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1. INTRODUCTION. This paper studies a problem in multiplicative number theory
originating from a weakened form of the 3x + 1 problem. Let W0 signify the multi-
plicative semigroup generated by the set of rationals

{
3n + 2

2n + 1
: n ≥ 0

}
,

which is the set
{

2

1
,

5

3
,

8

5
,

11

7
, . . .

}
.

That is, W0 is the set of all finite products of the generators, allowing repetitions. Let
W signify the larger multiplicative semigroup generated by W0 together with {1/2}.
We call W the wild semigroup and W0 the Wooley semigroup. The question we con-
sider is: Which integers belong to these semigroups?

The sets of integer elements W(Z) := W ∩ Z and W0(Z) := W0 ∩ Z themselves
form multiplicative semigroups, which we term the wild integer semigroup and Wooley
integer semigroup, and we refer to their members as “wild integers” and “Wooley
integers,” respectively. We have the immediate implication that each Wooley integer
is a wild integer, but the converse need not hold. The Wooley semigroup W0 is a
semigroup without unit, whereas the wild semigroup W is a semigroup with unit, and
the semigroups W0(Z) and W(Z) inherit these properties. Our particular choice of
terminology is explained at the end of the introduction.

An irreducible element of a commutative semigroup T is one that cannot be written
as a product of two nonunits (noninvertible elements) in the semigroup (see Gilmer [8,
sec. 1.6]). We call the irreducible elements of the wild integer semigroup wild numbers;
similarly we christen the irreducible elements of the Wooley integer semigroup Wooley
numbers. Thus the wild numbers are a subset of the wild integers, and the Wooley
numbers are a subset of the Wooley integers.

It is immediately evident that 2 is both a wild number and a Wooley number. It is
also easy to show that 3 is not a wild number, hence not a Wooley number. However
the nature of other wild numbers or Wooley numbers is less apparent. The object of
this paper is to determine properties of wild numbers and Wooley numbers. It turns out
that the Wooley numbers have a complicated and not completely understood structure;
by comparison, the wild numbers have a reasonably simple description.

The wild numbers and the Wooley numbers differ in some significant ways. An
odd integer w is in the wild integer semigroup if and only if there is a nonnegative
integer j such that 2 jw is in the Wooley integer semigroup. At the level of irreducible
elements, we infer that if w is a wild number, then 2 jw is a Wooley number for some
j ; if 2 jw is a Wooley number, however, we cannot (currently) decide whether w must
be a wild number. At first glance the Wooley numbers seem to be the simpler objects
from a computational perspective. In section 2 we show that there is an effectively
computable procedure for deciding whether a given rational number r belongs to W0.
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This leads to an effectively computable procedure to determine whether an integer is a
Wooley integer and, if so, whether it is a Wooley number.

In contrast, it is not immediately apparent if there exists an algorithm for recogniz-
ing whether a given integer is a wild integer. For a general multiplicative semigroup
generated by a recursive set of rational numbers, it seems plausible that the problem
of recognizing which integers belong to the semigroup is sometimes an undecidable
problem. We refer the reader to Dyson [5, Theorem 3] for analogous undecidability
results for commutative semigroups. On the other hand, if one were able to character-
ize directly all members of a semigroup, this could lead to a decision procedure. The
“Wild Numbers Conjecture” to be stated shortly provides such a characterization for
the wild numbers.

There is a strong connection between these problems and a weakened form of the
3x + 1 problem, which motivated their study. This notorious problem (see [11] or [17])
is concerned with the iteration of the function T : N → N defined by

T (x) =




3x + 1

2
if x ≡ 1(mod 2),

x

2
if x ≡ 0(mod 2).

The 3x + 1 conjecture asserts that for each positive integer n there exists an N such
that T (N )(n) = 1, where T (N ) = T ◦ T ◦ · · · ◦ T (N terms) is the N -fold iterate of T .
It has been verified for all n with n ≤ 1017, but remains an open problem.

The weakened version of the 3x + 1 problem to which we alluded earlier was pro-
posed by Herschel Farkas [7]. It reads as follows:

Weak 3X + 1 Conjecture. Consider the semigroup S := W−1 = {w−1 : w ∈ W}
that is generated by

{
2n + 1

3n + 2
: n ≥ 0

}

together with the integer 2. Then S contains every positive integer.

Farkas [7] observed that the truth of the 3x + 1 conjecture implies the truth of the weak
3x + 1 conjecture, because the steps of the 3x + 1 iteration process can be encoded
as certain products of generators using the semigroup multiplication in S . However,
there are products of generators in the semigroup S that do not correspond to the
3x + 1 iteration, so the Farkas conjecture is potentially easier to resolve than the
3x + 1 problem.

Investigation of the weak 3x + 1 conjecture led to questions about the wild integer
semigroup W(Z) as a possible aid in its proof. Conversely, the weak 3x + 1 conjecture
has very strong implications about wild numbers, as explained in section 3, that led to
the formulation of the following conjecture:

Wild Numbers Conjecture. The set of wild numbers consists of all prime numbers,
excluding 3. Equivalently, the wild integer semigroup W(Z) consists of all positive
integers m not divisible by 3.

This paper studies properties of wild and Wooley integers that bear on these questions.
In section 2 we study Wooley integers. We give an effectively computable algorithm
for recognizing Wooley integers and Wooley numbers. Using this approach we show
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that 20 is a Wooley number. We also report computations finding various Wooley in-
tegers. We discuss the question of whether the Wooley integer semigroup W0(Z) is a
free commutative semigroup and present evidence suggesting that it is not. In contrast,
in section 3 we show that the weak 3x + 1 conjecture implies that the wild integer
semigroup W(Z) is a free commutative semigroup with unit.

In section 3 we begin by demonstrating that there are infinitely many wild numbers.
Then we show that the weak 3x + 1 conjecture implies strong restrictions on wild
numbers—indeed, we prove that it implies the wild numbers conjecture. This lends
strong support to the conviction that the wild numbers conjecture must be true, since
the weak 3x + 1 conjecture itself would follow from the 3x + 1 conjecture, for which
there is extensive evidence. We also deduce a converse assertion to the effect that the
wild numbers conjecture implies the weak 3x + 1 conjecture. As a final result we show
that these conjectures completely characterize the structure of the wild semigroup,
which turns out to be quite tame.

Based on some of the results derived here, the weak 3x + 1 conjecture and wild
numbers conjecture were subsequently proved by David Applegate and the author
in [1]. In section 4 we indicate some features of the proof and formulate some open
problems about Wooley numbers, which remain mysterious.

The terms “wild semigroup” and “wild number” were suggested by the novel The
Wild Numbers by Philibert Schogt [14]. The novel chronicles the efforts of a mathe-
matics professor to solve the (fictitious) “Beauregard Wild Numbers Problem,” while
dealing with the ups and downs of life in a university mathematics department. The
semigroup problem posed here has some striking resemblances to the information
given about the Beaureguard wild numbers problem. Beaureguard wild numbers are
described in the novel as certain integers produced at the end of a sequence of elemen-
tary operations that involve noninteger rationals at the intermediate steps. Here the
semigroup products of W giving an element of W(Z) generally consist of rationals
whose partial products typically become integers only at the last step. The novel also
states [14, pp. 34, 37] that 2 is a Beaureguard wild number but 3 is not, and that 67
and 4769 are Beaureguard wild numbers. The wild numbers defined here reproduce
nearly all this empirical data. (The one exception is 4769 = 169 · 253, which belongs
to the wild integer semigroup W(Z) but is not a wild number as we define it. Perhaps
the novel has a misprint for 4759 or 4789 or 4967, all primes.) The Beaureguard wild
numbers problem is to decide whether there are infinitely many wild numbers [14,
p. 35]. The terms “Wooley semigroup” and “Wooley numbers” are named after Trevor
D. Wooley, in honor of his work in related areas of number theory (for example, [3]).

Aside from the definitions of “wild numbers” made in this paper, there have been
other concepts of “wild numbers” that possess some of the properties indicated in the
foregoing discussion. We refer to sequence A58883 in the Encyclopedia of Integer Se-
quences maintained by Neil Sloane [15], and six versions of “pseudo-wild numbers”
cited there. The Beaureguard wild numbers problem in Schogt’s novel seems to in-
volve iteration, which is not directly present in our semigroup problem. Some iteration
problems with a similar flavor to the wild numbers problem come from the “approxi-
mate multiplication” maps studied in Lagarias and Sloane [12]. A typical example is
the map f (x) = 4

3�x�. The question studied in [12] asks whether it is true that, for
each positive integer n, some iterate f (N )(n) is again an integer. This iteration problem
thus produces a sequence of noninteger rational numbers terminating in an integer. It
is currently unsolved and seems likely to be difficult.

2. WOOLEY NUMBERS. We show that the Wooley semigroup W0 is a recursive
semigroup.
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Theorem 2.1. There is an effectively computable procedure that when given any pos-
itive rational r determines whether or not it belongs to the Wooley semigroup W0, and
if it does, exhibits it as a product of generators.

Proof. We cannot represent r unless it is a positive rational number having an odd
denominator (in lowest terms). Let

g(n) = 3n + 2

2n + 1

denote the nth generator of the semigroup W0, and suppose that

r =
m∏

i=1

g(ni )

with n1 ≤ n2 ≤ · · · ≤ nm . We first bound m above. In fact, since g(n) > 3/2 for each
n, we must have r > (3/2)m , which delivers an upper bound for m.

Now let m be fixed. We find an upper bound for n1. We have r > (3/2)m , so

r =
(

3

2
+ ε

)m

with

ε = r 1/m − 3

2
> 0.

We claim that n1 ≤ 1/ε. If not, then

g(n1) = 3n1 + 2

2n1 + 1
= 3

2
+ 1/2

2n1 + 1
<

3

2
+ ε.

Since g(n) is a decreasing function of n, we would have

r =
m∏

i=1

g(ni ) ≤ g(n1)
m <

(
3

2
+ ε

)m

= r,

a contradiction that proves the claim.
Once n1 is chosen, we can divide out g(n1) to create a new problem of the same

kind with a smaller value r ′ = r(g(n1))
−1 < 2r/3, where we ask for a representation

using a product of exactly m − 1 generators. We then show that there is a finite set of
choices for n2, obtaining in the process an explicit upper bound for n2 as a function of
r , m, and n1. Proceeding by induction on m, we discover that the total allowable set
of choices is finite, with an effectively computable upper bound. Searching all of them
yields either a relation certifying that r belongs to W0 or a proof that r does not belong
to W0.

We can carry out this procedure in the simplest cases.

Example. The integers 5 and 10 are not Wooley integers, but 20 is a Wooley integer.
As a consequence, 20 is a Wooley number.

Proof. Suppose that 5 were a product of generators of W0. Since 2 cannot be cancelled
from the numerator of any product or 3 from its denominator, any representation of 5
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could not use the generators g(0) = 2/1, g(1) = 5/3, or g(2) = 8/5. Any product of
three of the remaining generators is no larger than

g(3)3 =
(

11

7

)3

= 1331

243
< 5,

so any representation of 5 necessarily includes at least four factors from the generating
set of W0. However, any such product is larger than

(
3

2

)4

= 81

16
> 5,

a contradiction.
Suppose that 10 were a product of generators of W0. Any representation of 10

would use at most five generators, since

(
3

2

)6

= 729

64
> 10.

A representation of 10 could not use the generator 2/1, for if it did this fraction could
be removed, yielding a representation of 5, a contradiction. Also, 5/3 and 8/5 could
not arise as factors because they would add uncancellable terms 3 and 23, so the frac-
tion of largest size that could appear in any product is again 11/7. However

(
11

7

)5

< 10,

so there can be no such representation.
The number 20 can be expressed as follows:

20 = g(3)2 · g(5) · g(8) · g(27) · g(32) · g(41)

=
(

11

7

)2 (
17

11

)(
26

17

)(
83

55

)(
98

65

) (
125

83

)
.

This confirms that 20 belongs to W0, making it a Wooley integer. To see that 20 is
a Wooley number, note that if it is not irreducible, then 20 = n1n2, where n1 and n2

belong to W0(Z). At least one of n1 or n2 would then be divisible by 5, but the only
possibilities are 5 and 10, which have already been ruled out.

The algorithm of Theorem 2.1 appears to be very slow, requiring at least exponen-
tial time. However, one can find Wooley integers by less exhaustive methods. Table
1 presents additional Wooley integers with identities certifying their membership in
W0(Z) for certain numbers of the form 2k p, where p is prime such that 5 ≤ p < 50.
These identities were found by Allan Wilks via computer search. Wilks’s search used
certain heuristics and did not decide whether these products give the minimal power of
2 possible. As a result we can say only that the entries of the table are Wooley integers,
not necessarily Wooley numbers.

A commutative semigroup with or without unit 1 is said to be a free commutative
semigroup if every element of the semigroup except 1 can be factored uniquely (up to
ordering of the factors) into a product of irreducible elements. Many such semigroups
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Table 1. Members of the Wooley integer semigroup W0(Z).

22 · 5 =
(

11

7

)2

· 17

11
· 26

17
· 83

55
· 98

65
· 125

83
= g(3)2 · g(5) · g(8) · g(27) · g(32) · g(41)

22 · 7 = 11

7
· 26

17
· 35

23
· 215

143
· 299

199
· 323

215
· 371

247
· 398

265
= g(3) · g(8) · g(11) · g(71) · g(99) · g(107) · g(123) · g(132)

22 · 11 =
(

11

7

)2

· 26

17
· 35

23
· 215

143
· 299

199
· 323

215
· 371

247
· 398

265

= g(3)2 · g(8) · g(11) · g(71) · g(99) · g(107) · g(123) · g(132)

23 · 13 =
(

11

7

)2

·
(

17

11

)3

·
(

26

17

)2

· 35

23
· 215

143
· 299

199
· 323

215
· 371

247
· 398

265

= g(3)2 · g(5)3 · g(8)2 · g(11) · g(71) · g(99)g(107) · g(123) · g(132)

22 · 17 =
(

11

7

)2

· 17

11
· 26

17
· 83

55
· 98

65
· 125

83
· 143

95
· 215

143
· 323

215

= g(3)2 · g(5) · g(8) · g(27) · g(32) · g(41) · g(47) · g(71) · g(107)

25 · 19 =
(

11

7

)4

·
(

17

11

)2

·
(

26

17

)2

· 38

25
·
(

83

55

)2

·
(

98

65

)2

·
(

125

83

)2

= g(3)4 · g(5)2 · g(8)2 · g(12) · g(27)2 · g(32)2 · g(41)2

25 · 23 = 11

7
· 26

17
· 35

23
· 47

31
· 137

91
· 155

103
· 206

137
· 215

143
·
(

299

199

)2

· 323

215
· 353

235
· 371

247
·
(

398

265

)2

· 530

353

= g(3) · g(8) · g(11) · g(15) · g(45) · g(51) · g(68) · g(71)

· g(99)2 · g(107) · g(117) · g(123) · g(132)2 · g(176)

25 · 29 =
(

11

7

)4

·
(

17

11

)2

·
(

26

17

)2

· 29

19
· 38

25
·
(

83

55

)2

·
(

98

65

)2

·
(

125

83

)2

= g(3)4 · g(5)2 · g(8)2 · g(9) · g(12) · g(27)2 · g(32)2 · g(41)2

211 · 31 =
(

11

7

)6

·
(

17

11

)3

· 29

19
· 38

25
· 62

41
·
(

83

55

)3

·
(

98

65

)3

·
(

125

83

)3

· 164

109
· 218

145

= g(3)6 · g(5)3 · g(8)3 · g(9) · g(12) · g(20) · g(27)3 · g(32)3 · g(41)3 · g(54) · g(72)

25 · 37 =
(

11

7

)2

·
(

26

17

)2

·
(

35

23

)2

· 74

49
·
(

215

143

)2

·
(

299

199

)2

·
(

323

215

)2

·
(

371

247

)2

·
(

398

265

)2

= g(3)2 · g(8)2 · g(11)2 · g(24) · g(71)2 · g(99)2 · g(107)2 · g(123)2 · g(132)2

210 · 41 =
(

11

7

)6

·
(

17

11

)3

·
(

26

17

)3

· 29

19
· 38

25
·
(

83

55

)3

·
(

98

65

)3

·
(

125

83

)3

· 164

109
· 218

145

= g(3)6 · g(5)3 · g(8)3 · g(9) · g(12) · g(27)3 · g(32)3 · g(41)3 · g(54) · g(72)

211 · 43 =
(

11

7

)5

·
(

17

11

)2

·
(

26

17

)3

· 29

19
· 35

23
· 38

25
·
(

83

55

)2

·
(

98

65

)2

·
(

125

87

)2

· 215

143

· 299

199
· 305

203
· 323

215
· 344

229
· 371

247
· 398

265
· 458

305
= g(3)5 · g(5)2 · g(8)3 · g(9) · g(11) · g(12) · g(27)2 · g(32)2 · g(41)2 · g(71)

· g(99) · g(101) · g(107) · g(114) · g(123) · g(132) · g(152)

211 · 47 =
(

11

7

)6

·
(

17

11

)3

· 29

19
· 38

25
· 47

31
· 62

41
·
(

83

55

)3

·
(

98

65

)3

·
(

125

83

)3

· 164

109
· 218

145

= g(3)6 · g(5)3 · g(8)3 · g(9) · g(12) · g(15) · g(20) · g(27)3 · g(32)3 · g(41)3 · g(54) · g(72)
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arise in number theory (see Knopfmacher [10]). Does the Wooley integer semigroup
W0(Z) have unique factorization? We leave this question unresolved, but it seems
likely that it does not. To show this it would suffice to find a Wooley number that
contained two distinct odd prime factors. A suggestive example is provided by the
number 26 · 31 · 41, which is a Wooley integer expressible in terms of generators by

26 · 31 · 41 = g(423) · (22 · 7)(22 · 11)2,

since g(423) = 1271/847 = (31 · 41)/(7 · 112), and both 22 · 7 and 22 · 11 belong to
W0(Z) according to Table 1. If there were a Wooley number of the form 2c · 31 ·
41, then the semigroup W0(Z) would not be a free commutative semigroup, because
there would exist four irreducible elements of W0(Z)—2, 2a · 31, 2b · 41, 2c · 31 · 41—
leading to a nonunique factorization of M = 2a+b+c · 31 · 41. Such a Wooley number
will exist unless there are Wooley integers of form 2a · 31 and 2b · 41 with a + b ≤ 6,
and this possibility can be tested algorithmically, according to Theorem 2.1.

3. WILD NUMBERS. We begin by showing that there are infinitely many wild num-
bers.

Theorem 3.1. The semigroup of wild integers contains infinitely many irreducible el-
ements (i.e., there are infinitely many wild numbers).

Proof. For

n = 5k − 1

2

we have

g(n) =
1
2 (3 · 5k + 1)

5k
.

Example 2.2 shows that 22 · 5 is a Wooley number, which implies that 5 is a wild
integer, and it is a wild number since it is prime. We conclude that

h(k) := 1

2
(3 · 5k + 1) = g(n) · 5k

belongs to W(Z) for each positive integer k.
The sequence {h(k) : k ≥ 1} satisfies a homogeneous second-order linear recur-

rence, namely,

h(k) = 6h(k − 1) − 5h(k − 2).

This sequence is nondegenerate in the sense of Ward [16] (i.e., it does not satisfy a first-
order linear recurrence). Accordingly, by the main result of Ward [16] the sequence
{h(k)} contains an infinite number of distinct prime divisors (i.e., the set D of primes
p that divide h(k) for at least one k is infinite).

We now argue by contradiction that W(Z) contains infinitely many irreducible ele-
ments. If not, there would exist some prime p in the infinite set D that did not divide
any irreducible element. This prime p divides some h(k), which belongs to W(Z), so
there exists a smallest element m of W(Z) that is divisible by p. This element m is
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necessarily irreducible, for if not there would be a smaller integer in W(Z) divisible
by p. This gives a contradiction.

We obtain much stronger results about the structure of the wild integer semigroup
if we assume the truth of the weak 3x + 1 conjecture.

Theorem 3.2. Suppose that the weak 3x + 1 conjecture holds. Then the wild integer
semigroup W(Z) is a free commutative semigroup whose set of generators P consists
entirely of primes. In other words, all wild numbers are prime numbers.

Proof. The semigroup W(Z) contains all powers of 2. Also, since 2 is invertible in
W , it can be cancelled from all other generators, which therefore must be odd integers.
However, the weak 3x + 1 conjecture says that if n belongs to W , then so does n/k
for any positive integer k. Thus, if a composite number n lies in W(Z), so do all of
its prime divisors. It follows that all generators of W(Z) are primes. The semigroup
W(Z) is now a free commutative semigroup as a consequence of the unique prime
factorization of integers.

In general, we can certify that a given prime number p is a wild number by finding
some j such that 2 j p is a Wooley number. For example, 67 is a wild number since
212 · 67 is a Wooley number. The latter assertion is a consequence of the identity

25 · 67

5 · 37
= g(29) · g(44) · g(69) · g(78) · g(92) · g(104)

and the fact, established earlier, that 22 · 5 and 25 · 37 are Wooley numbers.
We next show that the weak 3x + 1 conjecture implies the wild numbers conjecture.

Theorem 3.3. If the weak 3x + 1 conjecture holds, then the wild numbers conjecture
is true.

Proof. We prove the wild numbers conjecture by induction on the nth prime, call it q.
The induction hypothesis asserts that all smaller primes except 3 belong to the wild
integer semigroup. We call an integer Y -smooth if all its prime factors are strictly
smaller than Y . Because the wild integers form a semigroup, the induction hypothesis
tells us that all q-smooth numbers not divisible by 3 are wild integers. In particular,
all integers smaller than q and not divisible by 3 are wild integers. To complete the
induction step it suffices to show that q is a wild integer. If so, its primality guarantees
that it is irreducible, hence that it is a wild number.

To show that q is a wild integer it suffices to find some multiple mq that is a wild
integer, for the weak 3x + 1 conjecture implies that 1/m belongs to the wild semigroup
W , making q = (mq)/m a wild integer. We wish to find mq of the form mq = 3n + 2
such that 2n + 1 is a q-smooth number not divisible by 3. If so, then

mq = 3n + 2

2n + 1
(2n + 1)

will belong to W , and the desired result will follow. The requirement mq = 3n + 2
puts m in a certain residue class modulo 3, and by imposing a condition on m modulo 9
we can guarantee that 2n + 1 �≡ 0 (mod 3). The resulting integers 2n + 1 then fall into
an arithmetic progression of numbers congruent to r modulo 6q, with gcd(r, 6q) =
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1, and we arrive at a special case of the well-studied arithmetic question of finding
“smooth numbers” in an arithmetic progression.

We recall general facts on the distribution of “smooth numbers” up to X , namely,
those numbers below X having all prime factors smaller than a given bound Y (see, for
example, Hildebrand and Tenenbaum [9]). Smooth numbers for an appropriate choice
of Y play an important role in the design and performance of the fastest known algo-
rithms for factoring large numbers (see Pomerance [13]). It is known that the number
of integers smaller than X that have all their prime factors below a cutoff value Y = Xα

for any fixed α have asymptotically a positive density ρ(α)Y , where ρ(u) is a strictly
positive function, the Dickman function. This function is given by the solution to a
certain difference-differential equation and ρ(u) ≈ u−u . (Here u = (log Y )/(log X).)
Balog and Pomerance [2] carry these bounds over to count the number of Y -smooth
numbers in arithmetic progressions modulo N , and their results give an asymptotic
formula valid for Y over a large range. In particular, choosing X ≈ q2, N = 6q, and
Y = q, which corresponds to α = 1/2, one can deduce from their results that the num-
ber of q-smooth integers in the first q terms of the arithmetic progression r modulo 6q
is nonzero whenever q > C0 for some constant C0 that is, in principle, computable.
However, C0 is not easy to compute, nor is it likely to be small.

To complete our argument we need only demonstrate the existence of a single
q-smooth number in the given arithmetic progression r modulo 6q. This permits us
to sidestep the results of Balog and Pomerance and to use instead a direct combinato-
rial argument. It rests on the observation that if more than half the invertible residue
classes modulo N contain Y -smooth numbers, then (by the pigeonhole principle) every
invertible residue class r modulo N occurs as a product of two of these residue classes,
and consequently contains a Y -smooth number that is the product of Y -smooth num-
bers from these classes. In more detail, let � denote the set of invertible residue classes
s modulo N that contain Y -smooth integers. Suppose that r is an arbitrary invertible
residue class modulo N . We now define �′ to consist of those residue classes s ′ mod-
ulo N given by

s ′ ≡ r · s−1(mod N ),

where s belongs to �. Certainly |�′| = |�| and since |�| and |�′| exceed half the
number of invertible residue classes, there must be some s ′ in � ∩ �′. Now r ≡
ss ′(mod N ), and taking S and S′ to be Y -smooth numbers in the classes s and s ′ mod-
ulo N , respectively, we find that S · S′ is a Y -smooth number in the class r modulo
N .

In our case we have N = 6q, which has φ(N ) = 2(q − 1) invertible residue classes,
and all of these residue classes consist of numbers not divisible by 3. It suffices to
demonstrate that more than q − 1 of these invertible classes contain q-smooth num-
bers. We show that the set of such residue classes whose least positive residue is
smooth exceeds q − 1 for all sufficiently large q. Now every integer less than 6q and
relatively prime to 6q has all its prime factors smaller than q, except for primes p′ with
q < p′ < 6q and integers of the form 5p′ with q ≤ p′ < 6q/5. Since the number of
primes below x is

O

(
x

log x

)
,

there are at most

O

(
q

log q

)
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such integers, hence at least

2(q − 1) − O

(
q

log q

)

invertible classes have a least residue that is q-smooth. For large q this gives the result,
and by obtaining explicit numerical bounds for the remainder term it is possible to
prove that when q > 104 more than half the invertible residue classes modulo 6q are
q-smooth. (Such bounds are derived in [1].)

Now we can prove the wild numbers conjecture by induction, under the assumption
that the weak 3x + 1 conjecture is valid, with the base case consisting of checking all
q such that q < 104. The base case can be checked by computer. In fact, it suffices to
use Table 1 when q < 50 and for q in the range 50 < q < 104 to have the computer
find directly a smooth number in a suitable arithmetic progression modulo 6q.

Since the 3x + 1 conjecture appears to be true, Theorem 3.3 provides a powerful ar-
gument in favor of the wild numbers conjecture. On the other hand, we have a converse
implication:

Theorem 3.4. If the wild numbers conjecture is true, then the weak 3x + 1 conjecture
holds.

Proof. This implication is proved with an argument similar to the one that established
Theorem 3.3. We proceed by induction on the nth prime q, assuming that all primes
below q (including 3) belong to the inverse semigroup W−1. We now consider mul-
tiples mq, where m ≡ 1 (mod 6). The wild numbers conjecture implies that all such
integers are in the wild semigroup W . Writing mq = 2n + 1, we look for a case in
which 3n + 2 is a q-smooth number. Expressing m as m = 6k + 1, we have

3n + 2 = 9kq + 3q + 1

2
,

which is an arithmetic progression modulo 9q. As in the earlier result, it suffices to
show that for all sufficiently large q more than half of the invertible residue classes
modulo 9q in the interval [1, q − 1] have least positive residues that are q-smooth
numbers, which then implies that each arithmetic progression for an invertible residue
class modulo 9q contains a q-smooth integer smaller than 81q2. This holds when
q > 105. Since the 3x + 1 conjecture has been verified up to 105, the base case of
the induction is already done.

Our final result points out that the truth of the weak 3x + 1 conjecture completely
determines the structure of the wild semigroup W .

Theorem 3.5. If the weak 3x + 1 conjecture is true, then the wild semigroup W con-
sists of all positive rational numbers a/b with gcd(a, 3b) = 1.

Proof. The weak 3x + 1 conjecture implies that W contains all fractions 1/p, where p
is prime. By Theorem 3.3 this conjecture implies the wild numbers conjecture, which
ensures that W contains all primes p different from 3. We observed earlier that any
rational number r = a/b in lowest terms that belongs to W has numerator a relatively
prime to 3. This gives the result.
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Theorem 3.5 provides a simple effective decision procedure for membership of a
given rational number r in the wild semigroup W , provided that the weak 3x + 1
conjecture is proved.

4. CONCLUDING REMARKS. The results of section 3 demonstrate that the wild
numbers conjecture and the weak 3x + 1 conjecture are intertwined: each is implied
by the other. David Applegate and the author [1] have recently been able to prove both
conjectures simultaneously, via a bootstrap induction procedure that uses the truth of
one of the conjectures on an interval to extend the truth of the other to a larger interval,
and vice versa. The argument of Theorem 3.3 (respectively, Theorem 3.5) provides a
way to extend the truth of the conjecture in one direction, provided it holds on a suffi-
cient initial interval in the other. We do not, however, know a way to use the arguments
of these theorems simultaneously in both directions. Fortunately, there is another sys-
tematic way to find representations of many integers n in the inverse semigroup W−1,
which is to iterate the 3x + 1 map starting with n. The argument in [1] takes advantage
of this fact in constructing the “other” direction of the bootstrap induction. There is an
apparent asymmetry in the two directions, in that we are not aware of any dynamical
system associated with the wild semigroup that produces relations generating the in-
tegers in the wild integer semigroup W(Z) that is analogous to the use of the 3x + 1
iteration in the inverse semigroup W−1.

The original motivation for studying the wild semigroup came from the weak
3x + 1 conjecture, but the Wooley semigroup W0 that arose in the process seems
interesting in its own right. The Wooley integer semigroup W0(Z) appears to be a
more complicated object than the wild integer semigroup W(Z), and there remain
many open questions about Wooley integers. One question already raised in section 2
asks whether Wooley integers have unique factorization into irreducibles (i.e., whether
the Wooley integer semigroup is a free commutative semigroup). A second question
concerns, for each prime p, the behavior of the minimal power e(p) necessary to place
2e(p) p in the Wooley integer semigroup. It seems plausible that e(p) is unbounded.
The truth of the wild numbers conjecture implies that each number e(p) is finite, so in
view of its proof in [1], this question is well posed. A third question asks: How does
the counting function of the Wooley integers below x grow as x → ∞?

As noted earlier, the wild numbers conjecture is named after the (fictitious) mathe-
matical problem in Philibert Schogt’s novel The Wild Numbers. In the novel the Beau-
regard wild numbers problem was presented as a famous unsolved problem, with a
long and illustrious history. Its namesake here fails to have either of these attributes.
The wild numbers conjecture has a short history, and the infinitude of the wild num-
bers was established by Theorem 3.1. Nevertheless, our terminology seems fitting, for
the novel asserts that there is “a fundamental relationship between wild numbers and
prime numbers” [14, p. 36], and the wild numbers of this paper coincide with the
prime numbers, excluding 3. Understanding the behavior of prime numbers is one of
the great quests of mathematics, with a history as long and impressive as one could
hope for; see Derbyshire [4] or du Sautoy [6] for recent accounts.

ADDED IN PROOF. In work done at the University of Minnesota-Duluth REU program
in Summer 2005, Ana Carlani answered a question raised in section 4. She showed that
the Wooley integer semigroup does not have unique factorization into irreducibles.
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