
    Puzzle [June, 1997] 
  Coincident Birthdays

1. How many people must be present to give a 50% probability of having (at least) two coincident 
    birthdays in one year?

2. How many people must be present to give a 50% probability of having (at least) three          
    birthdays in one year?

3. How many people must be present to give a 50% probability of having (at least) k coincident 
    birthdays in one year, where k>3? How swiftly does this number grow with increasing k?

Mathcad 6.0 Solution by Patrice Le Conte (paraphrased by Steven Finch)

Solution for k=2 

Assume that birthdays are independent and equiprobable.  If  m 365  is the number of days in a year,  

there are a total of  m  possible outcomes for the first person,  m2  possible outcomes for the first two 

people, and thus  mp  possible outcomes for the first p people.

Let H 1 be the number of all outcomes  (out of  mp )  where all people have different birthdays.
There will be m possible birthdays for the first, m 1 for the second, m 2 for the third, and thus:
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Therefore the probability that in a set of p people none have the same birthday is:
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and the probability that at least two people have coincident birthdays is 
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=P 2( )22 0.475695 =P 2( )23 0.507297

The required number of people to have a 50% probability is:

N2 23

Solution for k=3 

We can use the same procedure to find the probability that the number of coincident birthdays is greater 
than two.

Let H 2 be the number of outcomes where the maximum number of coincident birthdays is exactly two.
The probability of having a maximum of exactly two coincident birthdays in a set of p people is
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and the probability of having at least three coincident birthdays is

P 3 1 Q 2 Q 1

Let C(m,n) be the number of combinations of m objects taken n at a time:
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In order to compute H 2, we will separate the p people into two classes:  one of  .2 i  people whose 

birthdays are coincident, and one of  p .2 i  people whose birthdays are not coincident.

First let us compute the number of outcomes  where we have  i  coincident birthdays. We can 
choose .2 i people out of p in  C( ),p .2 i  different ways.  For each such selection of  .2 i  people,
there are
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different ways of arranging them into sets of two.  Finally,  each of the  i  pairs and the remaining
p .2 i  people have distinct birthdays,  and the number of ways this can happen is: 
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So the number of outcomes in which exactly  .2 i  people have coincident birthdays is:
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Summing over i, we obtain:
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which we rewrite in a way easier to compute:
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The probability that at least three people have coincident birthdays is:

P 3( )p 1 Q 1( )p Q 2( )p

=P 3( )87 0.499455 =P 3( )88 0.511065

The required number of people to have a 50% probability is:

N3 88

General Solution (all k) 

We can use the same procedure to compute the general case of k people having the same birthday.  
First,  the number of different ways of arranging  .k i  people into sets of k is: 
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Let  H( ),,m p k  be the number of outcomes where the maximum number of coincident birthdays is exactly 
 k.  We first compute the number of outcomes where there are exactly i coincident birthdays of k people.  
This is done just as before,  separating the p people into two classes:  one of  .k i  people whose 
birthdays are coincident, and one of the remaining  p .k i  people.   There
are
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ways each of the i sets can have distinct birthdays, and 
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ways the remaining people can have birthdays  (which needn't be distinct for k>2,  hence the
recursion).  Therefore:  
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Summing over i, we obtain:
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Now we have  Q( ),,m p k
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  and thus  H( ),,m i p .k i j .Q( ),,m i p .k i j ( )m i p .k i  for all i.

Hence:  
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which can be rewritten in a form better suited to computation as:
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Introduce,  for convenience,  a function:
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then we have the following recursive definition  (note the initial conditions):
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So the probability that at least k people have coincident birthdays is:
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We confirm that  =P( ),,m 22 2 0.475695  ,   =P( ),,m 23 2 0.507297   ,   
                         =P( ),,m 87 3 0.499455  ,   =P( ),,m 88 3 0.511065   

and compute that 

=P( ),,m 186 4 0.495826 =P( ),,m 187 4 0.502685 N4 187

As P is a recursive function, the time required for computation grows exponentially with k, so we 
merely record here the results for k=5 :

P( ),,m 312 5 0.496196 P( ),,m 313 5 0.50107 N5 313

Let's try to verify these results through Monte Carlo simulation. The function K s( ),m p  returns the 

maximum number of coincident birthdays in a set of p.  The function P s( ),,,m p k n   returns the probability 

of k coincident birthdates in a set of p, calculated by evaluating n times the function K s 
and then counting how often its value exceeds k . 
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It would take too much computation time to compare P and P s for m=365, so we will use m=12, which 

can be interpreted as the number of coincident months of birth for a set of p people.

p ..2 30

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P( ),,12 p 2

P s( ),,,12 p 2 100

P( ),,12 p 3

P s( ),,,12 p 3 100

P( ),,12 p 4

P s( ),,,12 p 4 100

P( ),,12 p 5

P s( ),,,12 p 5 100

p

This confirms the agreement between the calculated and simulated probabilities.

A remarkably accurate approximation, due to Bruce Levin [1], makes computations possible for larger k.  
See also [2, 3].
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