
Parallelizing with MPI in Java to find

the ninth Dedekind Number

Pieter-Jan Hoedt

Abstract

This paper handles improvements to an existing program to calculate
Dedekind numbers. The main idea is to parallellize the algorithm, using
the message passing interface in order to allow the program to run on
a high performance computing cluster. Another, less fundamental idea
presented here, is to represent an antichain by means of a bit sequence
instead of a classic collection object. This way some operations can be
executed much more efficiently, resulting in quicker computation. Both
of these main changes are being discussed in terms of improvements and
drawbacks. Also a little discussion on using MPI1 within Java in a HPC2

environment will be included in this paper in order to clarify the method-
ology.

1 Introduction

In 1897, Richard Dedekind introduced a rapidly growing sequence of natural
numbers, which are still known as the Dedekind numbers. The nth Dedekind
number counts the number of antichains in the powerset of a set with n elements.
This is a rather easy definition3 for a number that has no closed-form expression
and thus can’t be calculated in a straight-forward fashion. This gives rise to the
so-called Dedekind’s problem - finding the nth Dedekind number - which has
been solved for n ≤ 8 [1].

The 8th Dedekind number, M(8), has been found in 1991 for the first time
[2], but De Causmaecker and De Wannemacker improved these algorithms by
means of the P-coefficients [3]. This allows to calculate M(n) from An−2, the
set of antichains in the powerset of a (n − 2)-set. Together with recent devel-
opments in computer science, this led to a multithreaded algorithm (Algorithm
1 provides a rough description) that allows to calculate M(8) in a bit over
2 hours [4]. To calculate M(9) though, new tricks will be needed, because
|A6| = M(6) = 7, 828, 354 is quite a small number compared to |A7| = M(7) =
2, 414, 682, 040, 998. It is this latter though that defines the number of antichains
that need to be summed over to calculate the 9th Dedekind number.

1Message Passing Interface
2High Performance Computing
3one of several definitions

1

Algorithm 1 algorithm of De Causmaecker to calculate M(n) in big lines

serial part
find equivalence classes of A(n− 2)
for all equivalence classes of A(n− 2) do

calculate |[∅, representative antichain]|
end for

parallel part
for all antichains in A(n− 2) do

calculate partial sum pi
end for
result =

∑
i pi . incrementally in for all loop

For this paper, the program of De Causmaecker - based on this algorithm -
was taken as a starting point to work towards a Java program that’s capable of
finding M(8) faster and bring M(9) within reach. The first thing to come is the
replacement of the original representation to the bit sequence represenation, as
presented by Salaets [5] and the consequences of this change. Next there’s a
little discussion on using MPI in Java and the Java-specific pitfalls that should
be avoided. This will allow to understand the results obtained by translating
the originally multithreaded approach to a program using open-mpi4 in order
to allow the program to be run by the VSC5. At last, the improvements made
will be put into perspective by discussing how far the ninth Dedekind number
is still out of reach.

2 Representing Antichains

An antichain in a powerset of a set is a subset of that powerset such that for every
2 sets A and B in the antichain, A 6⊂ B and B 6⊂ A. Because of the definition
this paper starts from, a more efficient representation of these antichains does
have an impact on the speed of the algorithm. This section discusses the slight
improvements that can be obtained by using the representation presented by
Salaets [5] and possible drawbacks from its implementation in Java.

2.1 The original Representation

In the original (Java) implementation of De Causmaecker the AntiChain class
extends the TreeSet class and is used to represent an antichain. To be more
correct, a set of sets is being represented, as there are no constraints that limit
the representation to antichains. When used correctly, this lack of limitation
doesn’t cause any problems though. The AntiChain class provides several opti-
mized methods to perform the operations that are needed for the algorithm as

4an open source implementation of MPI - http://www.open-mpi.org/
5flemish supercomputer centrum - https://vscentrum.be

2

described by De Causmaecker and De Wannemacker [3]. Next to these methods,
there is also functionality to map each antichain to a unique BigInteger object.
This BigInteger can be used to represent an antichain when no operations need
to be performed.

Some other classes also make use of antichains. The most important one,
considering the bit sequence representation, is the AntiChainInterval class.
This class represents an interval of antichains, which is nothing more than a
set of antichains. Although this class doesn’t store the antichains it contains
explicitely, it does turn out to be useful to access all antichains from an interval.
This happens through iterators, where a special example is the fastIterator.
The latter is used to iterate over all antichains - from ∅ to the {{1, 2, . . . , n}} -
when calculating the nth number (see Algorithm 1).

2.2 The new Representation

Salaets presented in his master thesis the idea to represent antichains by means
of a bit sequence [5]. Compared to a classic Collections object, this should
make memory usage more efficient and increase performance.

The representation uses the fact that every basic integer set is already rep-
resented by a bit sequence and thus can be interpreted as a number (e.g. {1, 3}
is represented by 101 which can be interpreted as the number 5 or {2} is repre-
sented by 010 which is on its turn 2). To represent an antichain, which is a set
of such basic integer sets, we can use these number-interpretations as indices for
the element just like the integers are used as an index in the bit sequence (e.g.:
{{1, 3}, {2}} can be represented by 10010). This representation thus limits the
number of bits by 2n for a n-set and increases speed of standard set opera-
tions (e.g.: union, intersection, . . .) as well as the encoding/decoding to/from
BigInteger representation. For operations on a lattice of antichains (e.g.: join,
meet, . . .) though, this representation doesn’t provide improving features. Be-
cause these latter are the more important ones in the algorithm, the performance
gain is rather modest, but for the bigger numbers, these changes might make a
difference.

Next to improving the speed of operations on antichains, the bit sequences
allow to iterate over an interval by means of monotonic Boolean functions,
which do have interesting properties in this representation. To go from one
antichain to the next, it is possible to map an antichain to one antimonotonic
function6. From this function, the next subset to be added can easily be found
by taking that one with the smallest number interpretation that’s not included
yet. When this antimonotonic function is mapped back to an antichain, this is
the next antichain.

2.3 Implementation

For the implementation of the bit sequence in Java, the BitSet class has been
used from the java.util library. This is about the only way Java offers to

6A definition used by De Causmaecker in earlier publications [6]

3

represent bit sequences that can grow longer than a long, but it offers all op-
erations needed as well as a way to iterate over all elements (basic sets) of an
antichain.

The AntiChain class has thus been converted to a SmallAntiChain class
that contains a BitSet and all operations of this new class have been altered
accordingly. The AntiChainInterval class has gotten a new fastIterator

that uses the iteration as described earlier and in more detail by Salaets [5].

2.4 Remarks

The advantages concerning memory usage and performance from using this new
representation as stated by Salaets, should not be taken for granted. Program-
ming with bit sequence in OpenCL is much more efficient than doing this in a
higher programming language like Java. After all the BitSet class has a lot of
extra fields, making this representation not as memory efficient as in OpenCL.
Next to this language-issue, an antichain is quite sparse compared to an an-
timonotonic function - which provided the actual base for this representation.
When looking at the memory usage7, the TreeSet seems to need less space in
general. Nevertheless the bit sequence representation seems to be compact and
fast enough.

2.5 Improvements

The improvements are not of the kind they’ll allow to calculate the 9th Dedekind
number, but they are noteworthy nevertheless. In order to compare the original
representation with the new one, each nth number (2 ≤ n ≤ 7) was calculated
1000 times. The final results are the medians of all running times in order not to
let outliers (startup, pagefaults, . . .) influence the results. This has been done
for two implementations. One with the TreeSet implementation and another
using the bit sequence representation. The results of this little experiment can
be found in table 1. It should be clear that the new representation causes an
improvement in performance and therefore is worth keeping.

M(2) M(3) M(4) M(5) M(6) M(7)
original 1 1 1 3 17 1532

bit sequence 1 1 1 2 15 1140

Table 1: Running times in milliseconds on a 2.2 GHz Intel Core i7

3 MPI in Java

MPI is one of the most well-known and standardized message-passing systems
around and has been integrated well in languages as C, C++ or Fortran, but

7The serialization method has been used to approximate memory usage.

4

for Java the documentation and possibilities are limited. Therefore this section
tries to clarify some issues that should be taken into account when using MPI
in Java.

First of all, it is important to know that there are no libraries that provide
the functionality of MPI within Java. The only way to get MPI working is to
look for some library, providing the necessary MPI-operations. Several libraries
are around for C, Fortran, . . . , but the support for Java is limited to wrappers
of these libraries. One of the first and best-known wrappers was provided by
mpiJava, which simply made use of the Java Native Interface to invoke the MPI-
operations (provided by mpich) in C [7]. The problem with mpiJava though,
is that the last release dates back to 2003 and only supports functionality of
MPI 1.18. Next to this, HPC environments rarely support mpiJava and at the
VSC, not even mpich is supported. Because the VSC only provided intel-mpi9

and open-mpi, and only open mpi provided Java-bindings - based on mpiJava,
open-mpi was used to implement the MPI-routines.

Because almost every implementation of MPI for Java consists of wrappers,
MPI doesn’t work any different for Java as compared to C for example and this
results in some, probably unwanted effects caused by the way Java works. Pro-
grams using MPI are normally run with a command that looks like mpirun -n

X <program> where the -n flag indicates the number of processes. This com-
mand would start the specified program X times distributed over the available
processing units, which are processor cores by default. For Java, the open-mpi
command is mpirun -n X java <java-program> and starts X JVMs10 on every
core. This results in the unwanted behaviour, because most cores share memory
and every JVM needs a piece of this memory, limiting the memory available to
each JVM.

To solve these inconveniences with the JVM, a Java program can use MPI
in a combination with multithreading, which leads to a so-called hybrid MPI
application. In order to do this efficiently, every multi-core node using one piece
of memory can run one multithreaded program. This way, all cores can be
used and memory isn’t polluted with plural JVMs. To run a hybrid program,
MPI provides some extra flags. The command to start exactly one hybrid Java
program on each of X multi-core nodes could look like mpirun -n X --map-by

ppr:1:node --bind-to board java <hybrid-java-program>.

4 Effects of Parallelization

Because of unawareness concerning the details described in section 3, two im-
plementations arose throughout research. The first implementation is a naive
mapping from the multithreaded version of the program to a MPI implementa-
tion, not worrying about memory usage etc. A second, hybrid implementation
provides a more intelligent approach and tries as well to minimize the MPI over-

8in 2012, MPI 3.0 was released
9a commercial MPI implementation from Intel

10Java Virtual Machine

5

head. Both implementations will then be compared and their performance will
be discussed.

4.1 A naive implementation

The first program is a quite literal translation of the multithreaded version.
One process distributes the work, while the others actually work. This allows
the work to be dynamically distributed over all available cores, because the
distributor process assigns the next chunk of work to the first worker that’s
ready. This approach allows to use more cores and thus lets the algorithm work
faster, but it does suffer from quite some message passing overhead. On top of
that, this way of working leads to the memory leak described in the previous
section and even requires the Java flag -Xmx1g to limit memory usage to only 1
gigabyte. If this flag isn’t used, the first JVM will crash when trying to enlarge
its heap. This memory limitation also leads to more garbage collection etc. It
should be clear that this is not the most favorable approach in terms of memory
usage.

4.2 A ’smarter’ implementation

The second implementation tries to solve the memory leak by dividing the work
statically. Instead of letting a lazy master process divide the work, every piece
of work gets a number and each of the nodes knows which numbers of work it
should execute. This has been done in such a way that work is divided equally
and no message passing need to be done to divide the work. Every process
then divides its jobs over its available cores by means of multithreading. The
final results are then sent to one single process where everything is combined
serially to the final result. This way a lot of overhead from MPI disappears and
memory is used ways more efficient. Next to these advantages, this approach
allows to do some work of the serial part of the algorithm (see Algorithm 1) in
a multithreaded fashion. This becomes interesting, because in the end it is this
part that turns out to be the time-consuming one.

4.3 A note on the serial part

As mentioned earlier, the algorithm consists of a serial part and a parallel part.
The former part finds equivalence classes and calculates sizes of intervals which
are both needed to allow efficient calculations in the parallel part. This necessary
serial part leads to an issue though on a parallel HPC environment, because
every node needs the results. Two ways to achieve this are (1) letting every node
calculate this serial part for itself or (2) let one node calculate and broadcast
it to the other nodes. The second way introduces extra broadcasting costs
compared to the first, but this seems justified if the serial part needs a lot of
processing time and the number of nodes doesn’t get too large. Because time
on the HPC environment of the VSC is limited, only a few test runs have been
made, but they do seem to support the justifications. A first test indicated a

6

200ms advantage for (1) when calculating M(7) on 5 nodes and even a 300ms
advantage when calculated on 20 nodes, but calculating M(8) on 20 nodes
results in a 3s advantage for (2). Therefore the choice was made to let only one
node calculate and broacast the results to the other nodes.

4.4 Comparing results

In order to compare both the naive and ’smarter’ implementation, the respec-
tive programs have been executed several times to calculate M(7) and M(8),
but each time the number of nodes provided to the program was altered. Be-
cause experiments on the VSC are rather expensive, each possible combination
ran only once. This causes the following results to be indications rather than
proving, but they can be used to compare the serial as well as the parallel part
of the algorithm.

The serial part has two main tasks as already indicated by Algorithm 1:
finding equivalence classes and calculating interval sizes. For the naive approach
this needs to be done serially by one core because the processing units are cores.
The ’smart’ implementation on the other hand allows to calculate the serial
part on a processing unit with mutltiple cores. This advantage has been used
to calculate the interval sizes in a multithreaded fashion.

equivalence interval
classes sizes

M(7)
naive 0.62 1.12

’smart’ 0.27 0.19

M(8)
naive 60.50 280.68

’smart’ 53.91 15.75

Table 2: Averages of running times of serial part of both implementations
on the HPC environment from the VSC in seconds

Taking the average running time over all node-configurations from the exper-
iment, table 2 gathers the results for this part. The impact of having multiple
cores available becomes clear from these results. Whether multithreading is
used or not, the ’smart’ implementation always outperforms the naive one when
it comes to the serial part.

For the parallel part, the running time as such isn’t sufficient to decide which
implementation is better. It is also important to know in how far the running
times improve when more processing units are available. Table 3 shows the
running times meassured from the moment the results from the serial part are
broadcasted to the other nodes untill the end.

In this table something strange seems to be going on. For M(7) the ’smart’
implementation outperforms the naive one, but for M(8) roles have changed.
This can be explained by the overhead caused by the message passing as it is
has been avoided in the ’smart’ implementation. Whereas this overhead is prac-
tically the running time for M(7), it becomes negligable when calculating M(8).

7

nodes 10 15 20 25 30 35 40

M(7)
naive 6.00 9.02 12.09 15.06 18.01 20.99 23.97

’smart’ 0.77 0.66 0.66 0.57 0.60 0.64 0.59

M(8)
naive 848.04 570.76 433.39 351.23 297.70 261.47 233.72

’smart’ 919.58 606.17 460.37 360.44 311.05 267.20 239.04

Table 3: Running times of multithreaded part of both implementations
on the HPC environment from the VSC in seconds

Why the ’smart’ approach turns out to be slower than the naive one with all its
message passing overhead, can be linked to the statical job division. This omits
the need for message passing, but the way the work has been divided doesn’t
seem good enough to challenge the naive implementation with its overhead. At
last it should be clear from the table that the ’smart’ implementation does pro-
vide a better speed-up. To calculate M(8) with 40 nodes, both implementations
perform equally well although there is a difference of more than a minute when
working with only 10 nodes.

To give an idea of how fast the 8th Dedekind number can be calculated now,
table 4 presents the total running times from the experiment together with an
extra calculation on 50 nodes.

10 15 20 25 30 35 40 50
naive 19:55 15:12 12:58 11:34 10:36 9:59 9:34 08:35

’smart’ 16:32 11:15 8:51 07:10 06:20 05:36 05:07 04:24

Table 4: Running times of both implementations for M(8) on the HPC
environment from the VSC in minutes:seconds

5 The ninth Dedekind Number

This paper described a successful integration of the bit sequence representation
as presented by Salaets as well as a quite efficient implementation for running
the algorithm in a HPC environment. Especially this last alteration allows to
calculate M(8) orders of magnitude faster than before, but several factors still
slow down computation. The most important ones are the serial part, which
still needs over one minute, and the non-optimal, static division of work.

This program might be ready to calculate the 9th Dedekind number, but no
attempt to test this has been undertaken. The main reasons therefore are the
limited credits provided for calculation on the VSC and the time consumption of
finding the equivalence classes. An attempt to calculate these on a 2.2 GHz Intel
Core i7 processor needed to be interrupted after 3 hours. This is unfortunately
too long for the few credits available for this project.

At last it is worth mentioning De Causmaecker introduced a new formula

8

during this research:

|An+3| =
∑

α,β,γ≤ρ∈An

|[⊥, α ∧ β ∧ γ]| · |[α ∨ β, ρ]| · |[γ ∨ β, ρ]| · |[α ∨ γ, ρ]|

. It provides a way to calculate M(n) by means of An−3. This could reduce the
work significantly, but has a lot more variables in the sum, resulting in higher
complexity. No valuable contribution has been made in this paper, but this is
definitely a formula worth mentioning for future work on solving Dedekind’s
problem.

References

[1] Neil James Alexander Sloane et al. The on-line encyclopedia of integer
sequences. http://oeis.org/A000372, 2002. Dedekind numbers.

[2] Doug Wiedemann. A computation of the eighth dedekind number. Order,
8(1):5–6, 1991.

[3] Patrick De Causmaecker and Stefan De Wannemacker. On the number of
antichains of sets in a finite universe. arXiv preprint arXiv:1407.4288, 2014.

[4] Patrick De Causmaecker. Codes reports. http://www.kuleuven-kulak.

be/nl/onderzoek/Wetenschappen/Informatica/codesreports, 2014.
Runnable jar of original algorithm.

[5] Carl Salaets. Efficiënte berekening van dedekindgetallen. Master’s thesis,
KU Leuven, 2014.

[6] Patrick De Causmaecker and Stefan De Wannemacker. Partitioning in the
space of antimonotonic functions. arXiv preprint arXiv:1103.2877, 2011.

[7] Mark Baker, Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Sang
Lim. mpijava: An object-oriented java interface to mpi. In Parallel and
Distributed Processing, pages 748–762. Springer, 1999.

9

