Puzzle [June, 1997]

Coincident Birthdays

1. How many people must be present to give a 50% probability of having (at least) two coincident birthdays in one year?
2. How many people must be present to give a 50% probability of having (at least) three birthdays in one year?
3. How many people must be present to give a 50% probability of having (at least) k coincident birthdays in one year, where $k>3$? How swiftly does this number grow with increasing k ?

Mathcad 6.0 Solution by Patrice Le Conte (paraphrased by Steven Finch)

Solution for $k=2$

Assume that birthdays are independent and equiprobable. If $m:=365$ is the number of days in a year, there are a total of m possible outcomes for the first person, m^{2} possible outcomes for the first two people, and thus m^{p} possible outcomes for the first p people.

Let H_{1} be the number of all outcomes (out of m^{p}) where all people have different birthdays. There will be mossible birthdays for the first, $m-1$ for the second, $m-2$ for the third, and thus:

$$
H_{1}=\left[\prod_{i=0}^{p-1} m-i\right]
$$

Therefore the probability that in a set of p people none have the same birthday is:

$$
\mathrm{Q}_{1}=\frac{\mathrm{H}_{1}}{\mathrm{~m}^{\mathrm{p}}}
$$

$$
Q_{1}(p):=\left[\prod_{i=0}^{p-1} 1-\frac{i}{m}\right]
$$

and the probability that at least two people have coincident birthdays is

$$
P_{2}=1-Q_{1}(p)
$$

$$
P_{2}(p):=1-\left[\prod_{i=0}^{p-1} 1-\frac{i}{m}\right]
$$

$$
\mathrm{P}_{2}(22)=0.475695 \quad \mathrm{P}_{2}(23)=0.507297
$$

The required number of people to have a 50% probability is:

$$
\mathrm{N}_{2}:=23
$$

Solution for $k=3$

We can use the same procedure to find the probability that the number of coincident birthdays is greater than two.

Let H_{2} be the number of outcomes where the maximum number of coincident birthdays is exactly two. The probability of having a maximum of exactly two coincident birthdays in a set of people is

$$
\mathrm{Q}_{2}=\frac{\mathrm{H}_{2}}{\mathrm{~m}^{\mathrm{p}}}
$$

and the probability of having at least three coincident birthdays is

$$
\mathrm{P}_{3}=1-\mathrm{Q}_{2}-\mathrm{Q}_{1}
$$

Let $C(m, n)$ be the number of combinations of m objects taken n at a time:

$$
C(m, n)=\binom{m}{n}=\frac{m!}{n!\cdot(m-n)!} \quad C(m, n):=\prod_{i=0}^{n-1} \frac{m-i}{n-i}
$$

In order to compute H_{2}, we will separate the p people into two classes: one of $2 \cdot i$ people whose birthdays are coincident, and one of $p-2 \cdot j$ people whose birthdays are not coincident.

First let us compute the number of outcomes where we have i coincident birthdays. We can choose $2 \cdot i$ people out of p in $C(p, 2 \cdot i)$ different ways. For each such selection of $2 \cdot i$ people, there are

$$
\frac{1}{i!} \cdot\binom{2 \cdot i}{2} \cdot\binom{2 \cdot i-2}{2} \cdot\binom{2 \cdot i-4}{2} \cdot \ldots \cdot\binom{4}{2}=\frac{(2 \cdot i)!}{i!\cdot 2^{i}}=\left[\prod_{j=1}^{i} 2 \cdot j-1\right]
$$

different ways of arranging them into sets of two. Finally, each of the i pairs and the remaining $p-2 \cdot i$ people have distinct birthdays, and the number of ways this can happen is:

$$
\left[\prod_{j=0}^{i-1} m-j\right] \cdot\left[\begin{array}{l}
p-i-1 \\
\prod_{j=i}^{p} m-j
\end{array}\right]=\left[\begin{array}{c}
p-i-1 \\
j=0
\end{array} m-j\right]
$$

So the number of outcomes in which exactly $2 \cdot$ i people have coincident birthdays is:

$$
H_{2_{i}}=C(p, 2 \cdot i) \cdot\left[\prod_{j=1}^{i} 2 \cdot i-1\right] \cdot\left[\prod_{j=0}^{p-i-1} m-j\right]=p!\cdot \frac{1}{2^{i}} \cdot C(m, i) \cdot C(m-i, p-2 \cdot i)
$$

Summing over i, we obtain:

$$
\begin{gathered}
\text { floor } \left.\frac{p}{2}\right) \\
\mathrm{H}_{2}=\sum_{\mathrm{i}=1} \mathrm{H}_{2_{\mathrm{i}}} \\
\mathrm{Q}_{2}=\frac{\mathrm{p}!}{\mathrm{m}^{\mathrm{p}}} \cdot \sum_{\mathrm{i}=1}^{\text {floor } \frac{\mathrm{p}}{2}} \frac{1}{2^{\mathrm{i}}} \cdot \mathrm{C}(\mathrm{~m}, \mathrm{i}) \cdot \mathrm{C}(\mathrm{~m}-\mathrm{i}, \mathrm{p}-2 \cdot \mathrm{i})
\end{gathered}
$$

which we rewrite in a way easier to compute:

$$
Q_{2}(p):=\sum_{i=1}^{\text {floor }\left(\frac{p}{2}\right)} C(p, 2 \cdot i) \cdot \prod_{j=1}^{i} \frac{2 \cdot j-1}{m} \cdot\left[\prod_{j=0}^{p-i-1} 1-\frac{j}{m}\right]
$$

The probability that at least three people have coincident birthdays is:

$$
\begin{aligned}
& P_{3}(p):=1-Q_{1}(p)-Q_{2}(p) \\
& P_{3}(87)=0.499455 \quad P_{3}(88)=0.511065
\end{aligned}
$$

The required number of people to have a 50% probability is:

$$
\mathrm{N}_{3}:=88
$$

General Solution (all k)

We can use the same procedure to compute the general case of k people having the same birthday. First, the number of different ways of arranging $k \cdot i$ people into sets of k is:

$$
\frac{1}{i!} \cdot\binom{k \cdot i}{k} \cdot\binom{k \cdot i-k}{k} \cdot\binom{k \cdot i-2 \cdot k}{k} \cdot \ldots \cdot\binom{2 \cdot k}{k}=\frac{(k \cdot i)!}{i!\cdot(k!)^{i}}
$$

Let $\mathrm{H}(\mathrm{m}, \mathrm{p}, \mathrm{k})$ be the number of outcomes where the maximum number of coincident birthdays is exactly k. We first compute the number of outcomes where there are exactly i coincident birthdays of k people. This is done just as before, separating the people into two classes: one of $k \cdot i$ people whose birthdays are coincident, and one of the remaining $\mathrm{p}-\mathrm{k} \cdot \mathrm{i}$ people. There are

$$
\left[\prod_{j=0}^{i-1} m-j\right]
$$

ways each of the i sets can have distinct birthdays, and

$$
\sum_{j=1}^{k-1} H(m-i, p-k \cdot i, j)
$$

ways the remaining people can have birthdays (which needn't be distinct for $k>2$, hence the recursion). Therefore:

$$
H(m, p, k)_{i}=C(p, k \cdot i) \cdot \frac{(k \cdot i)!}{i!\cdot(k!)^{i}} \cdot\left[\prod_{j=0}^{i-1} m-j\right] \cdot \sum_{j=1}^{k-1} H(m-i, p-k \cdot i, j)
$$

Summing over i, we obtain:
$H(m, p, k)=\sum_{i=1}^{\text {floor }\left(\frac{p}{k}\right)} H(m, p, k)=\sum_{i=1}^{\text {floor }\left(\frac{p}{k}\right)} C(p, k \cdot i) \cdot \frac{(k \cdot i)!}{i!\cdot(k!)^{i}} \cdot\left[\prod_{j=0}^{i-1} m-j\right] \cdot \sum_{j=1}^{k-1} H(m-i, p-k \cdot i, j)$

Now we have $Q(m, p, k)=\frac{H(m, p, k)}{m^{p}}$ and thus $H(m-i, p-k \cdot i, j)=Q(m-i, p-k \cdot i, j) \cdot(m-i)^{p-k}$ for all i.
Hence:

$$
Q(m, p, k)=\sum_{i=1}^{\text {floor }\left(\frac{p}{k}\right)} \frac{C(p, k \cdot i) \cdot(k \cdot i)!}{m^{k \cdot i}} \cdot \frac{1}{i!\cdot(k!)^{i}} \cdot\left[\prod_{j=0}^{i-1} m-j\right] \cdot \sum_{j=1}^{k-1} Q(m-i, p-k \cdot i, j) \cdot \frac{(m-i)^{p-k \cdot i}}{m^{p-k \cdot i}}
$$

which can be rewritten in a form better suited to computation as:

$$
Q(m, p, k)=\sum_{i=1}^{\text {floor }\left(\frac{p}{k}\right)}\left(1-\frac{i}{m}\right)^{p-k \cdot i} \cdot \prod_{j=1}^{k \cdot i} \frac{p-j+1}{m} \cdot \prod_{j=1}^{i} \frac{(m-j)+1}{j \cdot k!} \cdot \sum_{j=1}^{k-1} Q(m-i, p-k \cdot i, j)
$$

Introduce, for convenience, a function:

$$
q(m, p, k, i):=\left(1-\frac{i}{m}\right)^{p-k \cdot i} \cdot \prod_{j=1}^{k \cdot i} \frac{p-j+1}{m} \cdot \prod_{j=1}^{i} \frac{(m-j)+1}{j \cdot k!}
$$

then we have the following recursive definition (note the initial conditions):

$$
\begin{aligned}
& \mathrm{Q}(\mathrm{~m}, \mathrm{p}, \mathrm{k}):=\left\lvert\, \begin{array}{l}
0 \text { if }(\mathrm{p}<\mathrm{k})+(\mathrm{m}<1) \\
\text { otherwise } \\
\left.\| \prod_{\mathrm{i}=0}^{\mathrm{p}-1} 1-\frac{\mathrm{i}}{\mathrm{~m}}\right] \text { if } \mathrm{k}=1
\end{array}\right. \\
& \sum_{i=1}^{\text {floor }\left(\frac{p}{k}\right)} q(m, p, k, i) \cdot i f\left(k \cdot i<p, \sum_{j=1}^{k-1} Q(m-i, p-k \cdot i, j), 1\right) \quad \text { otherwise }
\end{aligned}
$$

So the probability that at least k people have coincident birthdays is:

$$
P(m, p, k):=1-\sum_{j=1}^{k-1} Q(m, p, j)
$$

We confirm that $\mathrm{P}(\mathrm{m}, 22,2)=0.475695 \quad, \mathrm{P}(\mathrm{m}, 23,2)=0.507297$

$$
\mathrm{P}(\mathrm{~m}, 87,3)=0.499455 \quad, \quad \mathrm{P}(\mathrm{~m}, 88,3)=0.511065
$$

and compute that

$$
P(m, 186,4)=0.495826 \quad P(m, 187,4)=0.502685 \quad N_{4}:=187
$$

As P is a recursive function, the time required for computation grows exponentially with k, so we merely record here the results for $\mathrm{k}=5$:

$$
\mathrm{P}(\mathrm{~m}, 312,5)=0.496196 \quad \mathrm{P}(\mathrm{~m}, 313,5)=0.50107 \quad \mathrm{~N}_{5}:=313
$$

Let's try to verify these results through Monte Carlo simulation. The function $K_{s}(m, p)$ returns the maximum number of coincident birthdays in a set of p . The function $\mathrm{P}_{\mathrm{s}}(\mathrm{m}, \mathrm{p}, \mathrm{k}, \mathrm{n})$ returns the probability of k coincident birthdates in a set of p, calculated by evaluating n times the function K_{s} and then counting how often its value exceeds k.

$K_{S}(m, p):=$	for $i \in 0 . . m-1$ $a_{i} \leftarrow 0$
	for $i \in 1 . . p$ $\mid j \leftarrow$ floor $(\operatorname{rnd}(m))$ $a_{j} \leftarrow a_{j}+1$
$\max (a)$	

$$
\mathrm{P}_{\mathrm{s}}(\mathrm{~m}, \mathrm{p}, \mathrm{k}, \mathrm{n}):=\left\lvert\, \begin{aligned}
& \Sigma \leftarrow 0 \\
& \text { for } \mathrm{i} \in 1 . . \mathrm{n} \\
& \Sigma \leftarrow \Sigma+1 \text { if } K_{\mathrm{S}}(\mathrm{~m}, \mathrm{p}) \geq \mathrm{k} \\
& \frac{\Sigma}{\mathrm{n}}
\end{aligned}\right.
$$

It would take too much computation time to compare P and P_{s} for $m=365$, so we will use $m=12$, which can be interpreted as the number of coincident months of birth for a set of p people.
p := $2 . .30$

This confirms the agreement between the calculated and simulated probabilities.
A remarkably accurate approximation, due to Bruce Levin [1], makes computations possible for larger k. See also [2, 3].

References

1. B. Levin, A representation for multinomial cumulative distribution functions, Annals of Statistics 9 (1981) 1123-1126.
2. P. Diaconis and F. Mosteller, Methods of studying coincidences, J. Amer. Statist. Assoc. 84 (1989) 853-861.
3. M. S. Klamkin and D. J. Newman, Extensions of the birthday surprise, J. Combin. Theory 3 (1967) 279-282.
