
 1

Proceedings of the 4th Annual ISC Research Symposium
ISCRS 2010

April 21, 2010, Rolla, Missouri

Performance Analysis of Secure Hierarchical Data Aggregation in Wireless
Sensor Networks

Vimal Kumar
Dept of Computer Science

Missouri University of Science & Technology

Sanjay Madria
Dept of Computer Science

Missouri University of Science & Technology

ABSTRACT
In this paper we study the performance of an end to end secure

data aggregation scheme on wireless sensors. We measure the

execution time and energy consumption of various

cryptographic functions on the motes and analyze how an end

to end scheme increases the network life time in a WSN

compared to a hop by hop scheme. The scheme is implemented

on Mica2 motes and makes use of elliptic curves for the

implementation of public key cryptography on the motes.

1. INTRODUCTION
Wireless sensor networks have a number of applications in

various fields like military, medicine, habitat monitoring, target

tracking etc. The small size of wireless sensors allows us to

easily deploy them in hostile environment in large numbers

without them being noticed but, it also presents us with some

constraints. The small size of a wireless sensor limits the

amount of memory, the available processing power and the size

of battery on the sensors. Limited memory means that the

amount of data and the code that can be stored on a sensor is

limited. Sensors are usually deployed in hostile environments,

where it is not feasible to change the batteries once they expire.

This calls for judicious use of the batteries so that the sensor

lifetime and hence the network life time can be maximized.

One way of increasing network lifetime of a WSN is data

aggregation.

The challenge posed by limited available power becomes

harder when applications require security due to the high cost

of security techniques. Two different types of secure data

aggregation schemes have been proposed by researchers, hop

by hop secure data aggregation schemes and end to end secure

data aggregation schemes.The paradigm shift now is towards

end to end schemes which offer better security than the hop by

hop ones. End to end schemes also require lesser amount of

computation which helps in reducing energy consumption.

Secure hierarchical data aggregation in wireless sensor

networks [1] is one such end to end scheme. In this scheme the

sensor nodes first organize themselves into a tree hierarchy and

then use a homomorphic encryption algorithm (ECEG) and an

aggregate digital signature algorithm (ECDSA) to achieve end

to end cryptography. We have designed and implemented the

algorithm proposed in [1] with some modifications on a Mica2

mote. We discuss some of the results we obtained and evaluate

the algorithm based on these results. The end to end scheme of

[1] provides better security by virtue of public key

cryptography. We analyze our results to show how it saves

energy on the aggregators and increases the network lifetime by

57%. Although our focus is on a particular scheme, our results

hold for any end to end secure data aggregation scheme in

general.

In the following section we survey the literature on secure

data aggregation schemes and compare this work with others.

We elaborate on data aggregation and security in wireless

sensor networks in section 3. In section 4 we revise the secure

hierarchical data aggregation algorithm as introduced in [1]

while section 5 discusses the sub algorithms within the

algorithm. Section 6 details the implementation of the scheme

on Mica2 motes. In section 7 we provide some initial results

and the analysis from our implementation, in section 8 we

provide our conclusion and discuss our future work and

expected results in section 9.

2. RELATED WORK
Data aggregation in wireless sensor networks has been of

interest to researchers because of its ability to save energy on

the sensors. Early secure data aggregation schemes were hop by

hop schemes, these schemes like the one by Hu and Evans [8]

mostly dealt with the issue of data confidentiality in the face of

a single compromised node. Schemes tackling the issue of

multiple compromised nodes were introduced later, for example

the scheme by Chan et al [9]. This algorithm supported any

arbitrary tree and was resilient to any number of malicious

nodes. Schemes like SecureDAV [10] and SDAP [11] also

provided for data integrity by making use of threshold

cryptography and Merkle hash trees respectively. Next were the

end to end schemes some of which are discussed in [1], [12]

and [13]. These algorithms use the concept of homomorphic

encryption. While [13] does not provide data integrity, both [1]

and [12] use the aggregate signature protocols for it. The

former uses a form of ECDSA and the latter uses Boneh and

Gentry’s aggregate signature scheme. We focus on the secure

hierarchical data aggregation paper of [1]. This is an end to end

scheme providing both data confidentiality and data integrity.

Our objective is to compare the performance of this scheme

with others. The work in [5] and [6] deals with evaluating the

performance of public key encryption and homomorphic

encryption on wireless sensors. The authors in [14] calculate

the cost of cryptography on wireless sensors. They take into

consideration an energy model and based on that model

calculate the cost of key distribution, encryption and

communicating secure data. In our work, we evaluate the

performance of the homomorphic encryption as well as analyze

the performance of a secure data aggregation scheme and

calculate the energy savings due to it. Although we take into

consideration a particular homomorphic encryption scheme and

 2

a particular signature scheme, our results are valid for any end

to end secure data aggregation scheme in general.

3. BACKGROUND

3.1. Data Aggregation
As concurred in the previous section, the biggest challenge

while working with wireless sensors is the limited available

battery power. As pointed out in [6] and [7] radio

communication consumes a large amount of energy on a sensor.

Owing to this, one of the goals in sensor network research is to

minimize the number of radio transmissions within the

network. Data aggregation is one way of doing this. An

aggregate function like SUM, AVERAGE etc. takes as input a

number of values and outputs a single aggregate value. In

applications requiring data aggregation, the aggregator receives

input values from various sensors, performs the required

operation, and sends forward only the output, thus saving

transmissions. Consider the example sensor network in Fig. 1.

In case of no data aggregation each of the leaf node sensors

generates a reading and sends it to its parent. At this level 9

messages are generated. At the next level, the sensors forward

each message they receive from their children up the hierarchy

as well as their own readings. At this level in the hierarchy, a

total of 9 + 3 = 12 messages are transmitted. Similarly at the

next level, 12+1 = 13 messages are transmitted. In the network,

a total of 9+12+13= 34 messages are sent. If data aggregation is

employed then each of the 9 sensors sends their readings to

their parents as above but the readings and the parent’s own

reading are aggregated and merged into a single entity so only 3

messages are communicated by the 3 parents. At the next level,

these three are again aggregated into 1 combined reading which

is sent to the base station. Thus a total of only 13 messages are

communicated in the network compared to the 34 earlier when

data aggregation was not used. The saving in transmissions is

substantial when we consider a large sensor network with

thousands of nodes.

Figure 1. Data Aggregation in a Wireless Sensor Network.

3.2. Security in Wireless Sensor Networks
Two important security primitives in wireless sensor

networks are data confidentiality and data integrity.

Confidentiality means preventing any unauthorized entity from

listening to the network traffic while data integrity means

making sure that the data received by the receiver has not been

tampered on its way. These two security primitives are the ones

which are addressed in this paper. Security schemes in wireless

sensor networks can be of two types. Hop by hop schemes and

end to end schemes. In a hop by hop scheme communication

between each hop is made secure. A sensor senses its

environment, encrypts the data with a key shared between the

two sensors and sends the encrypted data to the receiver. The

receiver decrypts the received data and encrypts it again with a

key shared between it and its next neighbor and sends it to the

neighbor. This process continues till the data reaches the base

station. In the hop by hop scheme, the data is decrypted and

encrypted again at each intermediate node in the network. This

introduces a potential security risk as the data is exposed after

decrypting. If the node is compromised the attacker can easily

get hold of the data. Also decryption and encryption at each

node requires power. In end to end schemes on the other hand,

encryption and decryption only takes place once in the system.

The data is encrypted at the node where it originated and

decrypted at the base station, thus removing the possibility of

attack at the intermediate nodes. End to end scheme also helps

save energy by not making every intermediate node perform the

decryption and encryption operations for each datum they

receive. End to end schemes are more secure than the hop by

hop ones however, it limits our ability to perform aggregation

in the network. For an intermediate node to be able to perform

aggregation, it needs to have unencrypted data. End to end

scheme prevents the intermediates nodes from decrypting the

data. This calls for methods which enable us to work on

encrypted data.

Homomorphic encryption

One of the ways of working on encrypted data is through the

use of homomorphic encryption. An encryption algorithm is

said to be homomorphic, if it allows for the following property

to hold.

𝑒𝑛𝑐 𝑎 ⊗ 𝑒𝑛𝑐 𝑏 = 𝑒𝑛𝑐 (𝑎 ⨂ 𝑏)

The two data items a and b are encrypted and the operation ⊗

is applied on the encrypted data. If the encryption scheme is

homomorphic than its result would be the same when the

operation ⊗ is performed on a and b first and the result is

encrypted. Homomorphisms can be of two types, additive

homomorphism and multiplicative homomorphism.

Aggregate digital signature

Homomorphic encryption provides for data confidentiality for

integrity though we need digital signatures. An aggregate

digital signature algorithm provides the functionality to

aggregate n signatures on n distinct messages by n distinct

users, into a single signature. This single signature will

convince the verifier that the n users signed the n original

messages. Once the signature is verified the verifier can be sure

that the integrity of the data is intact. The assumption being that

the sender’s signing key has not been compromised.

 3

Figure 2.Sensor network using homomorphic encryption and agg. digital signatures according to the secure hierarchical data aggregation algorithm.

Elliptic curve cryptography

Public key cryptography is widely used in traditional systems.

Unfortunately traditional security approaches for confidentiality

and data integrity are not feasible on wireless sensors. Public

key cryptography although very secure can exhaust a sensor’s

power very quickly. Elliptic curve cryptography (ECC) has

come up as an attractive and viable alternative to public key

cryptography in resource constrained environments. In ECC

for a given level of security a smaller key can be used and a

smaller key translates to lesser computations and hence less

power consumption. Elliptic curve cryptography makes use of

the points on an elliptic curve defined by 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

over a finite field ℱ. Elliptic curve cryptography makes use of

the elliptic curve analog of the discrete log problem known as

the elliptic curve discrete log problem (ECDLP). The ECDLP is

computationally harder than the original discrete log problem

and elliptic curve cryptosystem is built around it.

4. SECURE HIERARCHICAL DATA AGGREGATION
ALGORITHM

The secure hierarchical data aggregation algorithm is an end to

end scheme which employs homomorphic encryption for

confidentiality and digital signatures for signing the data to

ensure data integrity. The original algorithm [1] specifies the

use of elliptic curve integrate encryption scheme (ECIES) for

encryption and a modified version of elliptic curve digital

signature algorithm (ECDSA) for signing. Also the algorithm

does not specify any particular tree construction algorithm. We

found out that ECIES is not suitable for homomorphic

encryption and hence we replaced it with elliptic curve elgamal

(ECEG) in the implementation. We also implemented a tree

construction algorithm and provide the algorithm in the

algorithms section. The secure data aggregation algorithm

assumes that the sensors are organized in a tree hierarchy, with

the base station at the root. When the network boots up each

sensor node generates a reading x. The reading is signed using

the aggregate signature algorithm and Sig(x) is generated. The

reading is then encrypted using the homomorphic encryption

algorithm and Enc(x). The leaf nodes then send the encrypted

data, signature and the public key corresponding to the private

key used for generating signature to their parent. After a node

has received data from all its children, it sums up all the

encrypted readings, which is possible because homomorphic

encryption was used. It sums up the signature using the

aggregate signature algorithm and all the public keys. The

SUM-ENC, SUM-SIG and SUM-PK are then sent to the node’s

parent. This process is repeated at every node until the data

reaches the base station. An example network is shown in Fig.

2, where the data flows upwards towards the base station from

the leaf nodes.

5. ALGORITHMS
In this section we provide three algorithms; tree construction

algorithm, the HAgg algorithm running on the sensors and the

HAgg algorithm running on the base station.

The tree construction algorithm

We assume the TinyOS lossy radio model, considering all the

sensors are alike and spread in a grid topology with one sensor

placed in each grid. The channel is not ideal and has a definite

error rate. Moreover in a bidirectional channel the error rate in

both the directions is different. The lossy radio model assumes

each mote has a transmission range of 50 feet and the

probability of error in transmission increasing with the distance

from the sensor.

 4

HAgg algorithm running on the sensor nodes.

The HAgg algorithm assumes the sensors are preloaded with

the appropriate elliptic curve parameters, the base station’s

public key and a network wide random integer. The random

integer is used to compute a new k for each round. At the start

of each round each sensor chooses its private key and an

appropriate public key. An elliptic curve private key is just a

point on the elliptic curve and the public key is another point

obtained by multiplying the base point by the private key. Each

sensor computes R, and the multiplicative inverse of k mod p.

The sensor then generates the signature si . This is followed by

homomorphically encrypting the message mi. The message is

first mapped to a point on the elliptic curve and then encrypted

by the ECEG algorithm using the base station’s public key,

although the original HAgg algorithm specifies the use of

ECIES for encryption.

HAgg algorithm running at the base station.

The base station receives the sum of the signatures, the sum of

the corresponding public keys and the sum of the encrypted

messages. The base station decrypts the aggregate result using

its private key, and then reverse maps the elliptic curve point to

plaintext information. For verification of the signature the base

station calculates a point on the elliptic curve using the received

signature, decrypted message and k. If the x coordinate of the

calculate point is same as r(x) the signature is verifies. For

security analysis and proof of the algorithm refer to [1].

The additive digital signature algorithm is a modification of the

ECDSA algorithm, based on the observation that in a wireless

sensor network environment all our messages are going to be of

the same size. The original ECDSA algorithm calculates the

hash of a message before encrypting it with the private key.

Since all the messages in a sensor environment are of the same

size, there is no need of a hashing algorithm. In the modified

ECDSA, the authors in [1] do away with the hashing and the

resulting signature algorithm is additive in nature.

In the ECDSA algorithm a signature is a tuple (r, s)

such that r = (r(x) mod p), where (r(x), r(y)) = kT, k is a

randomly chosen number and T is the base point. S is found out

using the formula s = k
-1

 (h(m) + z * r(x)) mod p. Here h is a

secure hash function and z is the private key of the node. When

two signatures d1=(r1,s1) and d2=(r2,s2) on two messages m1

and m2 are added r1 and r2 remain the same while s1 and s2 can

Requires: Parameters MAX_ALLOWED_REQUESTS,

MAX_CHILDREN to be set before deployment.

1: The base station starts by broadcasting a HELLO message.
2: If a sensor which has not yet elected its parent receives a

HELLO message, it sends a PARENT REQUEST to the

originator of the HELLO message.
3: When a node receives a PARENT REQUEST, it makes the

following two checks

i: The number of children is less than the
MAX_CHILDREN limit.

ii: The number of requests from a particular node is

less than the MAX_ALLOWED_REQUESTS limit.
4: When the above two checks are satisfied the node sends an

ACCEPTED message to the sender of the PARENT REQUEST

and adds the node to its children list.

5: Upon receiving an ACCEPTED message a node elects the

sender of the ACCEPTED message as its parent and broadcasts

a HELLO message.
6: If a sensor has not been able to elect a parent after a certain

period of time it broadcasts a HELP message.

7: Any sensor which receives a HELP message makes the two
checks defined in step 3. When the checks are satisfied, it

sends a HELP RESPONSE message.

8: The originator of the HELP message accepts the sender of
the first HELP RESPONSE as its parent and sends a HELP

ACK.
9: On receiving the HELP ACK from a node, the receiver

accepts the sender of HELP ACK as its child.

Requires: Elliptic curve parameters D=(q,FR,a,b,T,p,h), sensor

reading mi , private key zi , base station’s public key Q, a

network wide random integer k.

1: Each sensor computes zi * T = (x; y), its public key.

2: Each sensor computes R = (r(x), r(y)) = k * T.
3: Each sensor computes k-1 mod p.

4: Each sensor computes si = k-1 (mi + zi * r(x)) mod p.

5: Each sensors signature for the message mi is si.
6: Each sensor maps its reading mi onto the elliptic curve D.

7: Each sensor generates ciphertext mi = enc(mi)

8: if Sensor is a parent then

9: The sensor combines the signatures into s = ∑si

10: The sensor combines the all ciphertexts into one

ciphertext ∑ mi
11: end if

Requires: Elliptic Curve Parameters D = (q, FR, a, b, T, p, h),

sum of encrypted sensor readings m = ∑ mi, sum of the

signatures s = ∑si , base station private key qi, sum of public
keys Z, a network wide random integer k

1: Decrypt ciphertext ∑ mi = ∑mi
2: Map reading m from the elliptic curve D into plaintext.

3: Compute R = (r(x), r(y)) = k * T.

4: Compute w = s-1 mod p.
5: Compute u1 = mw mod p.

6: Compute u2 = r(x)w mod p.

7: Compute X = u1T + u2Z.
8: Compute v = X(x) mod p.

9: if v == r then
10: The signature verified

11: end if

Algorithm 1. The tree construction algorithm.

Algorithm 2.The HAgg algorithm at the sensor node [1]. Algorithm 3.The HAgg algorithm at the base station [1].

 5

be written as s1= k
-1

 (h(m1) + z * r(x)) and s2= k
-1

 (h(m2) + z *

r(x)). ECDSA is not an aggregate signature scheme because

when these two signatures are added h(m1)and h(m2) need to be

added. Hashing is not homomorphic so h(m1) + h(m2) ≠ h(m1 +

m2) hence an aggregate signature is not the same as the

signature on the sum of messages. On the other hand if we

replace the hash of the message by the message itself in the

formula the signature becomes additive because in that case we

are just summing up integers. The signature (r, s) in the

modified signature scheme is r = (r(x) mod p) and s = k
-1

 (m +

z * r(x)) mod p.

The EC Elgamal encryption.

The secure hierarchical data aggregation paper discusses the

digital signature algorithm but not the encryption scheme. In

this subsection we discuss the encryption scheme. The

encryption scheme we use is the elliptic curve elgamal

encryption which is an additive homomorphic encryption

scheme. Before we can encrypt a message we first need to map

the plaintext data to a point on the elliptic curve. The mapping

should be such that it supports homomorphic property. The

encrypted data is another point on the elliptic curve. To get the

plaintext back, this point is first decrypted and a reverse

mapping function is used to convert the elliptic curve point to

the plaintext. We use a simple mapping technique in which we

multiply the plaintext message m by the base point T, to get the

elliptic curve point mT. This mapping satisfies the

homomorphic criteria as shown below.

map(m1) +map(m2)+……+ map(mn) = m1T + m2T +…… mnT

This translates the algorithm into a homomorphic encryption

algorithm as follows. Each message mi maps to a point Mi on

the elliptic curve. The points on the elliptic curve Mi s are

added, and the addition of the elliptic curve points is equivalent

to the addition of the plaintext data. The plaintext can be found

out by reverse mapping the final result.

M1 +M2 +……+Mn = map(m1) +map(m2)+……+ map(mn)

 = m1T + m2T +…… mnT

 = (m1 + m2 +…...+mn)T

 = (∑mi)T

6. IMPLEMENTATION
We chose the mica2 sensor mote for our implementation. The

coding is done on the TinyOS/TOSSIM platform for the mica2

mote. TinyOS is an open source OS for wireless networked

sensors [1], requiring minimal hardware. The programming

language for TinyOS is networked embedded systems C (nesC),

which is a derivative of C. We make use of the TinyECC library

[3]. TinyECC is implemented over the prime field ℱp where p

is a large prime number. The library consists of routines for

large natural number operation, ECC operations and a key

distribution algorithm ECDH, an encryption algorithm ECIES

and a digital signature algorithm ECDSA. More information on

TinyECC library can be found in [3]. In our implementation the

secp160r1 160 bit elliptic curve was used which provides

security equivalent to 1024 bit RSA key. We first simulated the

code on TOSSIM, using AVRORA [4] as the simulation

environment. AVRORA is a set of simulation and analysis tools

for programs written for the AVR microcontroller which is used

by the mica2 mote. The implementation was done on the mica2

mote. We ported the code on the motes and measured the

execution times of the various procedures which are tabulated

in Table 1.

7. ANALYSIS
Consider the example network of Fig. 2. Each sensor in the

network signs and encrypts its data before sending it to the

aggregator. In case of a hop by hop algorithm the aggregator

will first decrypt and verify all the messages it receives, after

that it will add them together and finally encrypt and sign the

aggregate before sending it further. In contrast to this, the

aggregator in our algorithm only needs to add the ciphertext,

the digital signatures and the public keys. So we are replacing

the decryption and verify operations with three additions. If we

look up Table 1 we find that the addition operations are

significantly faster and consume less power than decryption

and verify. As we said earlier we perform the decryption and

verification only at the root node so we do not consider them

here. The decryption and encryption consume 3700 mJ of

energy while the three additions cost a mere 11.464 mJ.

Replacing the signing and encryption with a few additions

saves us 3688.5 mJ at each intermediate node (aggregator).

Considering that two AA batteries have 18720000 mJ of energy,

the saving of 3688.5 mJ in each round of communication is

Table 1. Execution time of various functions on motes.

Operation Time Taken Energy

Consumed

Encryption 117905 ms 2829.7 mJ

Decryption 79099.5 ms 1898.4 mJ

Sign 38884 ms 933.21 mJ

Verify 75075.9 ms 1801.8 mJ

Addition of ciphertext 317.3 ms 7.61 mJ

Addition of signatures .183 ms 4.392 μJ

Addition of Public keys 160.5 ms 3.85 mJ

Requires: Elliptic curve parameters D=(q,FR,a,b,T,p,h), sensor

reading mi and the private key zi.

Encryption

1: Map the message m to an elliptic curve point M using a
mapping technique.

2: Generate a random integer k.

3: Calculate C1= kT and C2=M+kQ.
4: C (C1, C2)= (kT, M+kQ) is the ciphertext.

Decryption

1: Calculate (- zi C1) and add it to C2 .

2: The decrypted message M is the addition (- zi C1)+C2

Algorithm 4. EC elgamal encryption and decryption algorithm [5].

 6

significant. Our implementation of the operations can be further

optimized which is one of our future goals but the important

thing to note here is the saving in energy due to the scheme.

The saving in energy can be maximized when we have

optimized implementation of the above operations. In a data

aggregation scheme aggregator holds an important position and

is required to perform more tasks than an ordinary sensor. This

leads to the aggregator getting exhausted quicker than the rest

of the sensors. Our scheme reduces the burden on the

aggregator and increases its life.

Energy spent by the aggregator in a hop by hop scheme

(decryption + verification + signing + encryption) = 7463.11

mJ

Number of rounds before exhaustion = 18720000/7463.11

 = 2508

Energy spent by the aggregator in the scheme under

investigation (signing + encryption) = 4739.5mJ

Number of rounds before exhaustion = 18720000/4739.5

 =3949

This means that in the secure hierarchical data aggregation

scheme an aggregator lasts 57% longer compared to a hop by

hop scheme. In a tree based schemes aggregators are entrusted

with more tasks than any other nodes which means they are the

first ones to go down. Thus, increasing the aggregator life time

by an amount will mean the network life time is also increased

by the same amount.

8. CONCLUSIONS
As seen in the previous section, the secure hierarchical data

aggregation scheme offers a definite advantage over hop by hop

data aggregation schemes. It increases the aggregator life time,

the network life time as well as provides greater security by not

letting the aggregator decrypt the data. We are in the process of

performing a detailed analysis of the scheme which will

reinforce our preliminary analysis which clearly shows the

advantages of this scheme.

9. FUTURE WORK
We are working on optimizing our functions which will further

reduce the execution time and energy consumed. We are also

working on enabling the optimizing switches of TinyECC [3] in

our code, which will greatly reduce the statistics further. As a

further extension we are also looking to minimize the

redundancy of the messages in the network by implementing

some form of data compression which will help it further

reducing the number of transmissions in the network and thus

will increase the network lifetime. As concluded above the

algorithm saves energy compared to a hop by hop encryption

scheme, we are performing more detailed analysis measuring

the performance of the algorithm further on the parameters such

as the overhead compared to a no security scheme, the energy

saved and the throughput.

10. ACKNOWLEDGMENTS
This research is partly supported by Intelligent Systems Center.

11. REFERENCES
[1]Julia Albath and Sanjay Madria, “Secure Hierarchical

Aggregation in Sensor Networks,”. In Proceedings of IEEE

Wireless Communications and Networking Conference, 2009.

[2] J. P. Walters, Z. Liang, W. Shi, and V. Chaudhary, “Wireless

Sensor Network Security: A Survey,”. Auerbach Publications,

CRC Press,2006.

[3] An Liu and Peng Ning, “ Tinyecc: A configurable library for

elliptic curve cryptography in wireless sensor networks”. In 7th

International Conference on Information Processing in Sensor

Networks (IPSN 2008), April 2008.

[4] Ben Titzer, Daniel K. Lee and Jens Palsberg, “Avrora:

scalable sensor network simulation with precise timing”. In

Proceedings of the Fourth International Symposium on

Information Processing in Sensor Networks, IPSN 2005.

[5]O. Ugus, A. Hessler, and D. Westhof, “Performance of

additive homomorphic EC-Elgamal encryption for TinyPEDS”.

Technical report,6. Fachgesprach "Drahtlose Sensornetze",

July 2007.

[6] K. Piotrowski, P. Langendoerfer, and S. Peter. “How public

key cryptography influences wireless sensor node lifetime”. In

Proceedings of the 4rd ACM Workshop on Security of ad hoc

and Sensor Networks, SASN 2006.

[7] S. Peter, K. Piotrowski, and P. Langendoerfer. “On

concealed data aggregation for wireless sensor networks”. In

Proceedings of the IEEE Consumer Communications and

Networking Conference 2007.

 [8] Lingxuan Hu and David Evans, “Secure Aggregation for

Wireless Networks”. In Workshop on Security and Assurance in

Ad hoc Networks, 2003.

[9] Haowen Chan, Adrian Perrig and Dawn Song “A Secure

Hierarchical In-network Aggregation in Sensor Networks”. In

CCS 2006.

[10] Ajay Mahimkar and Theodore S Rappaport, “SecureDAV:

A secure data aggregation and verification protocol for sensor

networks” In Proceedings of the IEEE Global

Telecommunications Conference, 2004.

[11] Yi Yang, Xinran Wang, Sencun Zhu and Guohong Cao,

“SDAP: a secure hop-by-hop data aggregation protocol for

sensor networks”. In MobiHoc ’06: Proceedings of the seventh

ACM international symposium on Mobile ad hoc networking

and computing

[12] Hung-Min Sun, Ying-Chu Hsiao, Yue-Hsun Lin, Chien-

Ming Chen, “An Efficient and Verifiable concealed Data

Aggregation Scheme in Wireless Sensor Networks”. In

Proceedings of the 2008 International Conference on

Embedded Software and Systems ,pp. 19-26

[13] C. Castelluccia, E. Mykletun and G. Tsudik. “Efficient

Aggregation of Encrypted Data in Wireless Sensor Networks”.

In MobiQuitous 2005.

[14] G. de Meulenae, F. Gosset, F. Standaert and O. Pereira.

“On the Energy Cost of Communication and Cryptography in

Wireless Sensor Networks”. In IEEE International Conference

on Wireless and Mobile Computing 2008.

