

© 2010 AT&T Intellectual Property

AT&T Developer Program

Getting Started with Web Applications

Development Brief

Revision 1.5
Revision Date 03/16/2010

Legal Disclaimer

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 ii

This document and the information contained herein (collectively, the "Information") is provided to you (both the individual receiving
this document and any legal entity on behalf of which such individual is acting) ("You" and "Your") by AT&T, on behalf of itself and
its affiliates ("AT&T") for informational purposes only. AT&T is providing the Information to You because AT&T believes the
Information may be useful to You. The Information is provided to You solely on the basis that You will be responsible for making
Your own assessments of the Information and are advised to verify all representations, statements and information before using or
relying upon any of the Information. Although AT&T has exercised reasonable care in providing the Information to You, AT&T does
not warrant the accuracy of the Information and is not responsible for any damages arising from Your use of or reliance upon the
Information. You further understand and agree that AT&T in no way represents, and You in no way rely on a belief, that AT&T is
providing the Information in accordance with any standard or service (routine, customary or otherwise) related to the consulting,
services, hardware or software industries.

AT&T DOES NOT WARRANT THAT THE INFORMATION IS ERROR-FREE. AT&T IS PROVIDING THE INFORMATION TO YOU
"AS IS" AND "WITH ALL FAULTS." AT&T DOES NOT WARRANT, BY VIRTUE OF THIS DOCUMENT, OR BY ANY COURSE OF
PERFORMANCE, COURSE OF DEALING, USAGE OF TRADE OR ANY COLLATERAL DOCUMENT HEREUNDER OR
OTHERWISE, AND HEREBY EXPRESSLY DISCLAIMS, ANY REPRESENTATION OR WARRANTY OF ANY KIND WITH
RESPECT TO THE INFORMATION, INCLUDING, WITHOUT LIMITATION, ANY REPRESENTATION OR WARRANTY OF
DESIGN, PERFORMANCE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, OR
ANY REPRESENTATION OR WARRANTY THAT THE INFORMATION IS APPLICABLE TO OR INTEROPERABLE WITH ANY
SYSTEM, DATA, HARDWARE OR SOFTWARE OF ANY KIND. AT&T DISCLAIMS AND IN NO EVENT SHALL BE LIABLE FOR
ANY LOSSES OR DAMAGES OF ANY KIND, WHETHER DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, PUNITIVE,
SPECIAL OR EXEMPLARY, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, LOSS OF GOODWILL, COVER, TORTIOUS CONDUCT OR OTHER
PECUNIARY LOSS, ARISING OUT OF OR IN ANY WAY RELATED TO THE PROVISION, NON-PROVISION, USE OR NON-USE
OF THE INFORMATION, EVEN IF AT&T HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSSES OR DAMAGES.

Revision History

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 iii

© 2010 AT&T Intellectual Property
All rights reserved.

AT&T and the AT&T logo are trademarks of AT&T Intellectual Property and/or AT&T affiliated companies.

All marks, trademarks, and product names used in this document are the property of their respective owners.

Date Revision Description

02/26/10 1.0 Original

03/16-10 1.5 Copyedit

Table of Contents

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 iv

1. Introduction ... 1
1.1 Audience ... 1
1.2 Contact Information .. 1
1.3 Resources ... 1

2. What are Web applications? ... 3

3. Why should I develop Web applications? ... 5

4. What do I need to know to develop Web Applications? ... 8
4.1 Webapps are Applications .. 9
4.2 JavaScript Frameworks .. 9
4.3 Multi-platform Design .. 9

4.3.1 Know What to Expect .. 11
4.3.2 The Widget Alternative .. 11

4.4 Thinking Asynchronously .. 12
4.5 Working with Web Application Servers ... 13

4.5.1 Web Application Server API and Data Handling ... 14
4.5.2 Efficient Use of Device and Network Resources ... 15

4.6 Working with XML and HTML Documents .. 15
4.7 Data Storage ... 16

4.7.1 Persistent Data Features Available Today .. 16
4.7.2 Effective Use of Persistent Storage ... 17

4.8 Security ... 18
4.9 Advanced Features ... 18

4.9.1 HTML5 APIs ... 19
4.9.2 OMTP BONDI .. 19

4.10 Development and Testing Tools ... 20

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 1

1. Introduction
This development brief considers how Web applications can be used on mobile
phones today and discusses some limitations and opportunities for using content
from Web application servers as well as recommendations for effective
development of mobile Web applications.

1.1 Audience
This document is intended for freshman developers of mobile content.
Experienced AT&T Content Providers may also find this paper to be a handy
reference for basic mobile Web application best practices.

Do not forward or share this document without prior authorization from AT&T.

1.2 Contact Information
E-mail any comments or questions regarding this document to
developer.program@att.com. Please reference the title of this document in your
e-mail.

1.3 Resources
The official AT&T Developer Program Web site offers tools and resources to help
you develop great mobile applications. Highlights of the AT&T Developer
Program Web site include:

 Documents and specifications. Download style guides, code samples, white
papers, and other resources.

 Go to market. The AT&T Developer Program shows you how to take your
consumer application from concept to successful product in five clear steps.

 Platform and operating system support. Get the tools and information you
need to port your application to any phone platform or operating system.

 Browse and download application information. Learn what you need to
know to make the most of browse and download technologies.

 Security. Get the latest on AT&T security policies to keep you and your
customers safe.

 Other resources. The AT&T Developer Program maintains and updates links
to device manufacturers, mobile industry resources, and other useful Web
sites for the wireless developer community.

mailto:developer.program@att.com�
http://developer.att.com/�
http://developer.att.com/�
http://developer.att.com/�
http://developer.att.com/�
http://developer.att.com/�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 2

All Content Providers for AT&T are required to join the AT&T Developer
Program. Participation in the program facilitates communication between AT&T
technical teams and the Content Providers. For additional information, go to the
AT&T Developer Program.

http://developer.att.com/�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 3

2. What are Web applications?
Web applications ("webapps") are just applications designed using Web
technologies; e.g., HTML, CSS (Cascading Style Sheets), JavaScript, and the
DOM (Document Object Model). That sounds pretty simple, because it is.

But since these Web technologies are used in many Web-based services, even
in simple Web pages, webapps include some distinguishing characteristics.

• Webapps are based around HTML documents, which provide a
presentation framework that is dynamically updated by JavaScript.

• Webapps use the development technique called “Ajax” for programmed
interaction between client and server, via server application programming
interfaces (APIs).

• Webapps process data for presentation or application-internal use.
• Webapps use a range of advanced client-side Web runtime features; e.g.,

persistent storage and client APIs for device features.
• Webapps use any of the above in ways that are automated; thus they do

not require user input or control for ongoing execution of the application.

Also, to help distinguish webapps from “native” applications, the following
distinctions can be made. Native applications are those developed using
technologies for a specific mobile device, e.g. a programming language and
development environment which results in a compiled application that is
downloaded and installed on a mobile device. Webapps, in contrast, are
developed using Web technologies; e.g., the semantic (processable) languages
defined by the Worldwide Web Consortium (W3C). Native applications may use
Web technologies (e.g., XML and other languages) to interact with application
servers, but the native application executes directly within the runtime
environment of the device and is responsible for all application support functions
not provided by the device operating system. In contrast, webapps execute as
interpreted applications within a Web runtime environment (browser or widget
engine), and they benefit from the built-in application support provided by those
Web-focused application environments. Webapps are thus enabled by the Web
runtime environment they execute within, and this provides a key aspect of the
advantage of developing Web applications.

Webapps typically have both client and server components. This paper focuses
on the client side; i.e., webapps developed for use on mobile devices. As the
server side of webapps is also a key area for developers to understand, its
influences upon the choices in client side webapp design are described here, so
developers can better appreciate the relationship between webapp clients and

http://www.w3.org/Style/CSS/�
http://www.w3.org/DOM/�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 4

servers. Details of Web server technologies and application design will be
addressed in future AT&T Developer Program briefs.

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 5

3. Why should I develop Web applications?
Webapps represent a convergence of the features of native applications and
Web sites. Webapps won’t replace native applications or Web browsing, but they
can bring together the best characteristics of these environments and thereby
provide a new, and, in many ways, simpler environment in which developers can
access a broader array of content and APIs and target their applications for a
broader set of devices.

While they should not be expected to be the best choice for every type of
application, for both the native application developer and the Web site developer,
webapps provide some distinct advantages:

• For native application developers, the advantages include:
o Reach more devices: Webapps minimize dependencies upon

specific devices/platforms, so developers can reach many more
devices and avoid dependency upon a specific application store.

o Easier development: The high-level application programming
environment provided by JavaScript, and the presentation
framework provided by HTML, CSS, and the DOM, enables
developers to focus on application logic rather than detailed user
interface programming and window/screen management.

o Simplified APIs: As compared to native platform APIs and custom
client/server protocols, the APIs provided to Web applications tend
to be simpler, and thus easier to integrate into applications.

• For Web site developers, the advantages include:
o Simpler user experience: As compared to Web sites that require

user action for each change in the presented data, webapps offer
users applications that can automatically update. This is especially
important in mobile applications due to the typical user input
limitations of mobile devices.

o Specialized applications: Webapps offer users much more than
static presentation of content, and this enables dynamic and
interactive applications that can be targeted to fulfill specific
purposes and provide specific user experiences.

o Access to device APIs: Webapps can access device data and
native applications outside the browser sandbox, which enables
client-side mashup applications and, overall, a much more
integrated and personalized user experience.

Webapp design tools are well known, easy to use, and freely available from
various open-source communities and vendors. Thus, getting started with Web

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 6

application development is easy and inexpensive. Some examples of freely
available Web application design tools include:

• Eclipse
• NetBeans
• Aptana Studio
• Major browser vendors commonly provide JavaScript design/debug tools

as part of their products, e.g. Firebug for use with Firefox
• For those who like to go simple and use just a plain text editor, JSLint

provides a JavaScript syntax checker

There are also active Web sites providing helpful information for the webapp
developer. These sites can help you avoid interoperability issues and decrease
the time between your initial idea and deployment of a working webapp. Some
examples of webapp developer sites include:

• W3 Schools
• JavaScript Kit

With well-chosen techniques and use of available developer resources,
development of sophisticated, first-class applications (i.e., desktop/native
comparable) is possible. With HTML5, Web technologies are advancing toward
support of first-class client applications that can run on almost any device. With
HTML5 support, Web applications will support many of the key features users
have come to expect from desktop applications, e.g. document editing. HTML5
will also provide a much more functional Web runtime environment for
applications, including various application programming interfaces (APIs) for
client-side application support and networking. Although it may be a while before
full HTML5 support exists in most mobile browsers, there is already support for
some key features and APIs in the most advanced browsers, e.g. in
smartphones.

There is a rich and continually expanding “programmable Web” environment of
Web service APIs and client APIs. Programmability evolves the Web beyond the
set of static Web pages that typified the Web’s first decade. Client and server
APIs enable distributed Web applications that can leverage network-based
services and client data outside the browser “sandbox.” The rapid expansion and
evolution of server APIs and Web application frameworks is illustrated by sites
such as Programmable Web and Wikipedia’s “Comparison of web application
frameworks.” Through these Web service APIs and frameworks, very
sophisticated webapps can be developed that utilize client-server and server-
server interaction to integrate diverse content sources and services.

http://www.eclipse.org/�
http://www.aptana.org/�
http://getfirebug.com/�
http://www.jslint.com/lint.html�
http://www.w3schools.com/�
http://www.javascriptkit.com/�
http://dev.w3.org/html5/spec/spec.html�
http://www.programmableweb.com/�
http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks�
http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 7

Development of device APIs for Web runtime environments is also greatly
increasing the richness of client-side webapps. The OMTP BONDI project is a
leading example of collaborative, open-source development of APIs for
browser/widget-based webapp access to a variety of useful device features.
AT&T, through its support of the OMTP and the W3C’s Device API and Policy
(DAP) standards, is helping to standardize these APIs for use across any device
type, while enabling developers to address key considerations of their use in
particular devices, e.g. mobile phones.

http://bondi.omtp.org/�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 8

4. What do I need to know to develop Web Applications?
To decide what you can and might want to do through webapps, you need to
know what type of basic design decisions you would need to make and how
those decisions affect your development effort. Here are some key points,
explored further in the following sections.

You should have a good working understanding of the basics of webapp design,
including HTML, CSS (cascading style sheets), JavaScript, and the DOM
(Document Object Model).

You should understand the pros and cons of depending solely upon your own
code or using code that is freely available in JavaScript frameworks.

If you want to target a variety of devices and Web runtime environments, you
should be prepared to address the same multi-platform design issues as Web
site developers face.

You need to understand why webapps, based upon the distributed resource
concepts of the Web, require an asynchronous, event-driven design model.

You need to be aware of the relationship between webapp clients and servers
and the various data exchange approaches that you may encounter in using
server APIs.

Since webapps are based around the concept of a dynamic HTML presentation
environment and often involve various types of data processing, you should be
familiar with the issues and approaches to handling HTML, XML, and JSON
(JavaScript Object Notation) data.

As one of the key device features you can take advantage of is persistent data
storage, you should be aware of the various APIs supporting data storage and
the related approaches for handling the opportunities and issues of persistently
storing webapp data.

You should be aware of the security risks to webapps and be prepared to take
appropriate measures to protect the security and privacy of your webapp users.

You should be aware of the advanced features and APIs that are just becoming
available on desktops and mobile devices, e.g. through HTML5 and OMTP’s
BONDI. You can be prepared for the widespread availability of these features if
you design webapps that use them today, which you can do by using developer
tools and devices that already support these features and APIs.

http://www.w3.org/Style/CSS/�
http://en.wikipedia.org/wiki/JavaScript�
http://www.w3.org/DOM/�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 9

4.1 Webapps are Applications
It may seem obvious, but webapps are fundamentally applications, and they are
quite different from Web sites. You should approach the design of a webapp, as
you would any application, using structured design techniques that enable you to
keep your application simple, modular, and efficient. A design methodology often
used with Web applications is called “model-view-controller,” from the approach
of structuring applications into modules for working with data resources, user
interfaces, and the application logic that controls the overall flow of the
application.

You can address some of the design complexities of designing advanced
webapps through the use of JavaScript frameworks, which can simplify your
design by “abstracting away” some of the application structure considerations.

4.2 JavaScript Frameworks
One of the key decisions to make is whether to use a JavaScript framework to
simplify webapp programming tasks, which can be complex. A variety of freely
available JavaScript frameworks are in wide use, e.g. jQuery, Prototype, dojo,
YUI, MooTools, etc. These frameworks can simplify a wide range of webapp
programming tasks. However there are caveats to their use, including the need
to package the framework libraries with webapps, and the need to recode
webapps if changing frameworks.

Because the libraries can be significant in size (even when “minified”), they can
result in significant network usage, as they are re-downloaded every time the
webapp is used. Widgets can avoid that caveat, as the framework can be
packaged with the widget for installation. If you are just getting started with
webapps, you may benefit from the experience of building your own library of
JavaScript utility functions. This will enable you to learn the reasons why
frameworks exist, and, perhaps, help you minimize dependence upon the
frameworks.

4.3 Multi-platform Design
Two key decisions you will need to make are how many devices you want to
target and whether you want to deploy your webapp for use in browsers or as a
downloadable widget.

One of the key motivators for developing webapps is the opportunity to develop
applications that can run on a very broad set of devices, with little or no device-
specific customization. In contrast, native application developers typically don’t
expect their applications to be usable on different devices, without at least

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller�
http://jquery.com/�
http://www.prototypejs.org/'�
http://www.dojotoolkit.org/�
http://developer.yahoo.com/yui/�
http://mootools.net/�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 10

recompilation and, most likely, some porting effort. The Web, however, is based
upon the inherent assumption that Web content standards (including the
processing model for that content) should minimize the variation in different
devices for Web based services. Nonetheless, Web developers are familiar with
the realistic limitations of browser interoperability.

Multi-platform design, meaning designing for consistent support by different
device types and Web runtime environments, is just as much a challenge for
webapp developers as Web site developers. This is because webapps are based
upon the same Web runtime environments that support browsers and widgets.
So while the goal of interoperability is clear, and in many cases achieved,
webapp developers will benefit by adopting a variety of best practices, and,
where necessary or advantageous, by seeking the support of JavaScript
frameworks to simplify webapp design.

Some basic best practices for improving multi-platform support include:

• Keep your webapp simple, well-structured, and refactor it often to improve
structure and performance

• Focus on consistently supported features, especially for the HTML DOM
and in user interface elements

• Prepare to support alternate methods for APIs you intend to use

• Use exceptions where necessary to implicitly detect incompatibilities and
trigger alternate feature handling

• Avoid depending upon explicit detection of the browser type, except as a
last resort

• As a fallback approach when no alternate is available for a feature,
gracefully degrade the user experience if necessary and acceptable

• Keep user interface elements simple, or use JavaScript frameworks for
user interface aspects (this is one area where they provide a lot of value,
especially for the desktop, but their advantages for mobile devices may
vary)

• Use development tools and actual devices to test

• Test early and often, across as many different platforms as you can

• Build design-for-testability into your webapp, including internal
event/exception logging (JavaScript online debugging can be very difficult
and impossible on some platforms)

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 11

4.3.1 Know What to Expect
With just a little bit of research, you can learn what to expect to be supported by
the major browsers. Sites such as the following provide very useful tutorials,
technical implementation details, and interoperability information:

• W3 Schools
• JavaScript Kit
• Quirksmode

Key areas to watch out for interoperability issues include:

• DOM XML and HTML document parsing (“DOM traversal”)

• Support for standard DOM objects and methods

• Browser-specific DOM objects and methods

• HTML5 features: while some HTML5 features are currently supported, it
will probably take until 2012 for there to be widespread and consistent
support for most HTML5 features

4.3.2 The Widget Alternative
Designing your webapp for distribution as a widget can simplify some of these
interoperability issues. Widgets can be targeted for particular widget
environments, such as AT&T’s Plusmo Widget Engine, which can provide a
consistent user experience regardless of the host device. Even so, you can still
use the same webapp standards to develop your application for use in either
browsers or widget engines and thereby avoid the need to maintain multiple
versions of a webapp.

Let’s look a little closer at the differences between webapps in the browser and
as widgets. The major difference between the browser and widget context is that,
for use as widgets, webapps are packaged, downloaded, and installed on your
device, rather than being accessed like normal Web pages.

Standards-based widgets will soon be supported in most mobile devices. The
W3C has completed the definition of the widget packaging standards, and it
continues to develop APIs and other standards that support widgets and
webapps in general. The BONDI standard APIs have greatly expanded the set of
device features available to webapps and have contributed in large part to the
ongoing standardization work in W3C.

You gain various advantages by developing your webapps to run as widgets.
First, as noted before, you can target your widgets for a particular widget player,
such as the AT&T Plusmo Widget Engine. This can provide a more consistent

http://www.w3schools.com/�
http://www.javascriptkit.com/�
http://www.quirksmode.org/�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 12

environment for your webapps, even in different devices. Widget engines also
typically have better support for device features such as BONDI APIs, and overall
they typically have a more complete set of APIs similar to native application
environments. This API set, and the ability of widgets to go beyond same-origin
restrictions, enables a rich environment of content sources for the creation of
client-side mashups.

Widgets can avoid the same-origin limitations of the Web security model imposed
by browsers by disclosing the server domains to be accessed in their
configuration file. This is because, like other downloaded applications, widgets
can be tested and pre-approved through a developer program, which enables
well-designed webapps to have more freedom in their content and service
sources. That same pre-approval process can offer the webapp developer
access to device APIs without security prompts, which can result in a better user
experience. This is enabled by signing the widget package, similar to how Java
applications are assigned various trust levels by AT&T.

4.4 Thinking Asynchronously
You should be prepared to design for the unique characteristics of the webapp
programming model, or you may find that as you integrate new device and
network resources into your application, and present it through the HTML
document framework, the resulting application may be unreliable or difficult to
use. One of these key characteristics is asynchronicity, i.e. dependence upon an
inherently asynchronous, event-driven design approach. For native application
programmers experienced with a synchronous function call design model, this
takes some getting used to.

The key reason for the asynchronicity of webapps is that many APIs depend
upon access to resources outside the Web runtime (e.g. a Web server, device
native function, or hardware component response). The response to the API
request may take some time, and to avoid blocking the Web runtime (and user
interface), the responses to API requests are typically returned as events to
some object or explicitly indicated callback function. This results in the need for
event-driven application logic that can handle a potentially unordered sequence
of events from asynchronous API requests, network data, and user input. This
will help ensure that such simultaneous operations and events have a reliable
effect upon data and the user interface.

For Web site developers, this can also present a challenge because it differs
from the conventional model of Web user interaction (user action, request to
server, response from server, content presentation). The conventional model
results in a more or less static Web page being presented, with little or nothing

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 13

occurring until the next user action. In contrast, several things can be occurring at
once in webapps: a user can be interacting with the presented user interface
elements, a server request can be outstanding, a local device API request can be
outstanding, and some other webapp (of the same origin) can be modifying data
relevant to the first webapp and triggering events.

A related key consideration is to ensure that regardless of the variety of events
that may be occurring, the user should see a sensible, consistent content
presentation and never lose control of the webapp. Thus the user interface
aspects of the webapp should be mediated by logic (e.g. a “controller” in the
model-view-controller design pattern) that determines which events should
update the user interface and when.

4.5 Working with Web Application Servers
True to the Web’s origin as a framework of interconnected, distributed content,
most webapps will include a server component. The only exception to this is in
the special case of widgets that are designed to use only device-local data and
APIs. The requirement for a webapp server need not be complex, however;
webapp servers can be as simple as a normal Web server available from any
Web hosting service. For example, if you are just providing a Web page with
associated scripts and server-hosted data, these can be served upon request to
a browser from any Web server. Webapp servers can also provide complex
services, e.g. providing Ajax-callable APIs and acting as a bridge to diverse Web
service APIs as part of a server-side content mashup. Various webapp server
development frameworks can simplify the development of such complex webapp
server components, but for these, a more specialized and specifically configured
Web server environment may be required.

One of the key reasons that webapp servers are used to provide a bridge to APIs
is due to the Web security model. If you plan to use server APIs or data, you
should know that except for widgets, which have special security requirements,
webapps can only access Ajax-based APIs provided by the same “origin”
(combination of host domain, protocol, and port number) from which the webapp
was downloaded. Widgets can access other servers only if they are declared in
the widget manifest document (“config.xml” file). But browser-based webapps
cannot directly interact with any server but the same-origin server. Note that
support for “cross-origin resource sharing” is being standardized in W3C, but
when this work is done it may still take a considerable amount of time to deploy
updated Web server support for these standards.

Your webapp can load content from other servers indirectly, for example by
creating an iframe and setting its source to the URL you want to load. In that

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 14

case, however, your webapp is not directly involved in retrieval or processing of
the content (the Web runtime retrieval and presentation, as with any normally
referenced content), and it will not be able to access or manipulate the content in
that iframe, since JavaScript is still prevented from accessing documents
obtained from a different origin. These limitations are being addressed through
HTML5, which will provide you with additional methods of securely accessing
content from different origins.

4.5.1 Web Application Server API and Data Handling
If you decide a webapp server component is required for your purposes, you will
also need to consider the types of data and/or APIs the server should provide.
Server APIs are as numerous and distinct as applications themselves, and they
can be implemented using a variety of techniques and data types. Some key
considerations are given here.

If you are just retrieving and presenting data on the client side, e.g. just
embedding server content into your application’s HTML, you can create HTML
elements that just reference the server content, and you can pass any needed
API parameters as URL fields in the “REST” style. For automated retrieval, you
can also generate such simple content requests using the XHR API
(XmlHttpRequest, the core of the “Ajax” design method) and then apply the
returned content to the HTML element’s “innerHTML” DOM property.

Use of XHR is one of the basic webapp design techniques. Due to Web runtime
variations for the XHR API, a JavaScript framework or user-provided XHR utility
function will likely be required. You should also be aware that special techniques
(e.g. queuing) may be required due to Web runtime limitations on the number of
outstanding requests and the complexities of dealing with multiple outstanding
asynchronous requests (e.g. see this article for a good description of the problem
and a solution for XHR+XML). JavaScript frameworks often address these
issues, e.g. as in YUI’s Connection Manager.

If you need to create or process data exchanged with a server, you will need to
determine which data format best suits the type of webapp. Commonly used,
basic content types include HTML, XML, and JSON.

JSON is often preferred for APIs due to its simplicity of processing, since JSON
data is exchanged as JavaScript code strings which can be directly parsed into
JavaScript objects and vice versa. A key consideration for use of JSON data is
security, because it’s possible for malicious code to be executed if untrusted
JSON data is non-securely parsed. For that reason, JSON libraries (e.g. json2.js
and general JavaScript frameworks) commonly support JSON “stringify” and

http://en.wikipedia.org/wiki/REST�
http://www.devx.com/webdev/Article/28695�
http://developer.yahoo.com/yui/connection/index.html�
http://www.json.org/�
http://www.json.org/json2.js�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 15

secure parsing functions. The stringified JSON data can then be sent or received
in the body of XHR.

HTML and XML can also be exchanged in the body of XHR. Similar to JSON,
exchanged HTML and XML data must be converted between document objects
and strings (“serialized” and parsed). Browser support for XML serialization and
parsing support is generally good, although there are variations that require
special processing (Mozilla recommends Sarissa, a “cross-browser wrapper for
native XML API”). A good introduction to the overall use of XML with JavaScript
is provided by webreference (an excerpt from “JavaScript: The Definitive Guide,
Fifth Edition,” published by O'Reilly Media, Inc.).

While HTML form submission is a basic browser function, direct exchange of
HTML content through XHR can be a bit trickier. To create a request body or
URL query string, HTML form serialization is supported by various JavaScript
frameworks. Parsing server content in HTML form should be as easy as loading
the XHR response body into an HTML document element and then using DOM
functions to access the HTML elements.

4.5.2 Efficient Use of Device and Network Resources
A key consideration in your webapp design should be the effectiveness and
efficiency in the use of device and network resources. Programmatic access to
server-based data is one of the key opportunities driving the richness of Web
applications, but it needs to be carefully managed. Over-use of XHR or dynamic
HTML that results in retrieval of server-based content can put a strain on a
variety of resources, including the device battery, data network, and application
servers. This can cause a poor user experience and result in the removal of your
webapp, e.g. if the user finds that your webapp is causing substantial data cost
or is draining the device battery due to excessive data traffic.

The most basic principle to keep in mind is that every resource you use has an
impact and needs to be associated with some specific value to the user. You
need to consider that value carefully and use effective techniques to manage
resource use. In addition, you should allow the user some control in how your
webapp uses resources, or at least provide a simple and accessible way for the
user to learn what your webapp will do and how it affects device and network
resources.

4.6 Working with XML and HTML Documents
As standardized languages, both XML and HTML are well supported by
JavaScript and the DOM, although there are differences in browser

https://developer.mozilla.org/en/Parsing_and_serializing_XML�
http://dev.abiss.gr/sarissa/�
http://www.webreference.com/programming/javascript/definitive2/index.html�
http://www.w3schools.com/dom/default.asp�
http://www.w3schools.com/htmldom/default.asp�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 16

implementations that limit interoperability of the standard DOM functions. For
examples, see the w3schools listings of HTML DOM function support across
major browsers. These variations (e.g. namespace support) mean that
supporting all or even most browsers with exactly the same code is unlikely. To
handle the differences, you will need to either rely upon a JavaScript framework,
or build your own utility functions with special code where necessary.

For specialized data schemas or reliably-structured document types of which
only a few elements are important, you can use relatively simple/direct methods
such as parsing a document using your own code, based upon the basic DOM
methods (for HTML and XML).

HTML and XML documents can be created and updated using the same
JavaScript DOM functions. Similar to accessing the documents via the DOM,
some variations should be expected (e.g. with XML namespaces), which require
special handling.

4.7 Data Storage
JavaScript’s support for data objects enables webapp developers to process and
store significant amounts of string data while the webapp is running. This basic
ability to use structured objects, arrays, and variables is a powerful tool for the
webapp developer. However, without the ability to store data that has been
downloaded and possibly modified by the webapp, the data must be uploaded to
a webapp server, or it will be lost when the webapp exits. “Exits,” in this case,
means, for widgets, that the widget is stopped, or, for browser webapps, that the
user (or webapp itself) navigates away from the webapp origin.

4.7.1 Persistent Data Features Available Today
A key near-term opportunity for webapp development is the ability to store data
that persists within a session or between sessions, and to share that data
between webapps of the same origin. While initially limited to proprietary
solutions (e.g. Google Gears), data storage standards are beginning to emerge,
and support is widening for webapps running on desktops and mobile devices.
Developers can begin to gain experience with persistent data capable webapps
today, learn what this powerful new feature can offer to their applications, and
discover the new webapp design considerations it brings.

The HTML5 Web Storage API standard, nearing completion in W3C, is already
supported by some desktop browsers (Safari, Firefox, IE8) and mobile browsers
(Safari on iPhone). This API provides storage of name-value string pairs that live
within the context of a browser session (sessionStorage) or that persist between

http://www.w3schools.com/jsref/default.asp�
http://www.w3schools.com/htmldom/dom_methods.asp�
http://www.w3schools.com/dom/dom_methods.asp�
http://dev.w3.org/html5/webstorage/�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 17

sessions (localStorage). Most desktop browsers should support the Web Storage
API in 2010, and more high-end browsers on mobile devices will begin to support
it as well. W3C is also working to standardize other persistent storage APIs, such
as structured data storage and a file API focused on user-selected file read
access.

The Web Storage API focuses on data storage inside the Web runtime, as
compared to the BONDI File System API, which allows trusted webapps to
access local filesystem data on devices that support a filesystem. The BONDI
File System API enables applications to directly read and write filesystem data,
much like the support in native programming languages. BONDI has also defined
the Application Configuration API, which addresses the same basic objective of
HTML5 localStorage and is intended for use with Web runtime environments that
do not support the Web Storage API. BONDI-compliant devices are expected to
be available in 2010.

4.7.2 Effective Use of Persistent Storage
The storage of data through the HTML5 or BONDI APIs involves similar issues
and techniques as server data exchange. JavaScript data and HTML/XML
documents must be stringified before being stored, and they must be re-parsed
when reloaded.

A new consideration for many Web developers – that of being responsible for
handling data schema updates as the webapp evolves – will be a side-effect of
using persistent data. If a new version of a webapp includes changes to
persistent data structures, the webapp must be designed to take this into account
and provide a means to migrate current stored data if possible. In order to detect
that such a situation has occurred, a data versioning scheme or other automated
detection method must be used.

As a fallback to data migration, a means to clear local persistent data can be
provided. This option is also recommended to allow users to release storage
resources of the webapp, which may not be easily or automatically removed
otherwise. For example, HTML5 localStorage data may not be removable by
browser menus (except through clearing all stored data, which may be
undesirable), and file system stored data (e.g. files and directories outside the
widget home directory) may not be automatically removed when a widget is
uninstalled (and for browser-based webapps, there is no “uninstall” procedure).
Since HTML5 stored data is associated with the webapp’s source origin, it is also
recommended that if removing all HTML5 stored data, the webapp should delete
its own data directly, rather than via “localStorage.clear(),” to avoid deleting data
of other webapps of the same origin.

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 18

4.8 Security
Like most things that are easy, webapps carry risks, and one is security. The
nature of the scriptable Web environment is such that malicious code can easily
masquerade as data, and, therefore, unsecured APIs may provide easily
exploitable vulnerabilities as well as a ready platform for a wide variety of security
attacks (such as cross-site scripting, cross-site request forgery, and click-
jacking).

While the same-origin policy is intended to minimize the risks from these
common attacks, you need to use specific measures to ensure your webapp
keeps user data secure and is not exploited as a platform for attacks.

Because your webapp may obtain data from a variety of sources, especially if
accessed through a webapp server, you need to be careful of security threats
from that data. An example is in how you handle JSON data. Since it can
represent any valid JavaScript code, you should always use secure methods of
parsing JSON data, and never use the “eval()” operation. There are various
JavaScript frameworks that can help you, and native JSON parsing is beginning
to be supported by browsers.

Device APIs, as one of the most valuable new features of webapp client
environments, further pose risks due to the sensitivity of the information that the
APIs can provide. Uncontrolled access of these APIs can result in seriously
compromised privacy and security as well as excessive costs. Thus, while AT&T
is still developing its policies relating to webapp and API security, you can expect
that similar to AT&T’s current policy for Java applications, access to some APIs
will be provided only to applications that have been certified as safe, through the
AT&T Developer Program. The goal of these security considerations is to
improve the user experience by reducing or eliminating security prompts, while
allowing application access to the device APIs that enable a personalized user
experience.

4.9 Advanced Features
One of the newest areas of Web runtime features is in client-side resources, i.e.
data and device APIs. Many useful APIs are already available in desktop and
mobile Web runtime environments, and others are available for testing in
software development kits (SDKs) and in reference implementations, as
described below. You can start taking advantage of these APIs now, not only to
learn what they can offer for your webapps, but also to gain experience with
effective API use.

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 19

4.9.1 HTML5 APIs
If your webapp is focused purely on processing/presenting server data and user
interaction, the webapp is probably fine with sticking to what’s available within the
browser sandbox. Even within the browser, HTML5-capable Web runtimes will
support advanced APIs that are very useful in creating webapps, including the
Web Storage API described above, and also the following:

• Web Workers: This API “allows Web application authors to spawn
background workers running scripts in parallel to their main page. This
allows for thread-like operation with message-passing as the coordination
mechanism.” Webapps can thus be structured, with foreground windows
working with distinct or shared background scripts for processing, e.g.
data processing or server API handling.

• Server-Sent Events: This API supports “opening an HTTP connection for
receiving push notifications from a server in the form of DOM events.”
This can significantly reduce data traffic for pushed data, e.g. in
comparison to polling techniques. Note that the webapp server will need
explicit support for the API, which may require special server code or
configuration.

The W3C standards for the HTML5 APIs above are nearing finalization, which
means they are likely to be supported by Web runtime environments soon. The
W3C is additionally working to standardize a variety of other useful APIs, some of
which may be available as early as 2010.

4.9.2 OMTP BONDI
As introduced above, the OMTP BONDI project is an open-source development
of APIs for browser/widget-based webapp access to a variety of useful device
features. AT&T will be launching BONDI-compliant devices in the near future and
is actively supporting the OMTP development of these APIs, including the
creation of SDKs and reference implementations that developers can use today
(see Development and Test Tools).

The latest version of the BONDI API specifications (BONDI 1.1) includes the
following API modules:

• Messaging: sending, receiving, and watching for SMS, e-mail, and MMS
messages

• File System: accessing the filesystem to create and read directories and
files and to write to files

http://dev.w3.org/html5/webstorage/�
http://dev.w3.org/html5/workers/�
http://dev.w3.org/html5/eventsource/�
http://www.w3.org/2008/webapps/wiki/PubStatus�
http://bondi.omtp.org/�
http://bondi.omtp.org/1.1�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 20

• Media Gallery: accessing a metadata-enhanced repository of media
content

• Geolocation: accessing location services

• Camera: taking a picture or recording a video

• Telephony: accessing the log of incoming calls

• Personal Information Management

o Contacts: accessing the device’s native address book data

o Calendar: accessing the device’s native calendar data

o Tasks: accessing the device’s native task (to-do list) data

• Device Status: accessing various device properties and status, e.g.
battery level, memory size/usage, etc.

• User Interaction: adding widget menus and being informed of changes in
the window modes (e.g. display orientation)

• Application Launching: launching native applications by their associated
URI scheme (e.g. http, https, tel, sms, mailto, file)

• Application Configuration: storing webapp key-value string data
persistently

Note that W3C Device API and Policy (DAP) is also working on similar APIs for
generic devices and is focused on W3C-typical browser use cases, e.g. in which
API invocation is user-directed. For example, the DAP camera API may be
associated with an HTML <input> element. The BONDI APIs are expected to
continue development as a more programmatic model for API access, i.e. one in
which user involvement is not assumed due to the user interface limitations of
constrained devices (e.g. mobile). The DAP API specifications are expected to
be complete in the 2011 timeframe.

4.10 Development and Testing Tools
In bringing all this together, you should leverage tools that simplify your
development tasks and support any special requirements of the webapps you are
focusing on.

The BONDI reference implementation (RI) is available for Windows Mobile 6.1
and up devices. Developers with access to touchscreen-based Windows Mobile
devices can load this RI, which includes BONDI support as a standalone Widget

http://www.w3.org/2009/dap/�
http://updates.bondi.omtp.org/�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 21

manager, and as an ActiveX extension to Windows Mobile Internet Explorer. A
variety of sample widgets are also available from the BONDI Widget Gallery.

AT&T will also be launching its own Widget SDK, which is based upon the
Plusmo widget runtime, by June 2010. As described on the AT&T Developer
Program Web site, you can also access test devices through the
DeviceAnywhere Service: “Through DeviceAnywhere's original non-simulated,
real-time platform, you can remotely press buttons, view LCD displays, listen to
ringtones, and play videos just as if you were holding the device in your hands.”
DeviceAnywhere can be used to test the compatibility of your webapps with
various devices, or you can load the BONDI RI to gain experience with BONDI
on real devices.

Integrated Development Environments (IDE) can provide a convenient code and
test toolkit framework that can help you accelerate your webapp design. Such
tools can integrate SDKs with test harness capability, such as the LiMo BONDI
SDK (a plug-in for the Eclipse IDE). Using these tools, you can closely approach
the target runtime environment and reduce device-specific testing time. However,
if you do intend to target a range of browsers or widget engines with your
webapps, nothing will replace testing on actual devices or by using device-
consistent emulators, which are usually available through the major Web runtime
vendor developer programs.

As referenced on the BONDI Developer Tools page:

o LiMo BONDI SDK: The BONDI SDK project is an effort to develop and
maintain an open source Web SDK based on the BONDI
specifications. The objective of this project is to create an SDK that
enables development of Web applications and widgets that can run
across all mobile handsets supporting a BONDI-compliant Web
runtime. The BONDI SDK project is being sponsored by the LiMo
Foundation.

o LG SDK 1.03 for Mobile Widgets

o

: The LG SDK for Mobile Widgets
allows developers to create widgets for LG mobile phones quickly and
easily. The LG SDK for Mobile Widgets is based on the World Wide
Web Consortium (W3C) Widgets 1.0 specifications, supports a subset
of the Open Mobile Terminal Platform (OMTP) BONDI 1.0 Candidate
Release, and includes some LG specific APIs.

Perfecto Mobile testing service: This service has a number of
Windows Mobile devices running the BONDI reference
implementation. You can use this service to test your widgets online

http://bondidev.omtp.org/widget-gallery/default.aspx�
http://www.att.com/sdk/�
http://www.att.com/sdk/pages/Widgets/HTMLIDEs.html�
http://bondisdk.limofoundation.org/�
http://bondisdk.limofoundation.org/�
http://www.eclipse.org/�
http://bondi.omtp.org/usebondi/Webpages/devtools.aspx�
http://bondisdk.limofoundation.org/�
http://developer.lgmobile.com/lge.mdn.tnd.RetrieveDocAndToolsList.dev?isLastest=true&objectType=T#none�
http://perfectomobile.com/portal/cms/index.html�

AT&T Proprietary

The information contained here is for use by authorized
persons only and is not for general distribution

Development Brief
Rev. 1.5 22

and see how they work on a range of devices on different operators’
networks.

For links to these resources, visit the AT&T Developer Program, which provides
continually expanding support for webapp developers.

http://developer.att.com/�

	Introduction
	Audience
	Contact Information
	Resources

	What are Web applications?
	Why should I develop Web applications?
	What do I need to know to develop Web Applications?
	Webapps are Applications
	JavaScript Frameworks
	Multi-platform Design
	Know What to Expect
	The Widget Alternative

	Thinking Asynchronously
	Working with Web Application Servers
	Web Application Server API and Data Handling
	Efficient Use of Device and Network Resources

	Working with XML and HTML Documents
	Data Storage
	Persistent Data Features Available Today
	Effective Use of Persistent Storage

	Security
	Advanced Features
	HTML5 APIs
	OMTP BONDI

	Development and Testing Tools

