
USING INTERIOR-POINT METHODS WITHIN AN OUTER
APPROXIMATION FRAMEWORK FOR MIXED INTEGER

NONLINEAR PROGRAMMING

HANDE Y. BENSON∗

Abstract. Interior-point methods for nonlinear programming have been demon-
strated to be quite efficient, especially for large scale problems, and, as such, they
are ideal candidates for solving the nonlinear subproblems that arise in the solution
of mixed-integer nonlinear programming problems via outer approximation. However,
traditionally, infeasible primal-dual interior-point methods have had two main perceived
deficiencies: (1) lack of infeasibility detection capabilities, and (2) poor performance
after a warmstart. In this paper, we propose the exact primal-dual penalty approach
as a means to overcome these deficiencies. The generality of this approach to handle
any change to the problem makes it suitable for the outer approximation framework,
where each nonlinear subproblem can differ from the others in the sequence in a variety
of ways. Additionally, we examine cases where the nonlinear subproblems take on spe-
cial forms, namely those of second-order cone programming problems and semidefinite
programming problems. Encouraging numerical results are provided.

Key words. interior-point methods, nonlinear programming, integer programming

AMS(MOS) subject classifications. 90C51, 90C11, 90C30, 90C25

1. Introduction. The optimization problem considered in this paper
is the Mixed Integer Nonlinear Programming (MINLP) problem of the form

min
x,y

f(x, y)

s.t. h(x, y) ≥ 0
Axx ≤ bx
Ayy ≤ by
y ∈ Zp,

(1.1)

where x ∈ Rn, f : Rn+p → R and h : Rn+p → Rm are twice continuously
differentiable, Ax ∈ Rmx×n, Ay ∈ Rmy×p, bx ∈ Rmx , by ∈ Rmy , and the
linear constraints define polyhedral sets X and Y, which we assume to be
bounded. When p = 0, we have the standard nonlinear programming prob-
lem (NLP), and when n = 0, we have an integer nonlinear programming
problem. The constraints h(x, y) ≥ 0 are nonlinear, and they can take
special forms such as second-order cone constraints:

ẑ −
∥∥∥∥[
x̂
ŷ

]∥∥∥∥
2

≥ 0,

where ẑ is a scalar equal to one of the elements of x or y, x̂ and ŷ are
vectors consisting on some or all elements of x and y, respectively, and

∗Department of Decision Sciences, Bennett S. LeBow School of Business, Drexel
University, Email: benson@drexel.edu. Research supported by NSF grant CCF-0725692.

1



2 HANDE Y. BENSON

‖ · ‖2 denotes the Euclidean norm. These special forms include nonlinear
formulations of semidefinite constraints as well, as shown in [10], [13], and
[14].

The existing algorithms for solving a problem of the form (1.1) em-
ploy a two-level approach. In Branch-and-Bound ([28], [25]), the outer
level successively partitions the feasible region of (1.1) by introducing or
modifying bounds on y, while the inner level solves the continuous subprob-
lems obtained by relaxing the integer constraints. In Outer Approximation
([18],[31]), the outer level solves a mixed-integer linear programming prob-
lem derived by the linearization of the objective and constraint functions
at the solutions of the inner problem which is obtained by fixing the val-
ues of y in the original MINLP. Generalized Benders Decomposition [22]
similarly alternates between the solution of a mixed-integer linear program-
ming problem, but in the dual sense, and a continuous inner problem af-
ter fixing y. Other approaches, such as cutting-plane algorithms [3] exist
for special forms of (1.1) including second-order cone programming prob-
lems. Software implementing these methods include SBB [21], MINLP
[26], BARON [32], DICOPT [36], AlphaECP [38], FilMINT [1], and
Bonmin [11].

Regardless of the approach chosen to solve (1.1), a sequence of con-
tinuous optimization problems need to be solved, and the solution of these
problems can account for a significant portion of the total runtime. There-
fore, the solution algorithm employed to solve these problems must be
efficient. A major source of this efficiency stems from the ability to reuse
information obtained from solving related problems, or warmstarting. The
solution algorithm must also be provably convergent in a sense that guar-
antees to find the global optimum for the continuous problem when such
a solution exists and to issue a certificate of infeasibility when it does not.
Failing on any single continuous relaxation will mean the failure of the
overall algorithm.

In this paper, we will examine the use of an interior-point method
as the inner level solution algorithm. Lack of warmstart and infeasibil-
ity detection capabilities have long been the main perceived difficulties of
interior-point methods. Restarting from the solution of a previous problem
may lead the algorithm to encounter numerical problems or even to stall,
since the complementarity conditions lead to some nonnegative variables to
be on the boundary at the given solution. For an infeasible interior-point
method, it may be advantageous to start and remain infeasible throughout
the solution process, and therefore, issuing a certificate of infeasibility for
the problem in general is rather difficult. Additionally, a primal-dual inte-
rior point method seeks the analytic centers of the faces of optimal primal
and dual solutions. Constraint qualifications that confirm the existence
and finiteness of both primal and dual solutions are required to guaran-
tee convergence. In fact, only one of the MINLP codes mentioned above,
[11], uses a pure interior-point method, that is implemented in IPOPT



USING IPMS WITHIN OUTER APPROXIMATION FOR MINLP 3

[37], to solve the inner problem. Nevertheless, numerical studies such as
[9], [8], and [29] demonstrate that interior-point solvers such as ipopt [37],
loqo [34], and knitro [30] are highly efficient and are the only solvers
capable of handling very large scale NLPs. Therefore, it is important to
resolve difficulties associated with warmstarting and infeasibility detection
and to implement an efficient and robust MINLP solver using interior-point
methods.

In [5], we analyzed the use of an interior-point method within a branch-
and-bound framework. We showed that the changing bounds would guar-
antee that the algorithm would stall when warmstarting, and that even with
a coldstart, fixed variables and infeasible problems would cause the algo-
rithm to fail. As a remedy, we proposed a primal-dual penalty approach,
which was able to greatly improve efficiency, handle fixed variables, and
correctly identify all infeasible subproblems in numerical testing.

In this paper, we turn our attention to interior-point methods within
the Outer Approximation framework. Similar challenges arise in this frame-
work, as well. One key difference is that we will limit ourselves to MINLPs
with convex continuous relaxations, that is, cases where f is convex and h
are concave for (1.1). This is required for the underlying theory of the Outer
Approximation framework, and, while it is a limitation, it will also give us
the chance to explore certain special classes of convex problems, such as
second-order cone programming problems (SOCPs) and semidefinite pro-
gramming problems (SDPs), that arise in the continuous relaxations.

The outline of the paper is as follows: We start with a brief description
of the Outer Approximation framework in Section 2. In Section 3, we intro-
duce an infeasible interior-point method and analyze its challenges within
a MINLP algorithm. To address these challenges, we propose the exact
primal-dual penalty method. In Section 4, we turn our attention to the
performance of our algorithm on certain special classes of problems, such
as SOCPs and SDPs. We present implementation details of our approach
and favorable numerical results on problems from literature in Section 5.

2. Outer approximation. The Outer Approximation (OA) algo-
rithm solves an alternating sequence of NLPs and mixed-integer linear
programming problems (MILPs) to solve (1.1). For each yk ∈ Y ∩ Zp,
the NLP to be solved is obtained from (1.1) by fixing y = yk:

min
x

f(x, yk)

s.t. h(x, yk) ≥ 0
Axx ≤ bx.

(2.1)

(2.1) may or may not have a feasible solution. As such, we let xk denote
the solution if one exists and the minimizer of infeasibility otherwise. We
define F(Ŷ) as the set of all pairs of (xk, yk) where xk is an optimal solution
of (2.1) and I(Ŷ) as the set of all pairs of (xk, yk) where (2.1) is infeasible



4 HANDE Y. BENSON

for yk ∈ Ŷ. We also define the following MILP:

min
x,y,z

z

s.t. f(xk, yk) +∇f(xk, yk)T
[
x− xk

y − yk

]
≤ z, ∀(xk, yk) ∈ F(Ŷ)

h(xk, yk) +∇h(xk, yk)T
[
x− xk

y − yk

]
≥ 0, ∀(xk, yk) ∈ F(Ŷ)

h(xk, yk) +∇h(xk, yk)T
[
x− xk

y − yk

]
≥ 0, ∀(xk, yk) ∈ I(Ŷ)

Axx ≤ bx
Ayy ≤ by
y ∈ Zp,

(2.2)
where z ∈ R is a dummy variable.

Assuming that f is convex and h are concave, (1.1) is equivalent to
(2.2) for Ŷ = Y, as shown in [18], [20], and [11]. Of course, solving (2.2)
for Ŷ = Y requires the solution of (2.1) for every yk ∈ Y ∩ Zp, which
constitutes the worst-case scenario. Instead, at each iteration, we solve
(2.2) with Ŷ ⊆ Y . Starting with y0 ∈ Y ∩ Zp, we let Ŷ = {}. Then,
at each iteration k = 0, . . . ,M , we solve (2.1) with yk to obtain xk, let
Ŷ = Ŷ ∪ {yk}, and solve (2.2). The solution gives yk+1, and we repeat
the process. Throughout the iterations, we keep track of an upper bound
on the optimal objective function value of (2.2). Letting the upper bound
start at ∞, we update it with the optimal objective function value of (2.1)
whenever a solution exists. If this value is not less than the current upper
bound, then we stop the algorithm and declare that the pair (xk, yk) which
gave the current upper bound is the optimal solution to (1.1).

3. Interior-point methods. The OA approach described above re-
quires the repeated solves of NLPs obtained by fixing the values of the
integer variables y in (1.1). At iteration k of the OA algorithm, (2.1)
is solved for a different value of yk. For each value of yk, therefore, we
can expect changes to both the objective function and the constraints of
(2.1). Depending on the implementation, these changes could even be re-
flected in the problem structure, including the number of constraints and
the nonzero structures of the Jacobian and the Hessian. To solve (2.1), we
use an interior-point method, for which we now provide an overview. A
more detailed explanation can be found in [35].

For ease of notation, let us rewrite (2.1) as follows:

min
x

f(x, yk)

s.t. g(x, yk) ≥ 0,
(3.1)

where

g(x, yk) =
[
h(x, yk)
bx −Axx

]
.



USING IPMS WITHIN OUTER APPROXIMATION FOR MINLP 5

We start by adding the nonnegative slacks w ∈ Rm to the inequality
constraints in (3.1).

min
x,w

f(x, yk)

s.t. g(x, yk)− w = 0
w ≥ 0.

(3.2)

We incorporate the slacks in a logarithmic barrier term in the objective
function and eliminate the nonnegativity constraints:

min
x,w

f(x, yk)− µ

m∑
i=1

logwi

s.t. g(x, yk)− w = 0,
(3.3)

where µ > 0 is the barrier parameter.
Denoting the Lagrange multipliers by λ, the first order conditions for

(3.3) are

∇f(x, yk)−A(x, yk)Tλ = 0,
−µe+WΛe = 0, (3.4)
g(x, yk)− w = 0,

where e is the vector of all ones of appropriate dimension, A(x, yk) is the
transpose of the Jacobian of the constraints, and W and Λ are diagonal
matrices with entries from w and λ, respectively.

Newton’s method is employed to iterate to a point satisfying (3.4).
Letting

H(x, yk, λ) = ∇2f(x, yk)−
m∑
i=1

λi∇2gi(x, yk),

σ = ∇f(x, yk)−A(x, yk)Tλ,
γ = µW−1e− λ,
ρ = w − g(x, yk),

(3.5)

the directions given by Newton’s method are found by solving the KKT
system: −W−1Λ −I

−H AT

−I A

∆w
∆x
∆λ

 =

−γσ
ρ

 (3.6)

Note that we have omitted the use of function arguments for ease of display.
Letting

E = WΛ−1



6 HANDE Y. BENSON

we can eliminate the slacks to obtain the reduced KKT system:[
−H AT

A E

] [
∆x
∆λ

]
=

[
σ

ρ+ Eγ

]
. (3.7)

The reduced KKT system is solved by using the LDLT form of Cholesky
factorization, including exploitation of sparsity by reordering the columns
in a symbolic Cholesky routine. As stated before, for each yk, the sparsity
structure of the matrix in (3.7) may change. Such changes are quite com-
mon, especially when y are binary. Fixing ykj to 0 may cause terms in the
objective or the constraint functions to drop. A careful implementation of
the underlying algorithm can take advantage of such changes if they bring
about substantial reduction in size or complexity for certain subproblems,
or use a general enough sparsity structure so that each subsequent nonlin-
ear subproblem can be solved without additional sparsity structure setups
or calls to the symbolic Cholesky routine.

Once the step directions ∆x and ∆λ are obtained from (3.7), we can
obtain the step directions for the slack variables from the following formula:

∆w = WΛ−1(µW−1e− λ−∆λ). (3.8)

The algorithm then proceeds to a new estimate of the optimum by

x(l+1) = x(l) + α(l)∆x(l)

λ(l+1) = λ(l) + α(l)∆λ(l)

w(l+1) = w(l) + α(l)∆w(l),

(3.9)

where the superscripts denote the iteration number, α(l) is chosen to ensure
that the slacks w(l+1) and the dual variables λ(l+1) remain strictly positive
and sufficient progress toward optimality and feasibility is attained. At
each iteration, the value of the barrier parameter may also be updated as
a function of W (l+1)λ(l+1). Both the notion of sufficient progress and the
exact formula for the barrier parameter update vary from one solver to
another, but the general principle remains the same.

The algorithm concludes that it has reached an optimal solution when
the primal infeasibility, the dual infeasibility, and the average complemen-
tarity are all less than a given tolerance level. For (3.1), we have that

primal infeasibility = ‖ρ‖∞
dual infeasibility = ‖σ‖∞

average complementarity =
wTλ

m
,

where ‖ · ‖∞ denotes the infinity norm.



USING IPMS WITHIN OUTER APPROXIMATION FOR MINLP 7

3.1. Challenges when using interior-point methods. An infea-
sible interior-point method, such as the one described above, has two main
challenges within the OA framework: guaranteeing that a certificate of in-
feasibility will be issued when a solution does not exist and warmstarting.

An interior-point method such as the one described above is also known
as an infeasible interior-point method. This terminology is used to indi-
cate that the initial values for the primal variables x are not required to
be feasible for the problem. In fact, the iterates are not even required
to be feasible until optimality is also attained. Therefore, an infeasible
interior-point method can potentially iterate forever when attempting to
solve an infeasible problem. In practice, the solver will stop after reaching
a preset iteration limit, and the result will be inconclusive. This leads to
a failure in the overall algorithm, as we cannot produce a certificate of
optimality or infeasibility at a node. Therefore, an infeasibility detection
scheme is required. This scheme could be a “Phase I” approach where the
interior-point method is first employed to solve the problem of minimizing
constraint violations. If a feasible solution is found, the algorithm proceeds
toward the optimum from there. Otherwise, a certificate of infeasibility
is issued. While detecting infeasibility early in the solution process, this
approach could significantly increase the solution time when an optimal
solution exists, since it essentially requires the solution of two problems.
Another possibility is to use the so-called “elastic mode,” where the algo-
rithm starts solving (2.1), but switches to minimizing the infeasibility only
after certain trigger conditions are observed. Therefore, when an optimal
solution to the original problem exists, it can be found within a single solve,
and if the problem is infeasible, trigger conditions that switch over to the
feasibility problem early enough can keep the number of iterations reason-
able for issuing a certificate of infeasibility. However, in the case of solving
an NLP using the interior-point method described above, defining such
trigger conditions could be a challenge. A third possibility is to use a one-
shot approach, where a reformulation of (2.1) is solved and the solution of
this reformulation gives the optimal solution or a certificate of infeasibility
for the original problem. An example is self-dual embedding, which is well-
developed for second-order cone and semidefinite programming problems.
Version for convex NLPs ([39],[27]) also exist.

Even if an optimal solution exists, the interior-point method described
above may not be guaranteed to find it. Certain constraint qualifica-
tions required for standard convergence proofs, such as the Mangasarian-
Fromowitz Constraint Qualification (MFCQ), may not be satisfied. There-
fore, it is important to use an approach that is provably convergent under
mild assumptions. Penalty methods, which reformulate the problem (2.1)
and use interior-point methods to solve the resulting problem, are such ap-
proaches. [2], [6], [33], and [24] all use penalty methods, and the algorithms
proposed in these papers make few assumptions, including differentiabil-
ity and boundedness of the iterates, without requiring strong constraint



8 HANDE Y. BENSON

qualifications.
Warmstarting is the use of information obtained during the solution of

a problem to solve the subsequent, closely-related problems. For the case
of MINLP, warmstarting will refer specifically to setting the initial solution
(including primal, dual, and slack variables) of an NLP of the form (2.1) to
the optimal solution of the previous one solved within the OA framework.
Because of the complementarity conditions, at the optimal solution, some
of the nonnegative slack and dual variables are equal to 0, but starting
the next problem from these values may cause the algorithm to stall. The
following example illustrates exactly what can go wrong:

min
x,y

(x− 0.25)2 + y

s.t. −60x3 ≥ −y
x ≥ 0
y ∈ {0, 1}

The reduced KKT system for this problem is:−2− 360xλ1 −180x2 1
−180x2 w1

λ1
0

1 0 w2
λ2

 ∆x
∆λ1

∆λ2

 =

2x− 0.5 + 180x2λ1
µ
λ1
− (y − 60x3)
µ
λ2
− x


Let y = 1 for the first subproblem. Then, x∗ = 0.25, w∗ = (0.062, 0.25),
and λ∗ = (0, 0). Let y = 0 for the next subproblem. In the first iteration,
∆x = 0, ∆λ2 = 0, ∆w2 = 0, and ∆λ1 > 0 but very close to 0. Then,
∆w1 = µ

λ1
− w1 − w1

λ1
∆λ1 = −1. The steplength is shortened to less than

0.062, and the algorithm becomes stuck at the old solution.
One possible remedy is to simply re-initialize the slack and dual vari-

ables away from 0. Doing so would modify both the diagonal matrix, D, in
(3.7) and the right-hand side of (3.7), forcing the variables to move. While
this seems like a simple remedy, there are two drawbacks to this approach.
First, the initialization is rather arbitrary and may adversely affect the
efficiency algorithm at the current node. Secondly, note that simply re-
initializing some of the variables may result in negative step directions for
other dual and slack variables. Since the interior-point method shortens
the steplength to keep such variables strictly positive, the algorithm may
still become stuck.

Traditional penalty approaches, which only provide primal relaxations,
may still become stuck when used with a primal-dual interior-point method
where the steplength α depends on the dual iterates as well. However, they
have other desirable properties, including infeasibility detection capabili-
ties and regularizations that automatically satisfy constraint qualifications.
The exact primal-dual penalty method proposed in [7] for linear program-
ming and in [8] for nonlinear programming is a remedy that has been
demonstrated to work for warmstarts. This method relaxes the nonnega-
tivity constraint on the dual and slack variables and provides regularization



USING IPMS WITHIN OUTER APPROXIMATION FOR MINLP 9

for the matrix in the reduced KKT system (3.7). Thus, the optimal solu-
tion of one problem can be used without modification to provide a warm-
start for another, the regularization ensures that the variables that need to
move indeed make progress, and the algorithm does not become stuck due
to the nonnegativity constraints. This approach was shown to work well for
mixed-integer nonlinear programming within the branch-and-bound frame-
work in [5]. Additional benefits include robustness due to regularization
and infeasibility detection capabilities. Details of this approach for gen-
eral nonlinear programming problems are given in [8], and we provide an
overview here.

4. The exact primal-dual penalty approach. The primal-dual
penalty problem corresponding to (3.1) has the form

min
x,w,ξ

f(x, yk) + cT ξ

s.t. g(x, yk)− w = 0
−ξ ≤ w ≤ u
ξ ≥ 0,

(4.1)

where c ∈ Rm are the primal penalty parameters, u ∈ Rm are the dual
penalty parameters, and ξ ∈ Rm are the primal relaxation variables. This
new form of the primal penalty problem differs from the classical approach
presented in [19] in two crucial aspects: (1) The slacks, w, rather than
the constraint functions and the bounds themselves are relaxed, and (2)
upper bounds are also added to the slacks. Both of these changes are
made specifically for warmstarting, as relaxing the slacks removes their
nonnegativity constraints and allows for longer steps and the upper bounds
serve to relax the dual variables in a similar manner. The dual problem
associated with (4.1) can be expressed as follows:

max
λ,ψ

f(x, yk)−∇f(x, yk)Tx− (h(x, yk)−A(x, yk)x)Tλ− uTψ

s.t. ∇f(x, yk)−A(x, yk)Tλ = 0
−ψ ≤ λ ≤ c− ψ
ψ ≥ 0,

(4.2)

where ψ ∈ Rm are the dual relaxation variables. These relaxation variables
are incorporated into the objective function using a penalty term with dual
penalty parameters u. For further details of the primal and dual problems,
as well as a proof of the exactness of the penalty approach, the reader is
referred to [7] and [8].

We follow the development of earlier in Section 2 in order to present
the algorithm to solve (4.1). The logarithmic barrier problem associated



10 HANDE Y. BENSON

with (4.1) is

min
x,yk,w,ξ

f(x, yk) + cT ξ

−µ
m∑
i=1

log(ξi)− µ

m∑
i=1

log(wi + ξi)− µ

m∑
i=1

log(ui − wi)

s.t. g(x, yk)− w = 0,

(4.3)

where µ > 0 is the barrier parameter. Letting (λ) once again denote the
dual variables associated with the remaining constraints, the first-order
conditions for the Lagrangian of (4.3) can be written as

g(x, yk)− w = 0
∇f(x, yk)−A(x, yk)Tλ = 0
λ− µ(W + Ξ)−1e+ µ(U −W )−1e = 0
c− µΞ−1e− µ(W + Ξ)−1e = 0

where Ξ and U are the diagonal matrices with the entries of ξ and u,
respectively. Making the substitution

ψ = µ(U −W )−1e

we can rewrite the first-order conditions as
g(x, yk)− w = 0
∇f(x, yk)−A(x, yk)Tλ = 0
(W + Ξ)(Λ + Ψ)e = µe
Ξ(C − Λ−Ψ)e = µe
Ψ(U −W )e = µe

(4.4)

where Ψ and C are the diagonal matrices with the entries of ψ and c,
respectively. Note that the new variables ψ serve to relax the nonnegativity
requirements on the dual variables λ, so we refer to them as the dual
relaxation variables.

Applying Newton’s Method to (4.4), and eliminating the step direc-
tions for w, ξ, and ψs, the reduced KKT system arising in the solution of
the penalty problem (4.1) has the same form as (3.7) with

E =

„“
(Λ + Ψ)

−1
(W + Ξ) + Ξ(C − Λ−Ψ)

−1
”−1

+ Ψ(U −W )
−1

«−1

γ =
“
(Λ + Ψ)

−1
(W + Ξ) + Ξ(C − Λ−Ψ)

−1
”−1“

µ(Λ + Ψ)
−1
e− µ(C − Λ−Ψ)

−1
e− w

”
−

“
µ(U −W )

−1
e− ψ

” (4.5)

The steplength, α(k), at each iteration k is chosen to ensure that

w(k+1) + ξ(k+1) > 0
λ(k+1) + ψ(k+1) > 0
ξ(k+1) > 0
ψ(k+1) > 0
u− w(k+1) > 0
c− λ(k+1) − ψ(k+1) > 0



USING IPMS WITHIN OUTER APPROXIMATION FOR MINLP 11

and sufficient progress toward optimality and feasibility is made. The
barrier parameter, µ, may be updated at each iteration as a function of
(W + Ξ)(Λ + Ψ)e, Ξ(C − Λ−Ψ)e, and Ψ(U −W )e.

There are several things to note about this approach. First, the spar-
sity structure of the reduced KKT matrix of the penalty problem is the
same as the sparsity structure of (3.7). There are also no additional func-
tion evaluations or other time consuming computations required. This
means that solving the penalty problem (4.1) instead of (3.1) does not re-
quire significant additional computational effort. Second, by modifying E,
the relaxation/penalty scheme is said to regularize the reduced KKT ma-
trix, providing numerical stability as well as aiding in warmstarting. Third,
steplength control no longer relies on the dual and slack variables of the
original problem, thereby allowing for longer steps in the initial iterations
to ensure that the algorithm does not become stuck.

The primal-dual penalty approach presents an ideal remedy to the
warmstarting issues of an interior-point method. For each NLP subprob-
lem, we can use the optimal primal, dual, and slack variable values of the
previous subproblem as the initial solution, and simply re-initialize the
primal and dual relaxation variables in order to facilitate the original vari-
ables to move toward a new optimum. The penalty parameters need to
be chosen large enough to admit the optimal solution of the subproblem,
and warmstart information may be useful to determine appropriate values.
They may also need to be updated during the course of the algorithm.

4.1. Setting and updating the penalty parameters. The most
important aspect of setting the initial values of the penalty parameters is
to ensure that they are sufficiently larger than those components of the
current iterate for which they serve as upper bounds. We let the solution
of one NLP subproblem be (x∗, w∗, λ∗). The penalty parameters are set as
follows:

u = w∗ + κwe
c = λ∗ + ψ(0) + κλe

where

κw = max(g(x∗, y∗), w∗, 1.0)
κλ = max(λ∗, 1.0)

The relaxation variables are initialized as

ξ(0) = βκwe
ψ(0) = βκλe

(4.6)

where β is a constant with a default value of 10−4. These initializations are
generally sufficient after a warmstart to start the penalty method without
moving the iterates too far from the current point. Note that the relax-
ation is performed using a variable, so if a larger relaxation is needed, the
variables, ξ and ψ, will move as necessary.



12 HANDE Y. BENSON

Since the initial values of the penalty parameters, u and c, may not
be large enough to admit the optimal solution, we also need an updating
scheme for these parameters. Given the relaxation, an optimal solution
can always be found for (4.1), and one possible “static” updating scheme
is to solve a problem to optimality and to increase the penalty parame-
ters if their corresponding relaxation variables are not sufficiently close to
zero. However, this may require multiple solves of a problem and sub-
stantially increase the number of iterations necessary to find the optimal
solution. Instead, we can use a “dynamic” updating scheme, where the
penalty parameters are checked at the end of each iteration and updated.
For i = 1, . . . ,m+mx, if w(k+1)

i > 0.9u(k)
i , then u(k+1)

i = 10u(k)
i . Similarly,

if λ(k+1)
i + ψ

(k)
i > 0.9c(k)i , then c(k+1)

i = 10c(k)i .

4.2. Infeasibility detection. In the preceding discussion, we estab-
lished what can go wrong when warmstarting an interior-point method and
proposed the exact primal-dual penalty approach as a remedy. Another
concern for improving the inner level algorithm within our framework was
the efficient identification of infeasible NLP subproblems. The primal-dual
penalty method described as a remedy for warmstarting can also aid in
infeasibility identification. Since all of the slack variables are relaxed, the
penalty problem (4.1) always possesses a feasible solution. In addition, the
upper bounds on the slack variables guarantee that an optimal solution
to (4.1) always exists. Therefore, a provably convergent NLP algorithm is
guaranteed to find an optimal solution to (4.1). If this solution has the
property that ξi → a for at least one i = 1, . . . ,m + mx for some scalar
a > 0 as ci →∞, then the original problem is infeasible.

It is impractical to allow a penalty parameter to become infinite. How-
ever, a practical implementation can be easily devised by simply dropping
the original objective function and minimizing only the penalty term, which
is equivalent to letting all the penalty parameters become infinite. There-
fore, a feasibility restoration phase similar to the “elastic mode” of snopt
[23] can be used, in that the problem

min
x,w,ξ

cT ξ

s.t. g(x, yk)− w = 0
−ξ ≤ w ≤ u
ξ ≥ 0,

(4.7)

is solved in order to minimize infeasibility. It differs from snopt’s version
in that the slack variables are still bounded above by the dual penalty
parameters. Since these parameters get updated whenever necessary, we
can always find a feasible solution to (4.7). If the optimal objective function
value is nonzero (numerically, greater than the infeasibility tolerance), a
certificate of infeasibility can be issued.

While a feasibility problem can be defined for the original NLP sub-
problem (2.1) as well, a trigger condition for switching into the “elastic



USING IPMS WITHIN OUTER APPROXIMATION FOR MINLP 13

mode” for solving it is not easy to define within the context of the interior-
point method of Section 3. However, the exact primal-dual penalty ap-
proach can simply track the number of dynamic updates made to the
penalty parameters and switch over to solving (4.7) after a finite num-
ber of such updates are performed. In our numerical testing, we have set
this trigger to occur after three updates to any single penalty parameter.

Note that other infeasibility detection schemes based on penalty meth-
ods are available (see [16]) which would not require the solution of a sep-
arate feasibility problem. As their warmstarting capabilities are yet un-
known, we will investigate such approaches in future work.

5. Special forms of convex NLPs. One class of problems that fits
well into the OA framework is conic programming, specifically second-order
cone programming and semidefinite programming. This class of problems
is especially important in a variety of engineering applications and as re-
laxations of some NP-hard combinatorial problems. Much of the research
has focused on problems that are otherwise linear, due in part to the abun-
dance of strong theoretical results and the ease of extending established
and implemented linear programming algorithms. However, as the models
in each of these areas become more realistic and more complicated, many
of the problems are expressed with nonlinearities in the objective func-
tion and/or the constraints. To handle such nonlinearities efficiently, one
approach is to fit the problem into the NLP framework through reformu-
lation or separation into a series of NLP subproblems. In addition, these
problems can also have some discrete variables, and fitting them into an
NLP framework allows for the use of the efficient mixed-integer nonlinear
programming techniques for their solution.

In standard form, a mixed-integer nonlinear cone programming prob-
lem is given by

min
x,y

f(x, y)

s.t. h(x, y) ≥ 0
x ∈ K
y ∈ Y,

(5.1)

where K is a cone. The second-order, or Lorentz, cone is defined by

K = {(x0, x1) ∈ Rn : x0 ∈ R, x1 ∈ Rn−1, ‖x1‖2 ≤ x0}, (5.2)

where ‖ · ‖2 denotes the Euclidean norm. The semidefinite cone is defined
by

K = {x ∈ Rn : mat(x) � 0}, (5.3)

where mat(x) ∈ Rk×k with n = k2 is the matlab-like notation for the
columnwise definition of a matrix from the vector x, and � 0 constrains



14 HANDE Y. BENSON

this matrix to be symmetric and positive semidefinite. Note that K can
also represent the intersection of finitely many such cones.

The primal-dual penalty method can be applied to this problem just
as in (4.1). The cone constraint can be handled as

x+ ξ ∈ K
u− x ∈ K
ξ ∈ K.

(5.4)

For a second order cone, it is sufficient to pick ξ = (ξ0, 0), and for a semidef-
inite cone, we only need mat(ξ) to be a diagonal matrix. As before, the
objective function is also converted to

f(x, y) + cT ξ.

Since both the second-order cone and the cone of positive semidefinite
matrices are self-dual, the dual problem also involves a cone constraint,
which is similarly relaxed and bounded.

For both second-order and semidefinite cones, the reformulation of
the cone constraints to fit into the NLP framework have been extensively
discussed in [10]. For second-order cones, an additional challenge is the
nondifferentiability of the Euclidean norm in (5.2). In fact, if the optimal
solution includes x∗1 = 0, it can cause numerical problems for convergence
of the NLP algorithm and theoretical complications for the formulation of
the subsequent MILP even if numerical convergence can be attained for
the NLP. There are several ways around this issue: if a preprocessor is
used and a nonzero lower bound for x0 is available, then the so-called ratio
reformulation (see [10]) can be used to rewrite the cone constraint of (5.2)
as

xT1 x1

x0
≤ x0, x0 ≥ 0.

Similarly, if preprocessing can determine that ‖x1‖2 and x0 are bounded
above by small values, then we can rewrite the cone constraint as

e(x
T
1 x1−x2

0)/2 ≤ 1, x0 ≥ 0.

Both of these formulations yield convex NLPs, but they are not general
enough. In our implementation, we have used the constraint as given in
(5.2), but a more thorough treatment using a subgradient approach is dis-
cussed in [17].

6. Numerical results. We implemented an OA framework and the
interior-point method using the primal-dual penalty approach in the solver
milano [4]. For comparison purposes, we also implemented the interior-
point method outlined at the beginning of Section 2. The MILPs that arise



USING IPMS WITHIN OUTER APPROXIMATION FOR MINLP 15

within the OA framework were solved using a branch-and-bound algorithm
using interior-point methods to solve the LP relaxations. We tested both
codes on 12 problems from the MINLPLib [15] test suite and 2 MINLPs
with second-order cone constraints from [17]. The problems were chosen
to have convex nonlinear relaxations, to be small for easy implementation
in Matlab, and to require more than one NLP subproblem in the solution
process so that the effect of warmstarting could be measured. We included
only two of the small problems from [17] because several of the remaining
problems had artificial continuous variables and equality constraints and
only had integer variables when converted to the form (2.1). Since milano
is implemented for the Matlab environment, we converted the problems
from MINLPLib from the gams [12] format to Matlab format.

The initial primal and dual solutions used when warmstarting are the
optimal primal and dual solutions of the previous NLP subproblem. Nu-
merical experience in Table 1 indicates that using this solution can improve
the performance of the algorithm. However, a better primal initial solution
can be the optimal x values from the current MILP. In this case, we would
need to use an approximation to the Lagrange multipliers, for example by
approximately solving a QP model of the NLP subproblem. This will be
part of our future work.

In Table 1, we present results highlighting the effect of the primal-
dual penalty approach on the interior-point method. In our testing, we
have the primal-dual penalty approach determine the subproblems to be
solved, and the columns “WarmIters” and “ColdIters” provide the average
number of iterations over those subproblems after a warmstart using the
primal-dual penalty approach and a coldstart using the original form of
the interior-point method, respectively. The column “%Impr” indicates
the percentage improvement in the number of iterations. This number is
not always positive, but the warmstart approach is never more than 17%
worse than the coldstart approach. The worsening can be remedied in
many cases using different initial values for the penalty parameters and the
relaxation variables. In the remaining 30 of the 32 subproblems solved, the
percentage improvement can range from 0 to 65%.

We also provide information on the infeasible problems identified by
the penalty approach. Since the original formulation of the interior-point
method has no mechanism with which to issue a certificate of infeasibility,
the coldstart algorithm goes to an iteration limit of 500 for each infeasible
subproblem, after making a significant computational effort. This means
that for problems alan, fuel, gbd, and synthes2, the OA algorithm would
fail after encountering an infeasible NLP subproblem.

7. Conclusion. In this paper, we described the solution of a mixed-
integer nonlinear programming problem using an interior-point method
within the context of an outer approximation algorithm. We resolved
the issues of warmstarting, infeasibility detection, and robustness for the



16 HANDE Y. BENSON

interior-point method. In doing so, we used the exact primal-dual penalty
method of [7] and [8]. The resulting algorithm was implemented using the
interior-point code MILANO [4] and tested on a suite of MINLPs. The
numerical testing yielded encouraging results.

As discussed, interior-point codes have been shown to be computation-
ally superior to other approaches in studies such as [9] for large problems.
Therefore, the proposed approach is especially attractive for large MINLPs,
where an interior-point code may be the only means of obtaining a solution
to each continuous relaxation in a reasonable amount of time. The use of
the primal-dual penalty method further improves the robustness and the
efficiency of this approach.

The next step in this study is to incorporate the proposed approach
within a more efficient algorithm to handle the integer variables and in-
troduce heuristics for generating feasible solutions quickly. Numerical re-
sults in [7] and [8] demonstrate the strong performance of the primal-dual
penalty approach under a variety of problem modifications, including the
addition of constraints and variables. Thus, we are optimistic that the
performance improvements demonstrated in this paper will continue to be
applicable when used within any integer programming framework.

7.1. Acknowledgements. The author wishes to thank Sven Leyffer
and an anonymous referee for their helpful comments and suggestions.

REFERENCES

[1] K. Abhishek, S. Leyffer, and J. Linderoth, FilMINT: An outer-approximation-
based solver for nonlinear mixed integer programs, Tech. Rep. Preprint
ANL/MCS-P1374-0906, Argonne National Laboratory, Mathematics and Sci-
ence Division, September 2006.

[2] P. Armand, A quasi-newton penalty barrier method for convex minimization prob-
lems, Computational Optimization and Applications, 26 (2003), pp. 5–34.

[3] A. Atamtürk and V. Narayanan, Conic mixed-integer rounding cuts, Research
Report BCOL.06.03, IEOR, University of California-Berkeley, December 2006.

[4] H. Benson, MILANO - a Matlab-based code for mixed-integer linear and nonlinear
optimization. http://www.pages.drexel.edu/˜hvb22/milano.

[5] , Mixed-integer nonlinear programming using interior-point methods, tech.
rep., Submitted to Optimization Methods and Software, November 2007.

[6] H. Benson, A. Sen, and D. Shanno, Convergence analysis of an interior-point
method for nonconvex nonlinear programming, tech. rep., Submitted to Math-
ematical Programming Computation, February 2009.

[7] H. Benson and D. Shanno, An exact primal-dual penalty method approach to
warmstarting interior-point methods for linear programming, Computational
Optimization and Applications, 38 (2007), pp. 371–399.

[8] , Interior-point methods for nonconvex nonlinear programming: Regular-
ization and warmstarts, Computational Optimization and Applications, 40
(2008), pp. 143–189.

[9] H. Benson, D. Shanno, and R. Vanderbei, Interior-point methods for nonconvex
nonlinear programming: Filter methods and merit functions, Computational
Optimization and Applications, 23 (2002), pp. 257–272.

[10] H. Benson and R. Vanderbei, Solving problems with semidefinite and related



USING IPMS WITHIN OUTER APPROXIMATION FOR MINLP 17

constraints using interior-point methods for nonlinear programming, Mathe-
matical Programming B, 95 (2003), pp. 279–302.

[11] P. Bonami, L. Biegler, A. Conn, G. Cornuejols, I. Grossman, C. Laird,
J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Waechter, An algorithmic
framework for convex mixed integer nonlinear programs, Discrete Optimiza-
tion, 5 (2008), pp. 186–204.

[12] A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A User’s Guide, Scientific
Press, 1988.

[13] S. Burer, R. Monteiro, and Y. Zhang, Solving semidefinite programs via non-
linear programming part I: Transformations and derivatives, tech. rep., TR99-
17, Dept. of Computational and Applied Mathematics, Rice University, Hous-
ton TX, 1999.

[14] , Solving semidefinite programs via nonlinear programming part II: Interior
point methods for a subclass of SDPs, tech. rep., TR99-17, Dept. of Compu-
tational and Applied Mathematics, Rice University, Houston TX, 1999.

[15] M. Bussieck, A. Drud, and A. Meeraus, MINLPLib - a collection of test models
for mixed-integer nonlinear programming, INFORMS Journal on Computing,
15(1) (2003), pp. 114–119.

[16] R. H. Byrd, F. E. Curtis, and J. Nocedal, Infeasibility detection and sqp meth-
ods for nonlinear optimization, SIAM Journal on Optimization, 20 (2010),
pp. 2281–2299.

[17] S. Drewes, Mixed integer second order cone programming. PhD thesis. Technis-
chen Universitat Darmstadt, Munich, Germany., 2009.

[18] M. Duran and I. Grossmann, An outer-approximation algorithm for a class
of mixed-integer nonlinear programs, Mathematical Programming, 36 (1986),
pp. 307–339.

[19] R. Fletcher, Practical Methods of Optimization, J. Wiley and Sons, Chichester,
England, 1987.

[20] R. Fletcher and S. Leyffer, Solving mixed integer nonlinear programs by outer
approximation, Mathematical Programming, 66 (1994), pp. 327–349.

[21] GAMS, GAMS-SBB user notes. March 2001.
[22] A. Geoffrion, Generalized benders decomposition, Journal of Optimization The-

ory and Applications, 10 (1972), pp. 237–260.
[23] P. Gill, W. Murray, and M. Saunders, User’s guide for SNOPT 5.3: A Fortran

package for large-scale nonlinear programming, tech. rep., Systems Optimiza-
tion Laboratory, Stanford University, Stanford, CA, 1997.

[24] N. Gould, D. Orban, and P. Toint, An interior-point l1-penalty method for
nonlinear optimization, Tech. Rep. RAL-TR-2003-022, Rutherford Appleton
Laboratory Chilton, Oxfordshire, UK, November 2003.

[25] O. K. Gupta and A. Ravindran, Branch and bound experiments in convex nonlin-
ear integer programming, Management Science, 31(12) (1985), pp. 1533–1546.

[26] S. Leyffer, Integrating SQP and branch-and-bound for mixed integer nonlinear
programming, Tech. Rep. NA-182, Department of Mathematics, University of
Dundee, August 1998.

[27] Z. Luo, J. Sturm, and S. Zhang, Conic convex programming and self-dual em-
bedding, Optimization Methods and Software, 14 (2000), pp. 169–218.

[28] G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization, Wiley,
New York, 1988.

[29] J. Nocedal, J. Morales, R. Waltz, G. Liu, and J. Goux, Assessing the po-
tential of interior-point methods for nonlinear optimization, in Large-Scale
PDE-Constrained Optimization, Lecture Notes in Computational Science and
Engineering, vol. 30, 2003, pp. 167–183.

[30] J. Nocedal and R. A. Waltz, Knitro 2.0 user’s manual, Tech. Rep. OTC 02-2002,
Optimization Technology Center, Northwestern University, January 2002.

[31] I. Quesada and I. Grossmann, An LP/NLP based branch and bound algorithm for
convex MINLP optimization problems, Computers and Chemican Engineering,



18 HANDE Y. BENSON

16 (1992), pp. 937–947.
[32] N. Sahinidis, Baron: A general purpose global optimization software package,

Journal of Global Optimization, 8(2) (1996), pp. 201–205.
[33] A. Tits, A. Wächter, S. Bakhtiari, T. Urban, and C. Lawrence, A primal-

dual interior-point method for nonlinear programming with strong global
and local convergence properties, SIAM Journal on Optimization, 14 (2003),
pp. 173–199.

[34] R. Vanderbei, LOQO user’s manual—version 3.10, Optimization Methods and
Software, 12 (1999), pp. 485–514.

[35] R. Vanderbei and D. Shanno, An interior-point algorithm for nonconvex nonlin-
ear programming, Computational Optimization and Applications, 13 (1999),
pp. 231–252.

[36] J. Viswanathan and I. Grossman, A combined penalty function and outer ap-
proximation method for MINLP optimization, Computers and Chemical En-
gineering, 14 (1990), pp. 769–782.

[37] A. Wächter and L. T. Biegler, On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming, Tech. Rep.
RC 23149, IBM T. J. Watson Research Center, Yorktown, USA, March 2004.

[38] T. Westerlund and K. Lundqvist, Alpha-ecp version 5.01: An interactive
minlp-solver based on the extended cutting plane method, Tech. Rep. 01-178-A,
Process Design Laboratory at Abo Akademii University, 2001.

[39] S. Zhang, A new self-dual embedding method for convex programming, Journal of
Global Optimization, 29 (2004), pp. 479–496.



USING IPMS WITHIN OUTER APPROXIMATION FOR MINLP 19

NAME n p m+mx # WarmIters ColdIters %Impr
alan 4 4 6 1 (INF) (IL) –

2 8 10 20.00
3 10 13 23.07
4 11 13 15.38
5 9 13 30.77
6 9 10 10.00

bsp5var2* 2 1 4 1 7 7 0.00
2 6 7 14.29

ex1223a 3 4 9 1 10 13 23.07
2 7 12 41.67

ex1223b 3 4 9 1 11 13 15.38
2 12 15 20.00
3 9 12 25.00
4 9 11 18.18
5 10 11 9.09

ex1223 7 4 13 1 13 12 -8.30
2 13 15 13.33
3 15 16 6.25
4 12 15 20.00
5 14 12 -16.67

fuel 12 3 15 1 (INF) (IL) –
2 18 51 64.71

gbd 1 3 2 1 (INF) (IL) –
2 7 9 22.22

gkocis 8 3 8 1 15 14 -7.14
2 11 12 8.33

oaer 6 3 6 1 13 12 -8.33
2 12 16 25.00

procsel 7 3 7 1 10 10 0.00
2 9 12 25.00
3 9 10 10.00
4 10 10 0.00

st e14 7 4 13 1 11 13 15.38
2 12 15 20.00
3 9 12 25.00
4 9 11 18.18
5 10 11 9.09

synthes1 3 3 5 1 15 14 -7.14
2 12 12 0.00
3 12 14 14.29

synthes2 6 5 12 1 (INF) (IL) –
2 15 15 0.00
3 9 14 35.71
4 9 18 50.00
5 10 17 41.18

test5* 1 4 3 1 9 9 0.00
2 6 8 25.00

Table 1
Comparison of the warmstarting primal-dual penalty approach to coldstarts on

small problems from the MINLPLib test suite and two mixed-integer second-order cone
programming problems from [17] (indicated by “*” in the table). “#” indicates the NLP
subproblem being solved, WarmIters and ColdIters are the numbers of warmstart and
coldstart iterations, respectively, and %Impr is the percentage of improvement in the
number of iterations. (INF) indicates that a certificate of infeasibility was issued, and
(IL) denotes that the algorithm reached its iteration limit.


