow schema, application and infrastructure layers. The
data of the higher layers (information, content schema,
workflow schema layer) is stored in a central content
repository managed by OpenACS, while the application
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and infrastructure layers are managed using a Git [84]
repository.

• Information layer (from the content repository)
• Content schema layer (from the content repository)
• Workflow schema layer (from the content repository)
• Application and infrastructure layers (software

artifacts from the source code repository)

From the data in the content repository, we were able
to analyze 10 business years (2004 – 2014). In this time
period over 5 million distinct contributions were recorded
by over 37,000 individuals on over 2.2million artifacts (see
Table 1). Such artifacts are for example wiki pages, news
entries, syllabi or exercises.
At the application and infrastructure layers we con-

centrate on the application software artifacts that were
modified and extended within the organization, which
might or might not have received contributions from out-
side of the organization. As the software infrastructure
is composed of open-source software, there is a poten-
tially wide range of components that serve at the infras-
tructure layer. Including these outer components in the
analysis is beyond the scope of this paper (e.g. the develop-
ment of the database management system or of the web-
server and the programming languages involved). Only
the locally maintained components are kept in the source
code repository. The analysis of the source code repos-
itory comprises the OpenACS packages used, as well as
the components developed in-house. The code basis con-
tains 25,544 files (as of 2015), which are programs written
mostly in Tcl, JavaScript, SQL and HTML templates as
used by OpenACS. Without counting blank and com-
ment lines, these software artifacts amount to 7,833,647
lines of code. From the years 2008 to 2014 we deter-
mined 27,000 contributions from 12 contributors to 9,000
software artifacts.

The aggregated, approximated number of potential con-
tributors is about 88,000, while the numbers of potential
contributors by year range from about 23,000 to about
30,000 individuals.

Visualization. In this study the data was visualized
as two-dimensional graphs using the Gephi [85] soft-
ware utilizing force-directed algorithms [86, 87]. If not
stated otherwise, all graphs follow the same visualization
approach: vertices representing participants employ a nat-
ural “stellar” metaphor, i.e. those with a stronger influence
(weighted degree) are both bigger and brighter (on a gra-
dient from dark red to light yellow). Vertices representing
artifacts are only found in bipartite contribution networks
and are rendered as equally sized white nodes. Edges are
black (slightly transparent) and their thickness relates to
contribution/collaboration intensity.
The following sections describe the main part of the

analysis. Firstly, we concentrate on the development of
contributions to the business and technical subsystems.
We can show how the intermediate layers developed over
time. Finally, we study how the changes in the artifact
structures and layerings are reflected by the collective
collaboration structures.

5.2 Contributions to artifacts in the content repository
To study evolution and co-development of the informa-
tional artifacts, we need to understand the patterns of
informational contributions to the system by the entirety
of people involved. The analysis of the corpus of informa-
tional artifacts is based on contributions to the system’s
content repository (see Section 5.1).

5.2.1 Information layer
An initial analysis of contribution-related numbers within
the content repository reveals that the information system
is used intensively. Within the last ten business years,

Table 1 Contributions to the content repository

Period Contributors Contributor ratios ConRels Contributions Artifacts AD MD AWD

all 37427 42.5 2411912 5347213 2252996 64.4 20.0 142.9

2014 17568 70.1 672846 1677392 632325 38.3 17.0 95.5

2013 16548 63.8 538051 1360835 497965 32.5 12.0 82.2

2012 11681 41.3 336557 976296 299211 28.8 3.0 83.6

2011 6836 22.6 216260 409281 208955 31.6 3.0 59.9

2010 7088 24.0 158594 261469 154921 22.4 2.0 36.9

2009 3840 14.4 140115 157708 137789 36.5 14.0 41.1

2008 3460 13.5 119188 135395 118396 34.4 14.0 39.1

2007 4596 18.8 155475 186277 147522 33.8 3.0 40.5

2006 2368 10.0 35426 38325 35144 15.0 3.0 16.2

2005 1054 4.4 16497 18245 16453 15.7 3.0 17.3

2004 176 0.7 23873 25415 23621 135.6 1.0 144.4
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over 37,000 contributors (students, teachers, staff ) have
contributed more than 5 million times to over 2 mil-
lion informational artifacts (content items). The social
network analysis metrics reveal that this translates to an
average of about 65 provided/enhanced content items per
individual contributor (Table 1, AD).
The evolution of contributions to these artifacts shows

growing numbers of contributors, artifacts, and contri-
butions (see Table 1). While in 2004 only 176 people
contributed about 25,000 times to about as many informa-
tional artifacts, we see 100 times as many individuals as
in 2004 contributing to more than 600,000 informational
artifacts over 1.6 million times in 2014. These increasing
figures are gaining value by the fact that the number of
potential contributors is essentially constant. While about
one year after the introduction of the system, in the busi-
ness year 2004, the exploitation of the potential of the
information system with respect to its potential users (the
contributor ratio) was negligible, it has climbed up to
more than two thirds of all potential users contributing in
2014.

5.2.2 Contributions at participation-enabling (schema)
layers

The participation-enabling layers (content schema layer,
workflow schema layer), are a result of deliberate develop-
ment measures taken in the past. In order to empower the
stakeholders of the information system to contributemore
directly to the system behavior, a set of participation-
enabling packages (see Section 5.1) had been developed
and deployed step-by-step. In 2006 a wiki engine was
deployed, which was extended with the functionality for

collaborative content schema creation in 2007. Subse-
quently, in 2008 a workflow engine was deployed, which
allowed users to directly adapt the system behavior.
Figure 5 shows the evolution of numbers of contribu-

tors and contributions to the content repository at the
participation-enabling layers compared to the informa-
tion layer: the white bars act as a reference and show
the overall numbers of contributors and their contri-
butions to the content repository; the yellow bars nar-
row the scope to artifacts that belong to participation-
enabling packages, which includes e.g. contributions to
purely informational artifacts such as wiki pages; the
light orange and dark orange bars narrow it further
and show these metrics only with respect to the con-
tent schema layer and workflow schema layer, respec-
tively. One can see that after a short lag the provision of
each of these participation-enabling packages is followed
by successive adoption. The technological support for
directly creating and enhancing executable specifications
via DSLs acts as a fertile soil for these forms of end-user
development.

Content schema layer. We have had a close look at the
evolution of the content schema layer: although one busi-
ness domain expert contributed to this layer from the
very beginning, most of the contributors of the first two
years were either part of the software development team,
or technical experts with close relationships to the team.
However, since 2009 the vast majority of contributors
actually comes from the business subsystems. During the
last eight years, in sum 208 individuals have contributed
nearly 4,000 times to half as many content schemata, by

Fig. 5 Evolution of contributions atparticipation-enabling layers. x-axes: business years • y-axes: logarithmic scale of contributors/contributions
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Table 2 Contributions to the content schema layer

Period Contributors Contributor ratios ConRels Contributions Artifacts AD MD AWD

all 208 0.2 2187 3981 2003 10.5 2.0 19.1

2014 80 0.3 346 503 268 4.3 3.0 6.3

2013 36 0.1 187 330 184 5.2 2.0 9.2

2012 35 0.1 313 944 270 8.9 2.0 27.0

2011 29 0.1 938 1071 923 32.3 3.0 36.9

2010 62 0.2 328 948 296 5.3 1.5 15.3

2009 37 0.1 81 128 79 2.2 2.0 3.5

2008 5 0.0 9 24 9 1.8 1.0 4.8

2007 2 0.0 2 16 2 1.0 1.0 8.0

using a DSL. The social network analysis of the content
schema layer reveals that it is populated by a majority
of people who contributed to only few content schemata
(median degree of contributions of 2; see Table 2). Only
a small number of individuals have a broader influence.
At this layer, the number of contributors (Fig. 5) and the
contributor ratio peak in 2014. However, other indica-
tors, such as the number of created/enhanced content
schemata (artifacts), contributions, and the degree-based
metrics, seem to stabilize, or even had peaks in earlier
years.

Workflow schema layer. The evolution at the work-
flow schema layer shows an upward trend. Similar to
the content schema layer, a thorough investigation of the
workflow schema layer shows that the early two years are
dominated by software developers (2010 completely, in
2011 there was one contributor from the business sub-
systems). Already in 2012, however, we see five times as
many business domain experts contributing than software
developers; in 2014 the number of software developers at
this layer is negligible. Overall, the workflow schema layer
has about ten times as many contributors as there are soft-
ware developers (see Table 3). These domain experts have
conducted this form of end-user programming [88] about
2,500 times in the context of 1,500 workflow schemata
during the last five years. However, these stakeholders
typically contribute to only few different artifacts (over-
all a median degree of contributions of five), slightly more

but similar to the situation the content schema layer.
Nevertheless, at the workflow schema layer the number
of contributors, contributions, and artifacts have been
constantly growing during the last five years. Average
and mean of contributions show less increase over time.
While the tendency of increasing overall adoption at the
workflow schema layer looks promising, the stagnating
contribution-related metrics per individual user hint at
potential for improvement measures.
To sum up, although these layers are by orders of mag-

nitude less populated than the information layer, both of
them are – as we will see later – more crowded than the
application layer. The growing contributor ratios at the
two schema layers during the last four years show that
there is a tendency of increasing adoption. However, as the
relatively low median degrees of contributions reveal (see
Tables 2 and 3), contributors at these layers spread their
contributions to much less different artifacts compared to
the other layers.

5.3 Contributions to software artifacts
We continue the analysis top-down the stack of lay-
ers by analyzing contributions manifested in the source
code repository. While executable artifacts exist in the
form of executable specifications (content and workflow
schemata) in the content repository, too, the majority
of executable artifacts in the analyzed system are classi-
cal software artifacts (programs written in Tcl, Javascript,
SQL and HTML templates as used by OpenACS).

Table 3 Contributions to the workflow schema layer

Period Contributors Contributor ratios ConRels Contributions Artifacts AD MD AWD

all 113 0.1 1526 2445 1495 13.5 5.0 21.6

2014 81 0.3 865 1006 856 10.7 4.0 12.4

2013 42 0.2 374 590 366 8.9 5.0 14.0

2012 25 0.1 226 376 220 9.0 4.0 15.0

2011 7 0.0 46 270 41 6.6 3.0 38.6

2010 4 0.0 20 183 17 5.0 3.5 45.8
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Table 4 Contributions to the application and infrastructure layers

Period Contributors Contributor ratios ConRels Contributions Artifacts AD MD AWD

all 12 100.0 11187 27825 9062 932.2 171.5 2318.8

2014 7 100.0 925 2306 666 132.1 127.0 329.4

2013 6 100.0 572 1227 469 95.3 100.0 204.5

2012 6 100.0 582 1432 466 97.0 104.5 238.7

2011 7 100.0 866 1791 664 123.7 165.0 255.9

2010 9 100.0 1192 2080 805 132.4 80.0 231.1

2009 7 100.0 8577 12660 8240 1225.3 65.0 1808.6

2008 6 100.0 5556 5831 5375 926.0 66.5 971.8

5.3.1 Application and infrastructure layers
The individuals contributing to these software artifacts
form the team of the software developers. The con-
tributions of interest manifest themselves primarily as
modifications to source code files. Over the last seven
years, 12 contributors (software developers) have con-
tributed about 27,000 times to about 9,000 software arti-
facts (Table 4), these are 28% of the 25,544 artifacts
available in 2015. Since 2008 practically all internally
developed software artifacts are managed using a Git [84]
source code repository, which receives both updates from

internal developers and from the open source community.
In fact, this covers all available source code management
data at the application and infrastructure layers. Earlier
data is not available for all components. The repository
served as the source for observing contributions and co-
development at these layers.
As an initial overview, we performed a social network

analysis of the aggregated contributions leading to a bipar-
tite graph containing contributors and artifacts (files) as
vertices (Fig. 6). The graph visualizes contributions of the
software developers of the Learn@WU team to software

Fig. 6 Contributions in the technical subsystems at the application and infrastructure layers. Vertices [1]: 12 software developers – Vertices [2]: 9,062
artifacts (mostly source code) • Edges: contribution relationship • Rating: size of vertices [1] is related to their out-degree. Edge weights are related
to contributions. • Time frame: 2008–2014 • Layout algorithm: ForceAtlas2 [86]
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Table 5 Contributors sorted by overall contributions

Contributor Contributions CWD

C1 8504 1826

C2 741 1260

C3 512 981

C4 429 877

C5 334 634

C6 198 435

C7 145 271

C8 105 242

C9 95 227

C10 62 122

C11 33 52

C12 29 103

artifacts at the application and infrastructure layers since
2008; we differentiate graphically between artifacts that
were developedmostly in-house (colored) ormostly exter-
nally (gray). The size of the contributor vertices is deter-
mined by their weighted out-degree, i.e. for a developer
by the number of modified artifacts, including modifi-
cation intensity. While in the overall contribution graph
only about a third of nodes are internal artifacts, this
number rises to over two thirds when only considering co-
artifacts. The graph shows a developer who contributed

to a large variety of in-house developed and externally
developed artifacts, according to his role in the devel-
opment team. Most of the other 11 developers focused
on in-house developed learning applications (green) or
in-house developed infrastructure components (blue). As
expected, the collaborative development has a tendency
to happen around internal co-artifacts. Table 5 shows that
the number of contributions, as well as their respective
weighted degree of collaborations, varies greatly among
the software developers in the team. While certain devel-
opers contribute to a larger number of packages, some
other developers have specialized on certain packages,
leading to lower weighted degree of collaborations.We see
on average nearly 1,000 artifacts enhanced per individual
contributor (Table 4, AD).
The evolution of contributions to software artifacts is

summarized in Table 4. Compared to the contributions
in the content repository, the number of contributions to
software artifacts is relatively stable. Within the last seven
years, the number of contributors and the median degree
of contributions of the software developers has remained
in the same order of magnitude.
The visualization in Fig. 7 shows, that the variance of

contribution spread among the software developers has
flattened over the years. It is interesting to see that the
number of contributions and affected artifacts (mostly
program files) was higher in 2008 and 2009 than in the last
two years. There was one developer in these early years,

Fig. 7 Evolution of contributions in the technical subsystems at the application and infrastructure layers. Vertices [1]: software developers – Vertices
[2]: artifacts (mostly source code) • Edges: contribution relationship • Rating: size of vertices [1] is related to their out-degree. Edge weights are
related to contributions. • Time frame: 2008–2014 • Layout algorithm: ForceAtlas2 [86]
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who affected large parts of the system practically solely.
This suggests more initial development in the earlier
years, many relatively stable artifacts. The system contains
about 14,000 program files, of which 9,062 received con-
tributions between 2008 and 2014. Only 3% to 5% of the
total number of artifacts are modified per year. Such con-
tribution patterns which affect a broad range of artifacts
with little co-development by others suggest maintenance
work (e.g. refactorings) and strongly affect the average
degree of contributions. In the subsequent years these dif-
ferences become much less significant. The last four years
of technical contributions provide a much more homoge-
neous picture with more or less even contributions from
every developer (Fig. 7, Table 4).

5.4 Collaboration on artifacts in the content repository
In accordance with the analyses of the corpora of infor-
mational and software artifacts above, we complete the
analysis by studying social artifacts arising during co-
development of the system. We focus on social networks
that can be observed when analyzing co-development
of artifacts. The evolution of the actual social co-
development structures manifest themselves as patterns
of collective collaboration among the people over time. In
order to obtain a vertically integrated view of collective
collaboration, we have studied the collaboration in accor-
dance with the identified layering scheme. Figure 8 shows
the stacked collaboration graphs of the last business year.
The “planned” organizational structures with respect to

this educational business information system have been
relatively stable over the last years. Only a small group
of software developers (currently 7; a total of 12) is in
charge of developing the technical subsystems. The uni-
versity currently employs about 20 so-called eDevelopers
and eAssistants to develop learning content based on
the instruments provided by the software developers, to
support teachers with respect to the technology, and to
interact with students in forums or wikis. Finally, teachers
and administration use the technology to communicate
and collaborate within the system. The staff of the univer-
sity totals to about 1,000 full-time equivalent employees,
the number of students is constantly in the range between
21,000 and 28,000. Practically all these people use the
system on a regular basis.

5.4.1 Information layer
At first sight the structures of collective collaboration
within Learn@WU are, to a certain degree, as one would
expect: analogous to the salient contrast between the cor-
pora of informational and software artifacts, collective
collaboration in the business subsystems is overwhelming.
The co-development space of the business stakeholders
within the information system is by orders of magni-
tude bigger than the co-development space of technical

Fig. 8 A multilayered perspective of collaboration on and within
participation-enabling packages in 2014. Vertices: collaborators
• Edges: collaboration relationships • Rating: size and color saturation
of vertices are related to weighted degree. Edge weights are related
to collaboration intensity. • Time frame: 2014 • Layout algorithm:
ForceAtlas2 [86]
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stakeholders (Fig. 9). To gain a deeper understanding of
the collaboration structures we analyze in the following
sections how the collective collaboration has developed
over the years and apply the layering scheme presented
above.
Over 37,000 individuals contributed to more than 2

million artifacts, and about 41% of these actually collab-
orated (Tables 1 and 6). In such a situation, collaboration

is unsurprisingly heterogeneous: the bipartite graph (busi-
ness subsystems in Fig. 9) shows a handful of larger groups
collaborating very strongly, but there are a wide range
of groups with comparatively low collaboration as well.
Over the last ten years, 15,000 collaborators have worked
together on nearly 130,000 co-artifacts. While the over-
all collective collaboration among business stakeholders
(co-developments of content repository items) is much

Fig. 9 Collective collaboration within Learn@WU, among business and technical stakeholders, respectively. Vertices: 15,180 collaborators in the
business subsystems, 12 collaborators in the technical subsystems • Edges: collaboration relationships • Rating: size and color saturation of vertices
are related to weighted degree. Edge weights are related to collaboration intensity. • Time frame: 2004–2014 (business subsystems), 2008–2014
(technical subsystems) • Layout algorithm: ForceAtlas2 [86]



Aram and Neumann Journal of Internet Services and Applications  (2015) 6:13 Page 18 of 30

Table 6 Collaboration on artifacts in the content repository

Period Collaborator ratio Collaborators ColRels Collaborations Co-artifacts CAD CMD CAWD CD

all 40.6 15180 140792 371048 127328 18.5 2.0 48.9 0.001

2014 41.2 7234 16566 53509 35785 4.6 1.0 14.8 0.001

2013 44.4 7346 52630 134178 34041 14.3 1.0 36.5 0.002

2012 33.1 3865 28843 75168 29270 14.9 1.0 38.9 0.004

2011 17.8 1215 13501 26097 4203 22.2 6.0 43.0 0.018

2010 9.4 664 3452 9029 2198 10.4 3.0 27.2 0.016

2009 13.3 510 3149 7381 1120 12.3 5.0 28.9 0.024

2008 9.0 313 720 1283 643 4.6 2.0 8.2 0.015

2007 2.7 126 130 10159 6467 2.1 1.0 161.3 0.017

2006 1.9 46 32 285 279 1.4 1.0 12.4 0.031

2005 3.2 34 21 44 44 1.2 1.0 2.6 0.037

2004 13.6 24 24 255 249 2.0 1.0 21.2 0.087

higher, from the perspective of an individual collabora-
tor, it is weaker than at the application and infrastructure
layers (co-developments of software artifacts): the social
network analysis reveals that collaborators typically work
with only two other persons (median degree of collabora-
tion of 2.0). The graph in Fig. 9 visualizes the aggregate
collective collaboration data of the business subsystems,
and is therefore by orders of magnitude sparser (CD
of 0.001) than the corresponding graph of the technical
subsystems.
In the business subsystems, on the contrary, we have 300

times as many collaborators in 2014 compared to 2004.
Collaborations and co-artifacts have risen by two orders of
magnitude within the same time frame. However, from the
perspective of each individual collaborator, the intensity
of collaboration does not; as the social network analy-
sis reveals, the degree-based measures have remained in
the same order of magnitude since 2008, and have even
decreased steadily since 2011. This is reflected in Fig. 10,
where we see a much more homogeneous structure with
respect to co-development in 2014, compared to the years
before.
Many clearly recognizable co-development clusters of

business stakeholders faded in 2014 towards a more uni-
form picture. This suggests performing a deeper causal
investigation, but is outside the scope of this descriptive
study. Nevertheless, the number of collaborators among
actual contributors (collaborator ratio) shows a clear ten-
dency to increase: while during the first seven years
it was (often markedly) below 15%, during the recent
three years over a third of contributors have collabo-
rated. Hence, despite stagnating figures regarding group
size, we can say that the overall collective collaboration
within the information system, due to the evolution in
the business subsystems (Fig. 10 at the top), is practically
“exploding.”

5.4.2 Collaboration at participation-enabling (schema)
layers

In contrast to the evolution of contributions at the two
schema layers (Section 5.2.2), the evolution of the col-
laboration structures at these intermediate layers shows
broader variance.

Content schema layer. At the content schema layer 88
individuals (mostly business domain experts) have col-
laborated about 800 times on 80 content schemata since
2009; this is summarized in Table 7. There is no collabora-
tion before 2009, only after adoption of business domain
experts people started to collaborate. In the two years
with very low collaboration (2009 and 2013), one software
developer collaborated with business domain experts on
content schemata, most likely in the course of technical
support. In 2011, there were four software developers and
three business domain experts involved in the collabo-
rative work on content schemata. In 2012 five software
developers and nine business domain experts populate
this layer.
At this layer, the number of collaborators varies greatly

from year to year, which suggests occasional project-based
co-development of schemata for learning content. The
application of social network analysis techniques, and
particularly the visualization (see Fig. 8), underpins this
assumption by clearly showing a large tight cluster of
strongly collaborating individuals, surrounded by three
smaller teams and three pairs.

Workflow schema layer. At the workflow schema layer
(Table 8), which came into being in 2010, we see 43
collaborations from 13 collaborators (domain experts)
on 23 workflow schemata. As there were only software
developers contributing to this layer in 2010, collabo-
ration happened only among software developers, too.
The sole contributor from the business subsystems (see
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Fig. 10 Evolution of collaboration in Learn@WU, among business and technical stakeholders, respectively. The figure aggregates unipartite
graphs that show the collaboration relations (edges) between collaborating stakeholders (vertices) in the Learn@WU system. Size and color of
both vertices and edges relate to weighted degree/weight within each graph. Layout algorithms: ForceAtlas2 [86] (business subsystems) and
Fruchterman-Reingold [87] (technical subsystems)
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Table 7 Collaboration at the content schema layer

Period Collaborator ratio Collaborators ColRels Collaborations Co-artifacts CAD CMD CAWD CD

all 42.3 88 476 817 80 10.8 7.5 18.6 0.124

2014 47.5 38 152 422 21 8.0 5.0 22.2 0.216

2013 8.3 3 2 3 3 1.3 1.0 2.0 0.667

2012 40.0 14 22 58 32 3.1 2.0 8.3 0.242

2011 24.1 7 10 19 11 2.9 3.0 5.4 0.476

2010 59.7 37 285 286 9 15.4 23.0 15.5 0.428

2009 8.1 3 3 3 1 2.0 2.0 2.0 1.000

Section 5.2.2) in 2011 collaborated with three software
developers. In the subsequent business years, each year
a varying number of software developers supported two
(changing) business domain experts in creating workflow
schemata.
As Fig. 11 visualizes, collaborations at both schema

layers peak in 2014, but there is no clear upward
trend in the years before. Collaborations have contin-
uously increased, as Fig. 11 shows, but the number of
collaborators remained relatively low. As the number
of contributors has steadily increased, the collaborator
ratio has dropped from 100.0% in 2010 to 4.9% in
2014.
This thorough investigation of the co-development

structures clearly shows the “bridging” characteristics of
these intermediate participation-enabling layers, which
facilitate co-development of executable specifications
across subsystems.
Finally, it should be noted that both collaborators

and collaborations within participation-enabling packages
(e.g. wiki page co-edits; yellow bars in Fig. 11) rapidly
caught up with the overall collaboration numbers (white
bars in Fig. 11). The very same pattern appears with
respect to the evolution of contributors and contribu-
tions (Fig. 5). This means, that the users’ participation
in co-development of the information system succes-
sively shifts toward the participation-enabling packages.
Although this is a result of deliberate co-development
enabling measures, it should not be taken for granted.

5.5 Collaboration on software artifacts
5.5.1 Application and infrastructure layers
An initial analysis of collaboration on software artifacts
shows that the collaboration among software developers is
very strong (at the bottom of Fig. 9). Every technical con-
tributor to the system is actually a collaborator. Although
the aggregate collaboration graph is not complete (CD of
0.894), each developer on average collaborated with 9.8
other developers.
Over the years, this amounts to 3,500 collaborations

on more than 1,000 co-artifacts. By ranking the develop-
ers according to their weighted degree of collaborations,
i.e. incorporating the amount of different co-artifacts they
have collaborated on, a dominant collaborator can still
be identified. Nevertheless, overall the application and
infrastructure layers provide a relatively homogeneous
picture of collaboration structures; the graph is close to
a complete mesh. With respect to betweenness centrality,
closeness centrality and eccentricity (centrality correlates
with an actor’s coordinative influence [89]), the six most
actively collaborating developers share the same values,
whereas developers engaged for a short time have a sub-
stantially lower degree.
Over the years, the numbers of collaborators, collabora-

tion relationships and co-artifacts vary, but have the same
order of magnitude (Table 9). Practically all developers
collaborated constantly with each other (with the excep-
tion of 2011, when some personnel fluctuation occurred).
The number of co-artifacts is rather decreasing, which

Table 8 Collaboration at the workflow schema layer

Period Collaborator ratio Collaborators ColRels Collaborations Co-artifacts CAD CMD CAWD CD

all 11.5 13 23 43 23 3.5 4.0 6.6 0.295

2014 4.9 4 4 10 8 2.0 2.0 5.0 0.667

2013 7.1 3 3 10 6 2.0 2.0 6.7 1.000

2012 24.0 6 6 7 5 2.0 2.0 2.3 0.400

2011 57.1 4 6 8 3 3.0 3.0 4.0 1.000

2010 100.0 4 2 3 3 1.0 1.0 1.5 0.333
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Fig. 11 Evolution of collaborations at participation-enabling layers. x-axes: business years • y-axes: logarithmic scale of collaborators/collaborations

might be a consequence of a progressing specialization of
the stable number of developers.

5.6 Contributions and co-development analysis across
layers

Finally we look at the differences between the layers with
respect to the contribution and collaboration structures.
In the global perspective, we could contrast the collab-
oration from the informational and executable artifacts
from the content repository with those from the source-
code repository. Looking at all artifacts is not very useful
since not all data is technically suited for collaborations.
So we concentrate here on the informational layer of the
participation-enabling packages (Table 10 and Table 11),
on the content schema layer (Table 2), the workflow
schema layer (Table 3) and the application and infrastruc-
ture layers (Table 12 and Table 4). For the analysis we
choose only the last business year (namely 2014), since
the participation-enabling “middle” layers developed over
time as explained earlier. This vertical, multilayered view,

which recognizes a coalescence of informational and exe-
cutable artifacts, is also depicted in Fig. 12 for the business
year 2014.
When we compare the number of contributions per

modified artifact (at the top of Fig. 13), we see that
this value at the informational layer of 2.9 is higher
than at the content schema and workflow schema layer.
However, the values for the program artifacts are much
higher. This means that the artifacts are much more
frequently changed at the application and infrastructure
layers. Similarly, contributors tend to modify more arti-
facts at the application and infrastructure layers, and the
least at the content schema layer. The latter seems to come
from the nature of the content schemata since these are
rather small items which are relative stable. When we
compare collaboration across these layers (at the bottom
of Fig. 13), we see that in this year the collaboration per co-
artifact was actually very high, while the co-artifacts per
collaborator show a similar pattern as on the contribution
side. These findings demonstrate that the high number of

Table 9 Collaboration at the application and infrastructure layers

Period Collaborator ratio Collaborators ColRels Collaborations Co-artifacts CAD CMD CAWD CD

all 100.0 12 59 3515 1272 9.8 10.5 585.8 0.894

2014 100.0 7 21 494 131 6.0 6.0 141.1 1.000

2013 100.0 6 15 135 82 5.0 5.0 45.0 1.000

2012 100.0 6 12 147 91 4.0 4.0 49.0 0.800

2011 85.7 6 15 268 149 5.0 5.0 89.3 1.000

2010 100.0 9 32 548 262 7.1 7.0 121.8 0.889

2009 100.0 7 14 379 300 4.0 4.0 108.3 0.667

2008 100.0 6 13 194 170 4.3 4.5 64.7 0.867
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Table 10 Contributions within participation-enabling packages in the content repository

Period Contributors Contributor ratios ConRels Contributions Artifacts AD MD AWD

all 27315 31.0 670478 2071444 608811 24.5 12.0 75.8

2014 16421 65.5 319962 878918 302856 19.5 12.0 53.5

2013 15356 59.2 247097 629765 227836 16.1 9.0 41.0

2012 8834 31.2 47141 229579 35703 5.3 2.0 26.0

2011 3062 10.1 23805 141265 18186 7.8 1.0 46.1

2010 3465 11.7 11738 107960 8905 3.4 1.0 31.2

2009 443 1.7 5390 17154 3682 12.2 2.0 38.7

2008 311 1.2 2860 8773 2458 9.2 2.0 28.2

2007 85 0.3 644 2078 579 7.6 2.0 24.4

2006 1 0.0 1 3 1 1.0 1.0 3.0

contributions is much more due to the high number of
enabled individuals rather than due to single individuals
contributing very frequently.
As both the individuals and artifacts are placed in the

graphs in Fig. 12, the area appears mostly grey. The contri-
butions aremostly homogeneous, there is no overall struc-
ture visible. About a dozen power users (black craters)
have contributed to a significantly higher number of arti-
facts. On the participation-enabling “intermediate” layers,
one can see clearly that overall most contributors con-
tribute to their “own” artifacts, while on the application
and infrastructure layers, there are many artifacts which
are effectively shared between the contributors.
The nodes in the social network graphs of Fig. 8 are

collaborators. The information layer shows a dominant
group of individuals collaborating strongly, followed by
about 20 to 30 smaller teams with strong collabora-
tion. A possible interpretation would be that the picture
shows members of institutes working on shared learning
resources. Here, the majority of individuals collaborate in
small groups, many of them completely isolated (at the
periphery). The graphics of the content schema and work-
flow schema layers show much stronger collaboration.

The narrow view on the collaboration of software devel-
opers on participation-enabling packages (see Table 13
and the bottom of Fig. 8) still shows an aggregate collabo-
ration graph of similarly high density (CD of 0.844), each
developer on average collaborated with 7.6 other devel-
opers on these components. Over the years, this amounts
to about 800 collaborations on about 200 co-artifacts in
participation enabling packages at the application and
infrastructure layers.
To sum up, the thorough investigation shows that indi-

viduals from the technical subsystems are active across
all layers, and that business domain experts successively
take over layers downward the stack: At the application
and infrastructure layers, unsurprisingly, all contributions
come from software developers. These software develop-
ers also contribute at the information layer, but because
of the overwhelming numbers of users in the business
subsystems, who predominantly contribute to this layer,
this fact is practically negligible. The content schema
and workflow schema layers were dominated by software
developers in the early years, but this has changed in
the course of time. While the software developers remain
active at these “intermediate” layers – in order to support

Table 11 Collaboration on artifacts of participation-enabling packages in the content repository

Period Collaborator ratio Collaborators ColRels Collaborations Co-artifacts CAD CMD CAWD CD

all 53.0 14481 137057 257491 43271 18.9 2.0 35.6 0.001

2014 42.3 6939 15497 27073 15046 4.5 1.0 7.8 0.001

2013 46.6 7163 51759 111442 14897 14.5 1.0 31.1 0.002

2012 40.3 3563 27588 44842 7023 15.5 1.0 25.2 0.004

2011 33.7 1033 13319 24265 2646 25.8 12.0 47.0 0.025

2010 13.9 482 3271 8155 1383 13.6 7.0 33.8 0.028

2009 77.7 344 3011 6750 511 17.5 12.0 39.2 0.051

2008 55.6 173 609 880 266 7.0 4.0 10.2 0.041

2007 41.2 35 55 92 45 3.1 3.0 5.3 0.092
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Table 12 Contributions to participation-enabling packages at the application and infrastructure layers

Period Contributors Contributor ratios ConRels Contributions Artifacts AD MD AWD

all 10 83.3 925 4570 463 92.5 77.0 457.0

2014 7 100.0 360 1347 193 51.4 52.0 192.4

2013 5 83.3 182 530 140 36.4 36.0 106.0

2012 6 100.0 149 534 104 24.8 25.5 89.0

2011 7 100.0 165 398 108 23.6 25.0 56.9

2010 7 77.8 196 533 114 28.0 17.0 76.1

2009 2 28.6 167 654 118 83.5 83.5 327.0

2008 3 50.0 182 221 116 60.7 68.0 73.7

the business domain experts, as the respective collabora-
tion analysis (see Section 5.4.2) has revealed – in 2014 the
majority of contributors at both participation-enabling
layers are business domain experts.

6 Related work
Research efforts that aimed at understanding co-
development often had a singular perspective: they con-
sidered either the technical subsystems of the business
information system (e.g. analyzing source code reposito-
ries and issue trackers) or the business subsystems (e.g.
investigating wiki co-authorship).
A range of research efforts puts an emphasis on the

technical subsystems (which also comprises informational
and social artifacts, but emphasizes the technological
ones): for example, de Souza et al. [50] developed a soft-
ware tool that integrates a visualization of social depen-
dencies among developers directly into the programming
environment, by analyzing dependencies among software
artifacts. Sarma et al. [90] present a tool for exploring
a software project through an analysis of data from its
source code management system, bug tracker, and mail-
ing list archives. Schwind et al. [91] extended a tool
for network analysis of source code bases in order to
measure the quality of a software developer’s work. Kuk
and Stevens [92] researched the impact of large corpo-
rate interests onto the democratized open source soft-
ware development process. Teixeira and Lin [93] stud-
ied the collaboration on open source artifacts between
large, competing enterprises. Madey et al. [94] analyzed
developer collaboration networks in open source soft-
ware projects. Their study represents an investigation
of collective collaboration among technical stakeholders,
which – solely based on joint project memberships –
applies a very broad requirement for establishing collab-
oration relationships. Lungu [95] presents an approach
to reverse engineering of ecosystems of software repos-
itories, that touches on collaboration among developers.
Hong et al. [96] investigated the evolution of large social
networks of open source software developers. An example
for an investigation of the evolution of a technological

artifact during its co-development is provided by Pan
et al. [97], who study the evolution of object-oriented
software using complex network theory. Because of their
much narrower focus these studies provide a relatively
“deep” investigation of their respective aspects within the
technical subsystems. In contrast, we aim at a more holis-
tic view of co-development within an organization as a
whole.
Similarly, there are studies which focus primarily on co-

development of the business subsystems (which empha-
sizes informational artifacts but comprises social and
technical artifacts as well). For example, Laniado et al. [98]
investigated informational artifacts by studying the social
and conversational structures underlying the discussions
related to Wikipedia articles. An analysis of the seman-
tic structures withinWikipedia’s informational corpus, on
the other hand, was conducted by Holloway et al. [99].
Laniado and Tasso [49] study collaboration pat-

terns among co-authors within the English Wikipedia
community.
Approaches for visualizing co-authorship networks

include, for example, three-dimensional graph forms
[100]. Kane and Alavi [51] model users and technology
as a bipartite social network: they argue that while com-
munication support systems may be visualized as edges,
information management technology may be modeled as
vertices.
There are studies with a more integrative perspec-

tive, too. For studying collaboration in the context of
requirements engineering, Damian et al. [101] consid-
ered stakeholders from both the technical and the busi-
ness subsystems and identified different types of networks
(based on co-artifacts, communication, awareness, and
coordinative assignment). Hence, they apply a much nar-
rower focus on collaborative development of a specific
type of informational artifacts (requirements). Frank [102]
suggests a multileveled paradigm for information sys-
tems design from a meta-modeling perspective. Recently,
Aram and Neumann [46] propose the vertical integration
of DSLs by linking multiple stakeholder perspectives via
collective concept modeling.
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Fig. 12 A multilayered perspective of contributions to
participation-enabling packages at the application and infrastructure
layers, to executable specifications (content schemata and workflow
schemata) at the participation-enabling layers, and to informational
artifacts instantiated from artifacts at these lower layers (information
layer). Vertices[1]: contributors – Vertices[2]: artifacts • Edges:
contribution relationship • Rating: size of vertices[1] is related to their
out-degree. Edge weights are related to contributions. • Time frame:
2014 • Layout algorithm: ForceAtlas2 [86]

To our best knowledge, an instrument that aims at
a more detailled understanding of the participation of
stakeholders in the evolutionary co-development of busi-
ness information systems was missing.

7 Discussion
The main stimulus for the development of the presented
approach was to develop an instrument for studying
(the shift) of co-development across multiple layers of
information systems. The developed approach can help
researchers and practitioners in characterizing partic-
ular real-world information systems in terms of their
respective co-development structures. In general, social
network analysis provides an appropriate means for mea-
suring the direct participation of business stakeholders
in terms of contributions to, and co-development of,
artifacts.
We have already mentioned that fostering collaboration

cannot be a dogma [56], and the same is true for col-
lective contributions. Nevertheless, the open-source and
Web 2.0 movements suggest that knowledge sharing of
large numbers of participants can lead to high quality
information and software artifacts. Therefore, the insights
gained from the study must be assessed in the light of the
underlying goal of the Learn@WU system of empowering
business stakeholders to participate directly in the system
development.
A supremacy of the business subsystems can be

expected for most (successfully adopted) business infor-
mation systems. However, visualizing the dominance of
business stakeholders in terms of their share of contribu-
tions to the overall system (by contrasting contribution
figures in Tables 1 and 4), and their share in its collective
collaboration structure (Fig. 9), reinforces the arguments
urged by proponents of the idea of end-user develop-
ment [72]. Technological approaches such as DSLs [103],
more natural environments for programming [104], or
enterprise wiki systems [35] target at the coalescence of
the technical and the business subsystems. Therefore,
instead of treating these seemingly detached broader sub-
systems – which are dominated by technological artifacts
and informational artifacts, respectively – as separate phe-
nomena, we have integrated them into a common picture
(see Figs. 8 and 12), and have taken a close look at the
layers in between.
By looking at the evolution of participation (contribu-

tions and collaborations) year by year one can see how
the co-development has changed over the years. Accord-
ing to the contribution figures (Table 1), during the last
seven years the numbers of contributions, artifacts, and
collaborators per year have been constantly growing. The
collaboration figures (Table 6) show that the number of
collaborators has also increased significantly. The collab-
oration ratio of over 40% means that nearly half of the
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Fig. 13 Contributions and co-development of participation-enabling packages (PEP) across layers

contributors have actually collaborated over the platform.
Overall, the system achieves growing participation, which
suggests a high perceived usefulness for the users. The
rather constant number of technical contributions in the
technical subsystems and the strongly increasing number
of the contributor ratio and collaborator ratio by business
stakeholders can be regarded as a trend. A more or less
stable evolution in the technical subsystems opposes co-
development patterns that constantly require refactoring
in the business subsystems.

We see growing numbers of contributors across these
layers (illustrated in Fig. 12): compared to the applica-
tion layer, there were about 10 times as many contributors
active at the participation-enabling layers, and about 2,000
times as many at the information layer. At the workflow
schema layer, we see growing numbers of contributors,
artifacts and contributions over the years (Fig. 5, Table 3).
One can see that part of the system development is
already shifting from the software developers up to busi-
ness domain experts. The analysis of the contributions

Table 13 Collaboration on participation-enabling packages at the application and infrastructure layers

Period Collaborator ratio Collaborators ColRels Collaborations Co-artifacts CAD CMD CAWD CD

all 100.0 10 38 879 236 7.6 8.0 175.8 0.844

2014 100.0 7 21 366 66 6.0 6.0 104.6 1.000

2013 100.0 5 9 51 35 3.6 4.0 20.4 0.900

2012 100.0 6 8 55 35 2.7 3.0 18.3 0.533

2011 85.7 6 12 81 39 4.0 4.0 27.0 0.800

2010 100.0 7 15 111 56 4.3 5.0 31.7 0.714

2009 100.0 2 1 49 49 1.0 1.0 49.0 1.000

2008 66.7 2 1 66 66 1.0 1.0 66.0 1.000
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and collaborations shows that the system succeeded to
enable business experts to effectively contribute to the sys-
tem. The degree of co-development in the overall system
increased significantly over the years.
The social network analysis shows, that in contrast to

the contribution figures, the collaboration in terms of
group size (degree metrics) tends to decrease bottom
up across layers; the collaboration at the participation-
enabling layers shows a tendency towards small groups
of collaborators (Tables 7 and 8), but the median degree
of collaborations still tends to be larger than in the over-
all business subsystems. However, overall the work on
executable specifications, and in particular on workflow
schemata, are currently more the product of individual
work than that of team efforts. This should not bemiscon-
strued as an undesirable evolution, as, for example, Bird
et al. [52] showed that lower levels of artifact ownership
(more contributors) can correlate with diminished quality.

Limitations and research directions. There are several
more or less obvious limitations of our study, which point
directions for future research.
In our application study, we employ a technological

approach, where we only captured direct contributions to
digital artifacts. Any information flow within the system
that is not (yet) mediated by software technology remains
concealed. This is not a methodological limitation, since
a more complete investigation of the system based on
qualitative studies about the more strategic organizational
layers could be conducted. Furthermore, measuring direct
contributions can bias authorship, e.g. when somebody
commits a patch by someone else. However, since we are
not interested in measuring individual contributions but
contributions by groups of similar stakeholders, this kind
of limitation is of less importance.
Secondly, our main contribution is an approach to sys-

tematic investigation of the co-development of informa-
tion systems. Further applications of our approach may,
of course, delve deeper in many aspects. One could con-
sider to differentiate the stakeholders in the business
subsystems according to their respective roles (stu-
dents/teachers/staff ). Similarly, a comparison of the orga-
nizational chart (the “planned structures”) with the actual
collaboration structures [105] would provide deeper
insights with respect to the observed phenomena. Tax-
onomies could be applied to the corpus of artifacts, in
order to identify individual, semantically linked instances
across layers (e.g. for connecting a natural language learn-
ing instruction (information layer), to its template (con-
tent schema layer), its learning script [31] (workflow
schema layer), and its application layer component). Sim-
ilarly, we have not assessed the semantics and quality
attributes of contributions. We have not considered prop-
erties such as the correctness, size, longevity, or impact

of contributions. Burnett [106] reflects on software qual-
ity issues in the context of end-user software engineer-
ing. The concepts behind change bursts [107], which
allow to predict defects based on sequences of contri-
butions, might be applicable to artifacts across layers.
Concepts such as code ownership [52], and intellectual
authorship in general could be incorporated. Also, a more
fine-grained investigation with respect to the collabo-
ration structures would allow to differentiate e.g. more
intense forms of co-development, such as coordinated
collaboration.
In larger organizations with a detailed separation

of labor reflected in the organization structure, the
metaphor of social networks appears well-suited for anal-
ysis. Similarly, it is well-suited for studying the contribu-
tions and collaboration structures of such organizations.
Instruments for conducting analyses of such networks
provide indispensable means for both research and prac-
tice. The field of software engineering can benefit from
these influences particularly in the areas of collaborative
large-scale software development, and end-user develop-
ment [108]. In the context of studies such as the one
presented in this paper, social network analysis helps to
characterize the participation structures at the different
layers and to contrast these with the other layers. For
example, the different value ranges of the layers with
respect to the degree-based metrics distinctly charac-
terize the social networks at these layers (e.g., compare
Tables 1, 2 and 4). Particularly when supported by visual-
izations, these analysis techniques also help in identifying
communities with strong actual co-development behavior
(see e.g. the easily distinguishable collaboration clusters
within the business subsystems in Fig. 9). However, the
interpretation of these graphs (how certain clusters relate
to projects or groups) requires domain and organiza-
tional knowledge. In this sense the resulting graphs cannot
provide a full picture of the contribution and collabo-
ration structures, but provide rather a means to detect
structures in highly complex graphs that possibly require
deeper investigations of the observed phenomena. Further
investigations could focus on detecting [109] and qualita-
tively analyzing [110] these communities in the network.
Such insights can be used to trigger further participation-
enabling measures, e.g. the development of task-specific
languages for these groups.
While we could show that we could apply social net-

work analysis to study collaboration structures in fairly
large information systems (analyzing millions of arti-
facts and contributions by ten-thousands of contribu-
tors), it became evident that a single-layer analysis hides
a lot of interesting details. The vast amount of contri-
butions at the informational layer dominates all kinds
of visualizations. The application of the multi-layered
approach helped us to understand how the contribution
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and collaboration structures developed, thus providing
insights on a more general level.
A successful application of the approach, i.e. to conduct

a study such as the one presented in this paper, depends
on certain circumstances and properties of the system.
In our case we could exploit a code and content reposi-
tory for mining contributions to up to 10 years. For the
analysis of other business information systems, obtain-
ing contribution data might be prohibitive expensive.
Hence, for successfully investigating the continuous co-
development structures within a business information
system, those responsible should strive for the follow-
ing idealistic situation: actual and potential contributors
should be uniquely identifiable across subsystems and
layers, e.g. via an organization-wide centralized identity
management and authentication. Artifacts across layers
should be managed technically as coherently as possible,
ideally within an overarching system-wide object sys-
tem. All contributions to artifacts should be manifested
and traceable, e.g. in the form of object revisions. Ide-
ally, artifacts and contributions would be enriched with
semantic metadata. A system-wide log of deliberate co-
development-enabling measures should be maintained.

8 Conclusion
In this paper, we have presented a novel approach that
facilitates the attainment of a comprehensive overview of
co-development patterns within existing, situated infor-
mation systems. The approach incorporates a multi-
layered perspective that explicitly recognizes the co-
development of the system by business domain experts.
We have demonstrated the utility of our approach in the
context of a real-world educational business information
system. The case study revealed a strong and growing
dominance of business domain experts and end users in
terms of their share in the co-development of the overall
system over the years. This increasing direct participation
suggests both a high perceived usefulness of the system
and a successful step-wise provisioning of participation-
enabling end-user applications. The application of the
multi-layered approach and the identification and analysis
of the participation-enabling layers facilitated the under-
standing of the co-development structures within the sys-
tem. We believe that the presented approach can help to
support both researchers and practitioners in revealing
existing structures of co-development within an informa-
tion system and in evaluating the impact of measures
taken to foster co-development.
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