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GRASSMANN’S VISION

David Hestenes

Abstract. Hermann Grassmann is cast as a pivotal figure in the historical
development of a universal geometric calculus for mathematics and physics
which continues to this day. He formulated most of the basic ideas and,
to a remarkable extent, anticipates later developments. His influence is far
more potent and pervasive than generally recognized.

After nearly a century on the brink of obscurity, Hermann Grassmann is widely recognized
as the originator of Grassmann algebra, an indispensable tool in modern mathematics.
Still, in conception and applications, conventional renditions of his exterior algebra fall far
short of Grassmann’s original vision. A fuller realization of his vision is found in other
mathematical developments to which his name is not ordinarily attached. This Sesquicen-
tennial Celebration of Grassmann’s great book, Die Lineale Ausdehnungslehre [1], provides
the opportunity for a renewed articulation and assessment of Grassmann’s vision.

Grassmann is a pivotal figure in the historical evolution of a mathematical language
to characterize human understanding of the physical world. Since quantitative concepts
of space and time are fundamental to that understanding, the language is fundamentally
geometrical and can best be described as a geometric calculus. For the most part the evo-
lution of geometric calculus has been tacit and piecemeal, with many individuals achieving
isolated results in response to isolated problems. Grassmann is pivotal in this historical
process because he made it explicit and programmatic. In no uncertain terms, he declared
the goal of his research on extension theory [1] as no less than the creation of a universal
instrument for geometric research. Leibniz had clearly articulated that goal long before and
blessed it with the name “geometric calculus.” However, Grassmann was the first to see
clearly how the goal can be reached, and he devoted the whole of his mathematical life to
the journey. When Möbius created the opportunity for Grassmann to align his own vision
with Leibniz’s, Grassmann responded eagerly with an elaboration of his extension theory to
show how their common vision can be realized [2]. Unfortunately, this seminal work failed
to attract the recognition and attention he deserved, so Grassmann had to continue his
mathematical journey alone, with only an occasional mathematician — Möbius, Hankel,
Clebsch — joining him for a few steps along the way.
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Most of Grassmann’s mathematical discoveries were duplicated independently by others
as isolated results. It is fair to say, for example, that Grassmann laid the foundation for
linear algebra by himself [3]. Yet the standard linear algebra of today grew up without
his contribution. The frequent duplication of Grassmann’s discoveries is not a mark of
limited originality but rather a sign that Grassmann was keenly attuned to a powerful
thematic force driving mathematical development, namely, the subtle interplay between
geometry and algebra. What sets Grassmann ahead of other creative mathematicians is
his systemic vision of a universal geometric calculus. This vision marks him as one of the
great conceptual synthesizers of all time. Accordingly, the chief presentation of that vision,
Die Lineale Ausdehnungslehre, deserves a place alongside Euclid’s Elements and Descartes’
Geometrié in the library of immortal mathematical masterworks.

Considering the immense power and fertility of Grassmann’s vision, we are bound to ask
why due recognition has been so long in coming. Several answers have been suggested by
commentators and historians. First, it is averred that the original Ausdehnungslehre was
written in an impenetrable philosophical style. But Grassmann confined his philosophical
musings to the first chapter so they could be skipped by those who want to get directly
to business. Second, it is suggested that Grassmann was ahead of his time. He was
certainly the first person to deal with abstract, multidimensional algebra. But if that
was a barrier to understanding during his lifetime, it should have been lesser in subsequent
generations. Third, it is noted that Grassmann’s unsystematic presentation mixes basic
ideas with applications and so places a heavy burden on the reader to disentangle them.
But Grassmann’s synopsis of the Ausdehnungslehre [4], written at the behest of a befuddled
admirer, did not help much to ease the burden. Moreover, more systematic presentations
of Grassmann’s calculus by distinguished mathematicians, most notably Peano in 1888 and
Whitehead in 1898, also failed to inspire the mathematical community at large.

Grassmann himself identified a more critical condition for comprehending his vision,
namely immersion in his conceptual system. That system is, after all, a rich mathematical
language, so it takes years to develop the proficiency that opens up mathematical insights.
Having acquired such proficiency, the superiority of his system in applications throughout
geometry and physics was obvious to Grassmann, so it was a great frustration to him that
others, even distinguished mathematicians, were unable to recognize this. It was easy for
experts to dismiss Grassmann’s work as “old wine in new bottles” when he was unable
to show them applications that could not be handled with techniques they already knew.
Grassmann thus suffered from a credibility gap that prevented experts from investing the
time necessary to acquire his perspective.

There is another, more profound reason for the muted impact of Grassmann’s extension
theory. Something critical was missing. As Grassmann admitted in the preface to his
Ausdehnungslehre of 1862 [6]. “I am aware that the form which I have given the science
is imperfect.” And he went on to say “there will come a time when these ideas, perhaps in
a new form, will arise anew and will enter into a living communication with contemporary
developments.”

The purpose of this paper is to point out that the missing ingredient in Grassmann’s
theory has been found and put in place to create a geometric calculus that fully realizes
his vision. Indeed, the seeds for this advance were already present in Grassmann’s work.
Moreover, Grassmann’s bold prophecy is in the process of fulfillment even today, as his
insights are revived to enrich modern mathematics and physics.
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I. Completing the Vision

In the Foreword to his Ausdehnungslehre of 1844, Grassmann outlined some ideas to be
incorporated in a second volume to “complete the work.” This included the invention of a
new kind of product, the essentials of which can be described as follows. He defined the
quotient a/b = ab−1 of vectors a and b by writing

(a/b)b = a. (1)

He noted that, if a and b have the same magnitude, then (1) implies that a/b is an operator
which rotates b into a. He expressed this with the exponential form

e
6 ab = a/b, (2)

where 6 ab denotes the angle between a and b. It follows then that (a/b)2 is a rotation
through twice the angle. In particular, if a/b is a right angle rotation, then (a/b)2b = −b,
so (a/b)2 = −1 and

a/b =
√
− 1 . (3)

If we write 6 ab = ix, where i =
√
− 1 and x is the radian measure of the angle, then

eix = cosx+ i sinx (4)

has a purely geometrical significance denoting the rotation through an arbitrary angle.
Grassmann concludes: “From this all imaginary expressions now acquire a purely ge-

ometric meaning, and can be described by geometric constructions.. . . it is likewise now
evident how, according to the meaning of the imaginaries thus discovered, one can derive
the laws of analysis in the plane; however it is not possible to derive the laws for space as
well by means of imaginaries. In addition there are general difficulties in considering the
angle in space, for the solution of which I have not yet had sufficient leisure.”

That is the last we hear about this interpretation of the imaginary unit from Grassmann.
He never revived and completed the argument to handle general rotations in space and
develop his new product into a complete algebraic system. However, a brilliant young En-
glish mathematician, William Kingdom Clifford, did just that. The resulting new algebraic
system is known as Clifford algebra in mathematical circles today.

Ironically, Clifford is seldom mentioned in accounts of Grassmann’s influence on other
mathematicians, though it may be through Clifford algebra that Grassmann’s ideas exert
their most profound influence today. We have no direct knowledge that Clifford was in-
fluenced by Grassmann’s little argument above, but it could hardly be otherwise, because
the argument appeared right at the beginning and nothing else in Grassmann’s corpus is
so obviously pertinent. Indeed, Clifford made no great claim to originality, referring to his
algebra as a mere application of Grassmann’s extensive algebra [7]. Unfortunately, his life
was too brief for him to communicate the dimensions of his debt to Grassmann.

Clifford was surely assisted in his adaptation of Grassmann’s ideas by his mastery of
Hamilton’s quaternions. Ironically again, Grassmann was led along the same path in the
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last years of his life by his endeavor to fit quaternions into extension theory [8]. He was
induced to define the central product ab of vectors a and b by writing

ab = λ[a|b] + µ[ab], (5)

where [a|b] is the inner product, [ab] is the outer product, and λ, µ are arbitrary nonzero
constants. With λ = µ = 1, we have the alternative notation

ab = a · b + a ∧ b. (6)

This is essentially the basic product of Clifford algebra, and it was published before Clif-
ford’s paper [7]. Thus, Grassmann could be credited with the invention of Clifford algebra.
However, he failed to investigate the central product with the verve that he bestowed on the
inner and outer products in bygone years. Had he done so, he would have been pleasantly
surprised to find that quaternions drop out without resorting to the deformation of the
central product (5) that he employed in his paper [8].

Grassmann also failed to notice that the product in (6) can be identified with the quotient
in (2). Then, for a2 = b2 = 1, we can write (2) in the form

ab = eix. (7)

Using (2) and (6) to expand the right and left sides of (7), we infer that a · b = cosx and,
more important,

a ∧ b = i sinx. (8)

This tells us immediately that the unit imaginary i must be interpreted as the unit bivector
for the plane containing a and b, something that Grassmann never realized.

There is another easy inference that would have pleased Grassmann mightily, because it
reveals a hidden unity and simplicity in his system which he had not anticipated. Using
the symmetry of the inner product and the skew symmetry of the outer product, we infer
from (6) that

ba = a · b− a ∧ b. (9)

Then, from (6) and (9) we can deduce

a · b = 1
2 (ab + ba) (10)

and
a ∧ b = 1

2 (ab− ba). (11)

This shows that the inner and outer products can be defined in terms of the central product,
thus reducing three products to one. Full details of this reduction and simplification of
extension theory are given in [9].

The insight that all multiplicative aspects of extension theory can be reduced to the sin-
gle central product leads to the conclusion that Clifford algebra is the proper completion of
Grassmann’s vision for a universal geometric calculus. Ample justification for this conclu-
sion comes from the manifold applications of Clifford algebra mentioned below. Recognizing
the geometric origin of his algebra, Clifford called it geometric algebra. Considering the
universality of this algebra and the fact that so many others besides Grassmann and Clifford
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have contributed to its development as a mathematical language, it should be regarded as
common intellectual property of the mathematical community, so it should not be tagged
with the name of a single individual. As no other mathematical system deserves the title
more, Clifford’s choice should be adopted and, on occasion, expanded to universal geometric
algebra for emphasis. For the same reasons, the name geometric product is to be preferred
in place of Grassmann’s “central product.”

As counterpoint to these unifying developments, we note a final irony in Grassmann’s
treatment of quaternions in his dismissal of Hamilton’s ideas without due credit, just as his
own ideas had been summarily dismissed by other mathematicians before. It is likely that
Grassmann did not have the opportunity to study Hamilton’s work first hand, so he learned
about it from secondary sources. That only deepens the irony in his refusal to admit that
Hamilton has something to teach him. He could, at least, have graciously acknowledged
that the crucial idea of adding a scalar to a bivector in (5) came from Hamilton, for he
himself had never taken this step before. Indeed, he had explicitly warned against such
mixing of quantities of different kind.

II. Source of the Vision

The incredible power and versatility of Grassmann’s approach derives from the fact that
he systematically incorporated geometric interpretations into the design of his algebraic
syntax; then he abstracted the algebraic structure from the geometric interpretation for
analysis as a formal algebraic system.

Grassmann introduced two complementary geometric interpretations for vectors and their
outer products. Let us refer to them as the direct and the projective interpretations to
keep them distinct. One difficulty in understanding Grassmann’s work is the informal
fluency with which he moves from one interpretation to the other. His synopsis [4] is
helpful by bringing the two interpretations together and comparing them. Recently, it has
been realized that geometric algebra provides a surprising formal connection between the
interpretations [10, 11, 12] and thus clarifies their complementary roles. To see that we
need to review Grassmann’s perspective.

We begin with the modern concept of a vector as an abstract element of a vector space.
The concept of a vector space had not been formalized in Grassmann’s time, though it was
certainly implicit in his work. To coordinate the two geometric interpretations, we assign
them to vectors in different spaces which are distinguished by using boldface to denote
vectors with the direct interpretation and italics for vectors with a projective interpretation.

Under the direct interpretation each vector a represents a directed line segment, and the
outer product a ∧ b represents a directed plane segment. This interpretation is thoroughly
discussed and applied to classical mechanics in ref. [9] using the full geometric algebra.

Under the projective interpretation each vector a represents a geometric point. The outer
product a∧b represents a directed line segment determined by points a and b, while a∧b∧c
represents a directed plane segment determined by three points. This interpretation is
thoroughly discussed and applied to projective geometry in ref. [10]. which also explains
the advantages of the full geometric algebra in this domain.

The two different interpretations correspond to two different representations of geometric
concepts. The relation between the two is elegantly characterized by a projective split in
geometric algebra, as explained in ref. [11] and also in [12], which is a synopsis of [10] and
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[11]. The projective split relates each vector a in an n-dimensional vector space Vn to a
vector a in an (n+ 1)-dimensional vector space Vn+1 by the equation

ae0 = a · e0 + a ∧ e0 = a0(1 + a) , (12a)

where e0 is a distinguished vector in Vn+1, and

a0 = a · e0 , (12b)

a =
a ∧ e0

a · e0
. (12c)

According to (12c), vectors in Vn correspond to bivectors of Vn+1 with a common factor e0.
This is a projective relation, because (12c) shows that a is unaffected if a is replaced by a
nonzero scalar multiple of a. The projective split amounts to a mechanism for introducing
homogeneous coordinates. It is more powerful than the conventional approach to homoge-
neous coordinates, however, because it prepares the way for drawing on the computational
and conceptual advantages of geometric algebra. Since there is insufficient space here to
demonstrate those advantages, the reader is left to consult the references.

Grassmann made much ado about separating extension theory from space theory, in
other words, separating formal algebraic structures from geometric interpretation. He was
ahead of his time in regarding geometry (space theory) as an empirical discipline derived
from human perception and therefore limited to spaces of no more than three dimensions.
Extension theory formalizes space theory, and Grassmann emphasized that geometric in-
terpretation is essential to its applications in physics and geometry. On the other hand,
he argues that separation from space theory enables the cultivation of extension theory as
an abstract science and admits generalization to higher dimensions. He could as well have
added that geometric interpretations can also be generalized to give insight to algebraic
structures in higher dimension.

One clear benefit of separating geometric algebra from geometric interpretation is that
a single algebraic entity can be assigned many different geometric interpretations. We
have already seen, for example, that vectors can be assigned either direct or projective
interpretations, and this does not exhaust the possibilities. However, abstraction has its
dangers, as the following important historical example serves to show.

After Clifford algebra was invented by Clifford, it was cultivated as an abstract discipline
for the better part of a century without reference to its geometrical roots. Clifford algebra
thus became a minor mathematical subspecialty — just one more example of an algebra
among many others. In regard to applications, it was almost sterile, with representations
of the orthogonal group as the only example of much interest.

The situation has changed drastically since 1966 when, for the purpose of application
to physics, Grassmann’s direct interpretation was incorporated into Clifford algebra and a
variant of the projective split (now called the spacetime split) was found to simplify and
clarify relativistic physics [13]. This has reinvigorated Clifford algebra and fueled a growing
realization that it provides the structural basis for a truly universal geometric algebra.
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III. Realizing the Vision

Realizing Grassmann’s vision of a universal geometric calculus to serve as a unified lan-
guage for mathematics and physics is necessarily a community enterprise. Though Grass-
mann and Clifford have supplied the language with a suitable syntax, enrichment of the
language with a broad spectrum of applications is a vast undertaking drawing on the intel-
lectual resources of the entire scientific community. Grassmann understood this perfectly,
so he devoted considerable effort to developing applications in geometry and physics, pri-
marily mechanics and electrodynamics.

The main concern of Grassmann’s scientific papers is the mathematical form of physi-
cal equations. Much of his work on mechanics is standard fare in textbooks today, with
only minor differences in notation, though direct influence of Grassmann on textbooks is
unlikely. The only mechanics problem of any complexity that Grassmann addressed is the
“theory of the tides.” While that work has no special scientific importance, a reformu-
lation of its vectorial perturbation approach to tidal theory in modern terms may have
pedagogical value. The main deficiency in Grassmann’s approach to tidal theory and the
rest of mechanics was in his mathematical treatment of rotations and rotational dynamics.
Though Grassmann attacked this problem with great ingenuity, the ideal solution escaped
him, because it required the geometric product. Grassmann’s grand vision for mechanics
has recently been utterly fulfilled with a complete reformulation of the subject in terms of
geometric algebra [9]. As Grassmann desired, the treatment is completely coordinate-free,
it employs his direct geometric interpretation, and it incorporates all of his keen algebraic
devices.

At this point I must confess my personal interest and apologize for the extensive self-
citations in a tribute to someone else. The fact is that most of my professional life has
been devoted to the same grand theme as Grassmann’s, though I came to realize this only
recently. My work could fairly be described as restoring Grassmann’s original insights to
Clifford algebra and systematically developing it into a universal language through exten-
sive applications in mathematics and physics. I was guided by Grassmann’s ideas from
the beginning and referred to them frequently in my published work. However, everything
I knew about Grassmann came from secondary sources, so it suffered from the limita-
tions and distortions of such filtering. It was only in the last few years that I learned
about the incredible confluence of my own vision with Grassmann’s from the translation of
Grassmann’s work by Lloyd Kannenberg. I was amused to note that I had independently
rederived practically every algebraic identity in Grassmann’s work (especially in [14]). This
illustrates how a shared vision can stimulate parallel discoveries. That occurs frequently
in mathematics, and, as I have emphasized before [15], it is especially significant in the
history of geometric algebra because of its universal importance.

In my own work on geometric calculus, I have enjoyed the huge advantage over Grass-
mann of more than a century of developments in mathematics and physics. Even so, I find
little in Grassmann’s mathematical work that is outdated, and I am confident in asserting
that Grassmann’s optimistic vision of the future for geometric calculus has been fully vindi-
cated. The references cited herein demonstrate in detail that geometric calculus embraces
a greater range of mathematics than any other mathematical system, including linear and
multilinear algebra, projective geometry, distance geometry [16], calculus on manifolds [17],
hypercomplex function theory, differential geometry, Lie groups and Lie algebras [18].

Geometric calculus has also fulfilled Grassmann’s vision of a universal language for
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physics. Besides integrating the mathematical formulations of mechanics [9, 19], relativity
and electrodynamics [13], it has revealed a geometric basis for complex numbers in quantum
mechanics [20, 21, 22].

Leading into the twentieth century, Grassmann’s algebra was often cast as a competitor
with quaternions and vector calculus for the role of a language for physics. Vector calcu-
lus was victorious, owing principally to Oliver Heaviside’s slick formulation of Maxwell’s
equations with applications to electromagnetic wave propagation. The victory was only
temporary, however. With the completion of Grassmann’s vision by geometric calculus, we
can now see Heaviside’s vectorial equations and Hamilton’s quaternions as components of
a single, more powerful system. Indeed, the geometric calculus reduces the four Maxwell
equations of Heaviside to the single equation [13, 15]

∂F = J, (13)

where J is the spacetime charge current density, F is the complete electromagnetic field
(without separation into electric and magnetic parts), and ∂ is the vector derivative with
respect to a spacetime point. With the choice of an inertial reference frame, (13) can be
split into the four equations of Heaviside [13]. However, in many applications it is simpler
and more informative to solve (13) directly. Equation (13) is typical of the simplifications
that geometric calculus brings to every branch of physics. This justifies its claim to be a
universal language for physics.

The fusion of Grassmann algebra with Clifford algebra has been the subject of some
debate [23]. The chief point of contention has been the concept of duality. Dieudonné
summarizes the dominant “modern view” in [5] and declares it superior to Grassmann’s.
In fact, they are just different, and Grassmann’s has distinct advantages which are made
more evident by using the full geometric algebra [10]. On the other hand, the modern
view has unnecessary limitations which can be eliminated with geometric algebra. It works
with a “dual pair” of vector spaces, each with its own exterior algebra. As shown in [18],
a far more powerful algebraic structure is created at no cost by joining the dual pair into
a single vector space with twice the dimension of each and then incorporating the duality
relations into the geometric algebra of that space. The remarkable result is that every
linear transformation on the base space can be represented in this algebra as a monomial
product of vectors. This promises to open a new chapter in linear algebra.

IV. Recognizing the Vision

An adequate history of geometric calculus remains to be written. It calls for a historian
steeped in Grassmann’s vision who can recognize how the vision is played out in the various
branches of mathematics and physics. We have seen how easy it is to misconstrue or
overlook important historical threads. Even the central theme — one of the great themes
of cultural history — has been consistently overlooked by mathematicians and historians.
The time is ripe for a historian with the insight and dedication to flesh out the whole story.
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