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ABSTRACT 
In this paper we study the performance of an end to end secure 

data aggregation scheme on wireless sensors. We measure the 

execution time and energy consumption of various 

cryptographic functions on the motes and analyze how an end 

to end scheme increases the network life time in a WSN 

compared to a hop by hop scheme. The scheme is implemented 

on Mica2 motes and makes use of elliptic curves for the 

implementation of public key cryptography on the motes. 

1. INTRODUCTION 
Wireless sensor networks have a number of applications in 

various fields like military, medicine, habitat monitoring, target 

tracking etc. The small size of wireless sensors allows us to 

easily deploy them in hostile environment in large numbers 

without them being noticed but, it also presents us with some 

constraints. The small size of a wireless sensor limits the 

amount of memory, the available processing power and the size 

of battery on the sensors. Limited memory means that the 

amount of data and the code that can be stored on a sensor is 

limited. Sensors are usually deployed in hostile environments, 

where it is not feasible to change the batteries once they expire. 

This calls for judicious use of the batteries so that the sensor 

lifetime and hence the network life time can be maximized. 

One way of increasing network lifetime of a WSN is data 

aggregation.  

The challenge posed by limited available power becomes 

harder when applications require security due to the high cost 

of security techniques. Two different types of secure data 

aggregation schemes have been proposed by researchers, hop 

by hop secure data aggregation schemes and end to end secure 

data aggregation schemes.The paradigm shift now is towards 

end to end schemes which offer better security than the hop by 

hop ones. End to end schemes also require lesser amount of 

computation which helps in reducing energy consumption. 

Secure hierarchical data aggregation in wireless sensor 

networks [1] is one such end to end scheme. In this scheme the 

sensor nodes first organize themselves into a tree hierarchy and 

then use a homomorphic encryption algorithm (ECEG) and an 

aggregate digital signature algorithm (ECDSA) to achieve end 

to end cryptography. We have designed and implemented the 

algorithm proposed in [1] with some modifications on a Mica2 

mote. We discuss some of the results we obtained and evaluate 

the algorithm based on these results. The end to end scheme of 

[1] provides better security by virtue of public key 

cryptography. We analyze our results to show how it saves 

energy on the aggregators and increases the network lifetime by 

57%. Although our focus is on a particular scheme, our results 

hold for any end to end secure data aggregation scheme in 

general. 

In the following section we survey the literature on secure 

data aggregation schemes and compare this work with others. 

We elaborate on data aggregation and security in wireless 

sensor networks in section 3. In section 4 we revise the secure 

hierarchical data aggregation algorithm as introduced in [1] 

while section 5 discusses the sub algorithms within the 

algorithm. Section 6 details the implementation of the scheme 

on Mica2 motes. In section 7 we provide some initial results 

and the analysis from our implementation, in section 8 we 

provide our conclusion and discuss our future work and 

expected results in section 9. 

2. RELATED WORK 
Data aggregation in wireless sensor networks has been of 

interest to researchers because of its ability to save energy on 

the sensors. Early secure data aggregation schemes were hop by 

hop schemes, these schemes like the one by Hu and Evans [8] 

mostly dealt with the issue of data confidentiality in the face of 

a single compromised node. Schemes tackling the issue of 

multiple compromised nodes were introduced later, for example 

the scheme by Chan et al [9]. This algorithm supported any 

arbitrary tree and was resilient to any number of malicious 

nodes. Schemes like SecureDAV [10] and SDAP [11] also 

provided for data integrity by making use of threshold 

cryptography and Merkle hash trees respectively. Next were the 

end to end schemes some of which are discussed in [1], [12] 

and [13]. These algorithms use the concept of homomorphic 

encryption. While [13] does not provide data integrity, both [1] 

and [12] use the aggregate signature protocols for it. The 

former uses a form of ECDSA and the latter uses Boneh and 

Gentry’s aggregate signature scheme. We focus on the secure 

hierarchical data aggregation paper of [1]. This is an end to end 

scheme providing both data confidentiality and data integrity. 

Our objective is to compare the performance of this scheme 

with others.  The work in [5] and [6] deals with evaluating the 

performance of public key encryption and homomorphic 

encryption on wireless sensors. The authors in [14] calculate 

the cost of cryptography on wireless sensors. They take into 

consideration an energy model and based on that model 

calculate the cost of key distribution, encryption and 

communicating secure data. In our work, we evaluate the 

performance of the homomorphic encryption as well as analyze 

the performance of a secure data aggregation scheme and 

calculate the energy savings due to it. Although we take into 

consideration a particular homomorphic encryption scheme and 
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a particular signature scheme, our results are valid for any end 

to end secure data aggregation scheme in general. 

3. BACKGROUND 
 

3.1. Data Aggregation 
As concurred in the previous section, the biggest challenge 

while working with wireless sensors is the limited available 

battery power.  As pointed out in [6] and [7] radio 

communication consumes a large amount of energy on a sensor. 

Owing to this, one of the goals in sensor network research is to 

minimize the number of radio transmissions within the 

network. Data aggregation is one way of doing this. An 

aggregate function like SUM, AVERAGE etc. takes as input a 

number of values and outputs a single aggregate value. In 

applications requiring data aggregation, the aggregator receives 

input values from various sensors, performs the required 

operation, and sends forward only the output, thus saving 

transmissions. Consider the example sensor network in Fig. 1. 

In case of no data aggregation each of the leaf node sensors 

generates a reading and sends it to its parent. At this level 9 

messages are generated. At the next level, the sensors forward 

each message they receive from their children up the hierarchy 

as well as their own readings. At this level in the hierarchy, a 

total of 9 + 3 = 12 messages are transmitted. Similarly at the 

next level, 12+1 = 13 messages are transmitted. In the network, 

a total of 9+12+13= 34 messages are sent. If data aggregation is 

employed then each of the 9 sensors sends their readings to 

their parents as above but the readings and the parent’s own 

reading are aggregated and merged into a single entity so only 3 

messages are communicated by the 3 parents. At the next level, 

these three are again aggregated into 1 combined reading which 

is sent to the base station. Thus a total of only 13 messages are 

communicated in the network compared to the 34 earlier when 

data aggregation was not used.  The saving in transmissions is 

substantial when we consider a large sensor network with 

thousands of nodes. 

 
Figure 1. Data Aggregation in a Wireless Sensor Network. 

3.2.  Security in Wireless Sensor Networks 
Two important security primitives in wireless sensor 

networks are data confidentiality and data integrity. 

Confidentiality means preventing any unauthorized entity from 

listening to the network traffic while data integrity means 

making sure that the data received by the receiver has not been 

tampered on its way. These two security primitives are the ones 

which are addressed in this paper. Security schemes in wireless 

sensor networks can be of two types. Hop by hop schemes and 

end to end schemes. In a hop by hop scheme communication 

between each hop is made secure. A sensor senses its 

environment, encrypts the data with a key shared between the 

two sensors and sends the encrypted data to the receiver. The 

receiver decrypts the received data and encrypts it again with a 

key shared between it and its next neighbor and sends it to the 

neighbor. This process continues till the data reaches the base 

station. In the hop by hop scheme, the data is decrypted and 

encrypted again at each intermediate node in the network. This 

introduces a potential security risk as the data is exposed after 

decrypting. If the node is compromised the attacker can easily 

get hold of the data. Also decryption and encryption at each 

node requires power. In end to end schemes on the other hand, 

encryption and decryption only takes place once in the system. 

The data is encrypted at the node where it originated and 

decrypted at the base station, thus removing the possibility of 

attack at the intermediate nodes. End to end scheme also helps 

save energy by not making every intermediate node perform the 

decryption and encryption operations for each datum they 

receive. End to end schemes are more secure than the hop by 

hop ones however, it limits our ability to perform aggregation 

in the network.  For an intermediate node to be able to perform 

aggregation, it needs to have unencrypted data. End to end 

scheme prevents the intermediates nodes from decrypting the 

data. This calls for methods which enable us to work on 

encrypted data.  

 

Homomorphic encryption 

One of the ways of working on encrypted data is through the 

use of homomorphic encryption. An encryption algorithm is 

said to be homomorphic, if it allows for the following property 

to hold. 

𝑒𝑛𝑐  𝑎 ⊗ 𝑒𝑛𝑐  𝑏 =  𝑒𝑛𝑐 (𝑎 ⨂ 𝑏) 

The two data items a and b are encrypted and the operation ⊗ 

is applied on the encrypted data. If the encryption scheme is 

homomorphic than its result would be the same when the 

operation ⊗ is performed on a and b first and the result is 

encrypted. Homomorphisms can be of two types, additive 

homomorphism and multiplicative homomorphism. 

 

Aggregate digital signature 

Homomorphic encryption provides for data confidentiality for 

integrity though we need digital signatures. An aggregate 

digital signature algorithm provides the functionality to 

aggregate n signatures on n distinct messages by n distinct 

users, into a single signature. This single signature will 

convince the verifier that the n users signed the n original 

messages. Once the signature is verified the verifier can be sure 

that the integrity of the data is intact. The assumption being that 

the sender’s signing key has not been compromised. 
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Figure 2.Sensor network using homomorphic encryption and agg. digital signatures according to the secure hierarchical data aggregation algorithm.

Elliptic curve cryptography 

Public key cryptography is widely used in traditional systems. 

Unfortunately traditional security approaches for confidentiality 

and data integrity are not feasible on wireless sensors. Public 

key cryptography although very secure can exhaust a sensor’s 

power very quickly. Elliptic curve cryptography (ECC) has 

come up as an attractive and viable alternative to public key 

cryptography in resource constrained environments.  In ECC 

for a given level of security a smaller key can be used and a 

smaller key translates to lesser computations and hence less 

power consumption. Elliptic curve cryptography makes use of 

the points on an elliptic curve defined by 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 

over a finite field ℱ. Elliptic curve cryptography makes use of 

the elliptic curve analog of the discrete log problem known as 

the elliptic curve discrete log problem (ECDLP). The ECDLP is 

computationally harder than the original discrete log problem 

and elliptic curve cryptosystem is built around it. 

4. SECURE HIERARCHICAL DATA AGGREGATION 
ALGORITHM 

The secure hierarchical data aggregation algorithm is an end to 

end scheme which employs homomorphic encryption for 

confidentiality and digital signatures for signing the data to 

ensure data integrity.  The original algorithm [1] specifies the 

use of elliptic curve integrate encryption scheme (ECIES) for 

encryption and a modified version of elliptic curve digital 

signature algorithm (ECDSA) for signing. Also the algorithm 

does not specify any particular tree construction algorithm. We 

found out that ECIES is not suitable for homomorphic 

encryption and hence we replaced it with elliptic curve elgamal 

(ECEG) in the implementation. We also implemented a tree 

construction algorithm and provide the algorithm in the 

algorithms section. The secure data aggregation algorithm 

assumes that the sensors are organized in a tree hierarchy, with 

the base station at the root. When the network boots up each 

sensor node generates a reading x. The reading is signed using 

the aggregate signature algorithm and Sig(x) is generated. The 

reading is then encrypted using the homomorphic encryption 

algorithm and Enc(x). The leaf nodes then send the encrypted 

data, signature and the public key corresponding to the private 

key used for generating signature to their parent.  After a node 

has received data from all its children, it sums up all the 

encrypted readings, which is possible because homomorphic 

encryption was used. It sums up the signature using the 

aggregate signature algorithm and all the public keys. The 

SUM-ENC, SUM-SIG and SUM-PK are then sent to the node’s 

parent. This process is repeated at every node until the data 

reaches the base station. An example network is shown in Fig. 

2, where the data flows upwards towards the base station from 

the leaf nodes. 

5. ALGORITHMS 
In this section we provide three algorithms; tree construction 

algorithm, the HAgg algorithm running on the sensors and the 

HAgg algorithm running on the base station.  

 

The tree construction algorithm 

We assume the TinyOS lossy radio model, considering all the 

sensors are alike and spread in a grid topology with one sensor 

placed in each grid. The channel is not ideal and has a definite 

error rate. Moreover in a bidirectional channel the error rate in 

both the directions is different. The lossy radio model assumes 

each mote has a transmission range of 50 feet and the 

probability of error in transmission increasing with the distance 

from the sensor.  
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HAgg algorithm running on the sensor nodes. 

The HAgg algorithm assumes the sensors are preloaded with 

the appropriate elliptic curve parameters, the base station’s 

public key and a network wide random integer. The random 

integer is used to compute a new k for each round.  At the start 

of each round each sensor chooses its private key and an 

appropriate public key. An elliptic curve private key is just a 

point on the elliptic curve and the public key is another point 

obtained by multiplying the base point by the private key. Each 

sensor computes R, and the multiplicative inverse of k mod p. 

The sensor then generates the signature si . This is followed by 

homomorphically encrypting the message mi. The message is 

first mapped to a point on the elliptic curve and then encrypted 

by the ECEG algorithm using the base station’s public key, 

although the original HAgg algorithm specifies the use of 

ECIES for encryption. 

 

HAgg algorithm running at the base station. 

The base station receives the sum of the signatures, the sum of 

the corresponding public keys and the sum of the encrypted 

messages.  The base station decrypts the aggregate result using 

its private key, and then reverse maps the elliptic curve point to 

plaintext information. For verification of the signature the base 

station calculates a point on the elliptic curve using the received 

signature, decrypted message and k. If the x coordinate of the 

calculate point is same as r(x) the signature is verifies. For 

security analysis and proof of the algorithm refer to [1]. 

The additive digital signature algorithm is a modification of the 

ECDSA algorithm, based on the observation that in a wireless 

sensor network environment all our messages are going to be of 

the same size. The original ECDSA algorithm calculates the 

hash of a message before encrypting it with the private key. 

Since all the messages in a sensor environment are of the same 

size, there is no need of a hashing algorithm. In the modified 

ECDSA, the authors in [1] do away with the hashing and the 

resulting signature algorithm is additive in nature. 

 

In the ECDSA algorithm a signature is a tuple (r, s) 

such that r = (r(x) mod p), where (r(x), r(y)) = kT, k is a 

randomly chosen number and T is the base point. S is found out 

using the formula s = k
-1

 (h(m) + z * r(x)) mod p. Here h is a 

secure hash function and z is the private key of the node. When 

two signatures d1=(r1,s1) and d2=(r2,s2) on two messages m1 

and m2 are added r1 and r2 remain the same while s1 and s2 can 

Requires: Parameters MAX_ALLOWED_REQUESTS, 

MAX_CHILDREN to be set before deployment. 

 

1: The base station starts by broadcasting a HELLO message. 
2: If a sensor which has not yet elected its parent receives a 

HELLO message, it sends a PARENT REQUEST to the 

originator of the HELLO message. 
3: When a node receives a PARENT REQUEST, it makes the 

following two checks 

i: The number of children is less than the    
MAX_CHILDREN limit. 

ii: The number of requests from a particular node is 

less than the MAX_ALLOWED_REQUESTS limit. 
4: When the above two checks are satisfied the node sends an 

ACCEPTED message to the sender of the PARENT REQUEST 

and adds the node to its children list. 

5: Upon receiving an ACCEPTED message a node elects the 

sender of the ACCEPTED message as its parent and broadcasts 

a HELLO message. 
6: If a sensor has not been able to elect a parent after a certain 

period of time it broadcasts a HELP message. 

7: Any sensor which receives a HELP message makes the two 
checks defined in step 3. When the checks are satisfied, it 

sends a HELP RESPONSE message. 

8: The originator of the HELP message accepts the sender of 
the first HELP RESPONSE as its parent and sends a HELP 

ACK. 
9: On receiving the HELP ACK from a node, the receiver 

accepts the sender of HELP ACK as its child. 

 

Requires: Elliptic curve parameters D=(q,FR,a,b,T,p,h), sensor 

reading mi , private key zi , base station’s public key Q, a 

network wide random integer k. 
 

1: Each sensor computes zi * T = (x; y), its public key. 

2: Each sensor computes R = (r(x), r(y)) = k * T. 
3: Each sensor computes k-1 mod p. 

4: Each sensor computes si = k-1 (mi + zi * r(x)) mod p. 

5: Each sensors signature for the message mi is si. 
6: Each sensor maps its reading mi onto the elliptic curve D. 

7: Each sensor generates ciphertext mi = enc(mi) 

8: if Sensor is a parent then 

9:  The sensor combines the signatures into s = ∑si 

10:  The sensor combines the all ciphertexts into one 

ciphertext ∑ mi 
11: end if 

Requires: Elliptic Curve Parameters D = (q, FR, a, b, T, p, h), 

sum of encrypted sensor readings m = ∑ mi, sum of the 

signatures s = ∑si , base station private key qi, sum of public 
keys Z, a network wide random integer k 

 

1: Decrypt ciphertext ∑ mi = ∑mi 
2: Map reading m from the elliptic curve D into plaintext. 

3: Compute R = (r(x), r(y)) = k * T. 

4: Compute w = s-1 mod p. 
5: Compute u1 = mw mod p. 

6: Compute u2 = r(x)w mod p. 

7: Compute X = u1T + u2Z. 
8: Compute v = X(x) mod p. 

9: if v == r then 
10:  The signature verified 

11: end if 

Algorithm 1. The tree construction algorithm. 

Algorithm 2.The HAgg algorithm at the sensor node [1]. Algorithm 3.The HAgg algorithm at the base station [1]. 
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be written as s1= k
-1

 (h(m1) + z * r(x)) and s2= k
-1

 (h(m2) + z * 

r(x)).  ECDSA is not an aggregate signature scheme because 

when these two signatures are added h(m1)and h(m2) need to be 

added. Hashing is not homomorphic so h(m1) + h(m2) ≠ h(m1 + 

m2) hence an aggregate signature is not the same as the 

signature on the sum of messages. On the other hand if we 

replace the hash of the message by the message itself in the 

formula the signature becomes additive because in that case we 

are just summing up integers. The signature (r, s) in the 

modified signature scheme is r = (r(x) mod p) and s =   k
-1

 (m + 

z * r(x)) mod p. 

 

The EC Elgamal encryption. 

The secure hierarchical data aggregation paper discusses the 

digital signature algorithm but not the encryption scheme. In 

this subsection we discuss the encryption scheme. The 

encryption scheme we use is the elliptic curve elgamal 

encryption which is an additive homomorphic encryption 

scheme. Before we can encrypt a message we first need to map 

the plaintext data to a point on the elliptic curve. The mapping 

should be such that it supports homomorphic property. The 

encrypted data is another point on the elliptic curve. To get the 

plaintext back, this point is first decrypted and a reverse 

mapping function is used to convert the elliptic curve point to 

the plaintext. We use a simple mapping technique in which we 

multiply the plaintext message m by the base point T, to get the 

elliptic curve point mT. This mapping satisfies the 

homomorphic criteria as shown below.  

map(m1 ) +map(m2 )+……+ map(mn ) =  m1T + m2T +…… mnT 

This translates the algorithm into a homomorphic encryption 

algorithm as follows. Each message mi maps to a point Mi on 

the elliptic curve. The points on the elliptic curve Mi s are 

added, and the addition of the elliptic curve points is equivalent 

to the addition of the plaintext data. The plaintext can be found 

out by reverse mapping the final result. 

 

M1 +M2 +……+Mn  = map(m1 ) +map(m2 )+……+ map(mn ) 

                                    = m1T + m2T +…… mnT 

                        = (m1 + m2 +…...+mn )T 

                                    = (∑mi )T 

6. IMPLEMENTATION 
We chose the mica2 sensor mote for our implementation. The 

coding is done on the TinyOS/TOSSIM platform for the mica2 

mote. TinyOS is an open source OS for wireless networked 

sensors [1], requiring minimal hardware. The programming 

language for TinyOS is networked embedded systems C (nesC), 

which is a derivative of C. We make use of the TinyECC library 

[3]. TinyECC is implemented over the prime field ℱp where p 

is a large prime number. The library consists of routines for 

large natural number operation, ECC operations and a key 

distribution algorithm ECDH, an encryption algorithm ECIES 

and a digital signature algorithm ECDSA. More information on 

TinyECC library can be found in [3]. In our implementation the 

secp160r1 160 bit elliptic curve was used which provides 

security equivalent to 1024 bit RSA key. We first simulated the 

code on TOSSIM, using AVRORA [4] as the simulation 

environment. AVRORA is a set of simulation and analysis tools 

for programs written for the AVR microcontroller which is used 

by the mica2 mote. The implementation was done on the mica2 

mote. We ported the code on the motes and measured the 

execution times of the various procedures which are tabulated 

in Table 1. 

7. ANALYSIS 
Consider the example network of Fig. 2. Each sensor in the 

network signs and encrypts its data before sending it to the 

aggregator. In case of a hop by hop algorithm the aggregator 

will first decrypt and verify all the messages it receives, after 

that it will add them together and finally encrypt and sign the 

aggregate before sending it further. In contrast to this, the 

aggregator in our algorithm only needs to add the ciphertext, 

the digital signatures and the public keys. So we are replacing 

the decryption and verify operations with three additions. If we 

look up Table 1 we find that the addition operations are 

significantly faster and consume less power than decryption 

and verify. As we said earlier we perform the decryption and 

verification only at the root node so we do not consider them 

here. The decryption and encryption consume 3700 mJ of 

energy while the three additions cost a mere 11.464 mJ. 

Replacing the signing and encryption with a few additions 

saves us 3688.5 mJ at each intermediate node (aggregator). 

Considering that two AA batteries have 18720000 mJ of energy, 

the saving of 3688.5 mJ in each round of communication is 

Table 1.  Execution time of various functions on motes. 

Operation Time Taken Energy 

Consumed 

Encryption 117905 ms 2829.7 mJ 

Decryption 79099.5 ms 1898.4 mJ 

Sign 38884 ms 933.21 mJ 

Verify 75075.9 ms 1801.8 mJ 

Addition of ciphertext 317.3 ms 7.61 mJ 

Addition of signatures .183 ms 4.392 μJ 

Addition of Public keys 160.5 ms 3.85 mJ 

 
Requires: Elliptic curve parameters D=(q,FR,a,b,T,p,h), sensor 

reading mi and the private key zi. 

Encryption 

1: Map the message m to an elliptic curve point M using a 
mapping technique. 

2: Generate a random integer k. 

3: Calculate C1= kT and C2=M+kQ. 
4: C (C1, C2)= (kT, M+kQ) is the ciphertext. 

Decryption 

1:  Calculate (- zi C1) and add it to C2 . 

2: The decrypted message M is the addition (- zi C1)+C2 

Algorithm 4. EC elgamal encryption and decryption algorithm [5]. 
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significant. Our implementation of the operations can be further 

optimized which is one of our future goals but the important 

thing to note here is the saving in energy due to the scheme. 

The saving in energy can be maximized when we have 

optimized implementation of the above operations. In a data 

aggregation scheme aggregator holds an important position and 

is required to perform more tasks than an ordinary sensor. This 

leads to the aggregator getting exhausted quicker than the rest 

of the sensors. Our scheme reduces the burden on the 

aggregator and increases its life. 

 

Energy spent by the aggregator in a hop by hop scheme   

( decryption + verification + signing + encryption) =  7463.11 

mJ                                                              

Number of rounds before exhaustion = 18720000/7463.11 

        = 2508 

Energy spent by the aggregator in the scheme under 

investigation (signing + encryption) = 4739.5mJ                                                

Number of rounds before exhaustion = 18720000/4739.5 

        =3949 

This means that in the secure hierarchical data aggregation 

scheme an aggregator lasts 57% longer compared to a hop by 

hop scheme. In a tree based schemes aggregators are entrusted 

with more tasks than any other nodes which means they are the 

first ones to go down. Thus, increasing the aggregator life time 

by an amount will mean the network life time is also increased 

by the same amount. 

8. CONCLUSIONS 
As seen in the previous section, the secure hierarchical data 

aggregation scheme offers a definite advantage over hop by hop 

data aggregation schemes. It increases the aggregator life time, 

the network life time as well as provides greater security by not 

letting the aggregator decrypt the data. We are in the process of 

performing a detailed analysis of the scheme which will 

reinforce our preliminary analysis which clearly shows the 

advantages of this scheme. 

9. FUTURE WORK 
We are working on optimizing our functions which will further 

reduce the execution time and energy consumed.  We are also 

working on enabling the optimizing switches of TinyECC [3] in 

our code, which will greatly reduce the statistics further. As a 

further extension we are also looking to minimize the 

redundancy of the messages in the network by implementing 

some form of data compression which will help it further 

reducing the number of transmissions in the network and thus 

will increase the network lifetime. As concluded above the 

algorithm saves energy compared to a hop by hop encryption 

scheme, we are performing more detailed analysis measuring 

the performance of the algorithm further on the parameters such 

as the overhead compared to a no security scheme, the energy 

saved and the throughput.  
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