GPU Code Generation for ODE-Based Applications with Phased
Shared-Data Access Patterns

ANDREI HAGIESCU, National University of Singapore

BING LIU, Carnegie Mellon University

R. RAMANATHAN and SUCHEENDRA K. PALANIAPPAN, National University of Singapore
ZHENG CUI, Advanced Digital Science Centre, Singapore

BIPASA CHATTOPADHYAY, University of North Carolina

P. S. THIAGARAJAN and WENG-FAI WONG, National University of Singapore

We present a novel code generation scheme for GPUs. Its key feature is the platform-aware generation of a
heterogeneous pool of threads. This exposes more data-sharing opportunities among the concurrent threads
and reduces the memory requirements that would otherwise exceed the capacity of the on-chip memory.
Instead of the conventional strategy of focusing on exposing as much parallelism as possible, our scheme
leverages on the phased nature of memory access patterns found in many applications that exhibit massive
parallelism. We demonstrate the effectiveness of our code generation strategy on a computational systems
biology application. This application consists of computing a Dynamic Bayesian Network (DBN) approxima-
tion of the dynamics of signalling pathways described as a system of Ordinary Differential Equations (ODEs).
The approximation algorithm involves (i) sampling many (of the order of a few million) times from the set
of initial states, (ii) generating trajectories through numerical integration, and (iii) storing the statistical
properties of this set of trajectories in Conditional Probability Tables (CPTs) of a DBN via a prespecified
discretization of the time and value domains. The trajectories can be computed in parallel. However, the
intermediate data needed for computing them, as well as the entries for the CPTs, are too large to be stored
locally. Our experiments show that the proposed code generation scheme scales well, achieving significant
performance improvements on three realistic signalling pathways models. These results suggest how our
scheme could be extended to deal with other applications involving systems of ODEs.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures—Patterns
(pipeline)

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: GPU, memory hierarchy, code generation

ACM Reference Format:

Hagiescu, A., Liu, B., Ramanathan, R., Palaniappan, S. K., Cui, Z., Chattopadhyay, B., Thiagarajan, P. S,,
and Wong, W.-F. 2013. GPU code generation for ODE-based applications with phased shared-data access

patterns. ACM Trans. Architec. Code Optim. 10, 4, Article 55 (December 2013), 19 pages.
DOLI: http://dx.doi.org/10.1145/2555289.2555311

1. INTRODUCTION

General-purpose computing using Graphics Processing Units (GPUs) has been making
rapid advances [Owens et al. 2007; Nickolls and Dally 2010]. High-level programming
languages and APIs such as CUDA [NVIDIA 2012] and OpenCL [Khronos 2012] are

Authors’ addresses: W.-F. Wong, National University of Singapore - Computer Science, 117417, Singapore;
email: wongwf@nus.edu.sg.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481 or permissions@acm.org.

© 2013 ACM 1544-3566/2013/12-ART55 $15.00

DOT: http://dx.doi.org/10.1145/2555289.2555311

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

55:2 A. Hagiescu et al.

now available to ease the task of programming GPUs by shielding the programmer from
the architectural details. The programming paradigm offered by these APIs consists
of computational kernels that read in an input stream of data and produce an output
data stream. These kernels are realized by launching a large pool of parallel threads,
organized in scheduling units called warps, consisting of threads executing in lock-
step. The input data streams are typically stored in the off-chip Global Memory (GM),
which is accessible to all threads running on the GPU. The significant latency of the
GM is masked through multiplexing and pipelining. Specifically, the GPU hardware
multiplexes the warps on a number of pipelined Streaming Multiprocessors (SMs).
Each SM consists of a large set of registers, a number of execution cores, and a scratch
pad memory that is shared by all warps allocated to the SM.

Warps are grouped into thread blocks that are scheduled by the GPU hardware.
Only warps within the same thread block are guaranteed to execute concurrently and
may exchange data using a small on-chip local memory. Therefore, applications need
to handle the opposing requirements that all threads exchanging data must map to a
thread block (a few warps) and, at the same time, ensure that code encapsulated within
each warp executes in lock-step to achieve high performance.

With this as motivation, this article describes a novel and efficient code generation
scheme for GPU architectures. To concretely highlight the main features of our scheme,
we shall describe its application to a systems biology application that exhibits the key
mix of potential massive parallelism among threads but with phased data exchanges
between the threads. To bring this out, we begin with a brief outline of this application.
A standard model of the dynamics of a biochemical network is a system of Ordinary
Differential Equations (ODEs). Our application consists of approximating such a sys-
tem of ODEs as a Dynamic Bayesian Network (DBN). Typical models of biochemical
networks involve a large number of ODEs (one corresponding to each molecular species
involved in the network), and the DBN approximation considerably eases the task of
analyzing the behaviour of the biochemical network. The approximation algorithm in-
volves (i) sampling many (of the order of a few million) times from a set of initial states,
(i1) generating trajectories through numerical integration, and (iii) storing the statisti-
cal properties of this set of trajectories in the Conditional Probability Tables (CPTs) of
a DBN via a prespecified discretization of the time and value domains.

The large number of trajectories and the high dimensionality of the system makes
the problem computationally intensive. A conventional approach would be to map the
computation of each trajectory to a GPU thread. A large number of such threads can
be executed in parallel in lock-step, as required for execution on GPU architectures.
However, the cumulative size of the intermediate data used by these concurrent threads
would be too large to be stored in the SMs’ registers or SM memory. This is due to the
coupling between the ODEs, where the computation of the next value of a variable
along a trajectory has to make use of the current values of all variables appearing
in the equation describing the dynamics of this variable. Thus, for high-dimensional
systems, the GM has to be used to store the intermediate data. However, this leads to
a vicious cycle in which more parallel threads have to be launched to hide the memory
latency that in turn creates more accesses to the GM, leading to memory bandwidth
saturation and eventually to performance degradation.

An important observation is that the computation of a single trajectory itself ad-
mits significant parallelism. For each variable x;, the “next” value can be computed
independently as a function of the current value of other variables. Our proposed im-
plementation strategy exploits this fine-grained parallelism and determines the best
way to distribute the equations among several parallel threads. We also introduce the
required synchronization to propagate the new value of a variable to all equations in
which it appears. As a result, there is a significant reduction in memory usage because

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

GPU Code Generation for ODE-Based Applications with Phased Shared-Data 55:3

the intermediate data of each trajectory is shared by all threads associated with each
trajectory. Following this strategy, we achieved a higher GPU utilization (more parallel
threads) while processing fewer trajectories at a time. In fact, our solution carefully
constrains the number of parallel trajectories so that the size of the intermediate data
matches the amount of available SM memory.

It is important to note that since the ODEs are not identical, the resulting threads will
be heterogeneous. Hence, a significant feature of our code generation scheme is its abil-
ity to handle a heterogeneous pool of compute threads. We achieve this by dividing this
pool into homogeneous groups and then scheduling the groups into warps that match
the lock-step execution constraints of the GPU. In addition, a special class of threads
is instantiated to handle the infrequent transfers to GM. Our implementation scheme
also includes a performance model that accounts for the throughput of the underlying
architecture (in our case, the NVIDIA Tesla 2.0 architecture [Glaskowsky 2009]).

In summary, this article makes the following contributions: (i) an execution strategy
based on fine-grained parallelism and heterogeneous threads tuned to the Tesla GPU
architecture, (ii) a code generation method which refactors applications to match the
proposed heterogeneous execution scheme, and (iii) a solution that reduces the memory
requirements of the GPU kernels.

We believe that this scheme is applicable to many other problems having a similar
structure. A variety of such problems arise in chemical, economical, engineering, phys-
ical, environmental, and life sciences, involving the modeling, simulation, and analysis
based on a system of ODEs. All of these settings would benefit from a scheme through
which information is extracted from a trajectory as it is being generated while a large
number of trajectories is generated in parallel. For instance, it has been demonstrated
[Palaniappan et al. 2013] how the powerful analysis technique called Statistical Model
Checking (SMC) [Younes and Simmons 2006] can be used to study the dynamics of a
system of ODEs. This application again involves generating a large number of trajecto-
ries and performing a statistical analysis of the resulting trajectories. A key step in the
analysis is deciding whether each trajectory has the dynamical property (usually reach-
ability) specified by a temporal logic formula. Doing this on the fly using the so-called
tableau-based model checking procedure will entail extracting and binning information
from the trajectories. Hence, our code generation scheme is also a good candidate for
obtaining scalable and efficient GPU implementations for this class of applications.

1.1. Related Work

A variety of previous schemes have been devised to improve the performance of GPU
implementations. Of particular relevance to our work are the data prefetching and
memory latency hiding techniques [Owens et al. 2008; Silberstein et al. 2008; Ye et al.
2010; Bodin and Bihan 2009; Wolfe 2010]. However, these techniques are not applicable
in our context, as they rely on a large ratio between computation and the size of the
dataset prefetched into the on-chip SM memory.

Another problem often affecting performance is the relationship between the ker-
nel geometry and the layout of the data to be processed. In general, the selection of
the number of parallel threads is correlated with data placement, and identifying a
solution is not trivial [Ryoo et al. 2008]. In contrast, our framework goes beyond tradi-
tional data tiling [Aho et al. 2006; Bastoul 2004] and introduces an additional level of
flexibility in thread scheduling that allows for changes in the kernel computation with-
out affecting data placement. Our approach extracts fine-grained parallel code from
the biopathway model and distributes it across a number of concurrent threads [Chen
et al. 2011]. Other GPU code generation schemes utilize heterogeneous collaborative
threads [Hormati et al. 2011; Hagiescu et al. 2011]. However, these schemes have only
been directed to segregate slow GM accesses into separate threads, thereby freeing

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

55:4 A. Hagiescu et al.

dedicated computation threads from such accesses. This work goes beyond these
schemes and introduces multiple classes of dedicated compute threads.

As part of the code generation scheme, we need a customized performance model.
Although other performance models exist [Hong and Kim 2009; Zhang and Owens
2011], their role is to evaluate the overall application performance, which is mainly
driven by the memory access patterns and GPU occupancy. In contrary, the model in our
article focuses on the number of cycles spent by threads in the GPU compute pipeline
and is used for thread load balancing by providing a comparison between compute-only
code segments.

In a related article, we have presented the broad outlines of our code generation
strategy [Liu et al. 2012]. However, the focus of that article was on the computational
systems biology issues, including a novel probabilistic verification scheme. In contrast,
in this article, we discuss in detail the GPU architecture-specific code generation,
memory allocation, and scheduling issues that must be addressed to handle massive
parallelism accompanied by substantial data sharing.

1.2. Plan of the Article

In Section 2, we describe the systems biology background of the application and de-
scribe the procedure for constructing the DBN approximation of a system of ODEs. In
Section 3, we present our code generation scheme. In Section 4, we present the exper-
imental results for a set of eight models designed to test various features of our code
generation scheme. In particular, we present the results for three realistic models: the
EGF-NGF pathway [Brown et al. 2004], the segmentation clock pathway [Goldbeter and
Pourquie 2008], and the thrombin-dependent-MLC-phosphorylation pathway [Maedo
et al. 2006]. In the final section, we summarize and discuss possible extensions of our
work.

2. THE PROBLEM DOMAIN

Modelling and analysis of biopathways dynamics is a core activity in systems biology
[Kitano 2002]. A biopathway is a network of biochemical reactions that is often mod-
elled as a system of ODEs [Aldridge et al. 2006]. The equations describe the biochemical
reactions with the variables representing the concentration levels of molecular species.
The system often does not admit closed-form solutions. Instead, one has to numerically
generate trajectories to study the dynamics. In addition, reaction rate constant parame-
ters are often unknown, and the experimental data used for model training and testing
are often population based and have limited precision. Consequently, Monte Carlo
methods are employed to ensure that sufficiently many values from the distribution of
model parameters are being sampled. As a result, basic tasks such as parameter esti-
mation, model validation, and sensitivity analysis require a large number of numerical
simulations.

The method developed in Liu et al. [2009] will be our focus here. It computes a large
set of trajectories, induced by the ODE dynamics, starting from a distribution of the
initial states. The key idea is to exploit the dependencies (as well as independencies)
in the pathway structure to compactly encode these trajectories as a time-variant
DBN [Murphy 2002]. This DBN is viewed as an approximation of the ODE dynamics,
and analysis tasks can be performed on this simpler model using standard Bayesian
inference techniques [Koller and Friedman 2009]. The applicability of this method has
been demonstrated by previous work [Liu et al. 2011b].

Figure 1 shows a biopathway, its associated ODE model, and its DBN approximation.
The ODEs are of the form % = fi(x, p) for each molecular species x;, with f; describing
the kinetics of the reactions that produce and consume molecular species x; € x, where

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

GPU Code Generation for ODE-Based Applications with Phased Shared-Data 55:5

kl
S+E$ES1‘%E+P
(2)

% ——k S.E+k, ES

%’f =k, S.E+(k, +k,).ES
dETS =k .S.E—(k,+k,).ES
%’: ~ k,ES

[Pe(P™ = 1P = 1'.ES' = I")= 0]
(b) (c)

Fig. 1. (a) The enzyme catalytic reaction network. (b) The ODE model. (¢) The DBN approximation for two
successive time slices.

x are all the molecular species taking part in these reactions and p are the parameters
(rate constants) associated with these reactions [Liu et al. 2009].

The initial values of the variables x; are assumed to be of certain distributions. The
unknown parameters p; are assumed to be uniformly distributed over their ranges.
We then sample the initial states of the system many times and compute trajectories
using numerical integration starting from each of the sampled initial states [Liu et al.
2009].

The DBN consists of an acyclic directed graph where the nodes are grouped into
layers, with each layer representing a time point. The nodes in layer ¢ + 1 will be
connected to those nodes in the layer ¢t on which they depend, as shown in Figure 1(c).
The set of connections does not change as ¢ ranges within a trajectory from 1 to 7.
Each node in the DBN is associated with one of the random variables and has a CPT
associated with it. The CPT specifies the local probabilistic dynamics of the DBN and
reflects the evolution of a variable x; observed at time point ¢ over multiple trajectories.
In our setting, this value is x!. To compute the CPT entries, we partition the range
of values for each variable (unknown parameter) into a set of intervals I;. The CPT
entries record the probability that the value of x! falls in each interval I* € I, at time ¢,
in relationship with the intervals where the variables (unknown parameters) on which
it depends were found at the previous time point. The probability is calculated through
simple counting in what we shall call a binning step of the algorithm.

The GPU computation steps are shown in Figure 2. We assume that the system
state used to construct the DBN is sampled each A, for a finite number of points,
{0,1, ..., T}. Since trajectories are generated through numerical integration, to ensure
numerical accuracy, each interval [0, A¢] is uniformly subdivided into r subintervals
for a suitable choice of r. We compute an updated value of the variables every t = %.
Each ODE updates one of the variables, and in doing so uses the previous value of
other variables. Each variable may appear in multiple equations, leading to a large
amount of read sharing. To ensure consistency, all variables are updated together in
an atomic transaction. We use a fourth-order Runge-Kutta integration algorithm to
compute the next value of a variable for each timestep. Overall, each trajectory is
numerically simulated for r - T' steps.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

55:6 A. Hagiescu et al.

Initial state
generation (XAt)
b
4 At At At At
0 ‘ S ox X =1 xv_1] x
(X ,p) 1 2 N-1 N

*,p)

At At
+7 x5 +r_ xAt+r x]%tw

K

(XT'At

,p) [] (XAt+‘r

.p)

Incrementing DBN counters

A TTTTTRATTTTTTRTTC

r
1
1

(@ (b)

Fig. 2. Phases in computing a trajectory. (a) Computation steps. (b) Runge-Kutta integration step.

Finally, the current values of the variables sampled at each of the time points
{0, At, ..., T - At} are used to count how many of the trajectories hit a particular inter-
val of values for each variable at that time point. These counts are then used to derive
the entries in the CPTs of the DBN. As described earlier, there will be one CPT for each
variable and each time point of interest. Each CPT will have |I;|”*! entries where I, is
the set of intervals associated to the variable and m; is the number of variables a node
x; depends on. It is important to note that m; will almost always be much smaller than
the number of variables in the system.

3. MAPPING TO A GPU ARCHITECTURE

In this section, we describe the automatic code generation scheme that we have devel-
oped to map our application onto the GPU architecture. We first explain the generic
scheme and then give details of its application to our systems biology problem. We start
with a review of the GPU architecture and its impact on performance. Essentially, in a

GPU:

(1) A large number of threads must be instantiated to obtain the maximum perfor-
mance.

(2) There is a warp-level affinity for lock-step execution (a more relaxed form of SIMD).

(3) The amount of fast SM memory is limited.

It is the programmer’s responsibility to expose parallelism in the application through
the programming model in order to satisfy the first requirement. However, this will
often conflict with the other requirements. With a large number of threads instantiated,
the SM memory quota for each thread is a small number of bytes, and often the
user has to identify opportunities for data sharing across threads to achieve efficient
execution.

Serialization occurs, with the accompanying penalty, when there is control flow di-
vergence within a warp. Therefore, the programming model calls for as little divergence
as possible. This leads, in general, to a particular type of data processing that we call
homogeneous computing, in which loops are unrolled and distributed over the entire
thread grid. The following example describes this approach:

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

GPU Code Generation for ODE-Based Applications with Phased Shared-Data 55:7

for (=0; i < N;; i++) {
for (j=0; j<N;; j++)
codeo(i,j);

codec-_1(i,Jj);

}

The conventional GPU pseudocode will be:

for 1 =0; i < N;/O; i++)
for (j=0; j<N;/II; j++)
parallel for (0 <®, 7 <TII) {
codeg(i-O+06, j-TI+m);

codec_1(1-©+0, j-TI+m);
}

In the previous code, NV;, Nj, I, and © allow for arbitrary geometric shapes of the
loop structure. The loop body is formed of C code segments. We will discuss the sig-
nificance of this in our context in Section 3.2. The execution does not diverge, as all
threads execute the same homogeneous computation for different datasets. It is im-
portant to ensure that the product IT - ® is high enough so that enough GPU threads
are utilized. However, we need to consider other details of the GPU architecture. In
particular, it is desirable that all data accessed during the parallel execution is located
in the SM memory. We use the notation M(code) to denote the memory requirement of
code segment code. The maximum SM memory requirement of all parallel threads is
then:

max U (M(code (i - © + 6, j - T1 + 7))
j<Nj/l'I n<{[;0<(-)

In contrast, our code generation scheme is built on the insight that there is no
penalty when threads in different warps diverge—as long as those in the same warp do
not. Therefore, the key concept behind our code generation scheme is to look for fine-
grained parallelism, within the loop body, and identify independent code segments that
can be executed in parallel. Assuming that codey, codes, ... are independent, we place
these segments in threads that belong to different warps in a heterogeneous computing
model. Obviously, some amount of loop-level parallelism is still necessary to fill each
warp with similar threads. Therefore, we choose to partially unroll only the outer
loop:

for 1=0; i < N;/O; i++)
for (j=0; j<Nj; j++)
parallel for (¢ <C, 6 <@®) {
code,(1-®+0, j);
}

In this implementation, the number of threads is determined by C - ©. In addition,
to ensure that threads with similar control flow can be grouped in each warp of size,
Wsize, 3w € N, © = w - Wyi,e. We will later discuss the penalty for not satisfying this

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

55:8 A. Hagiescu et al.

constraint. More importantly, the memory requirement of this implementation is:

max U (M(code.(i - © + 0, j))
=N c<C

When compared to the homogeneous approach, the main advantage is derived from
the lower amount of unrolling, which for certain applications may significantly decrease
the memory requirements. If

Ve, i1, i, j1 # Jo, M(code, (i1, j) | Mlcode (i, j2)) = @,

the required memory can decrease I1 times while ensuring sufficient GPU occupancy. It
is important to observe that the proposed code transformations do not affect the inner
loop. This allows us to optimize even for the case where the iterations of the inner loop
are not independent.

The pseudocode associated with the previous heterogeneous computation may be
easily written in CUDA C as follows:

#define © w - Wgize
dim3 blockDim(®, C, 1);
kernel<<<gridDim, blockDim>>>(...);

__global__ void kernel(...) {
int idx = threadIdx.x;
for ((i=0; i < N;/O; i++)
for (j=0; j<N;; j++)
switch (threadIdx.y) {
case 0: codeg(l-® + idx, j); break;

case C-1: codec_1(- 0O +1idx, j); break;

}

Although it may appear that the switch statement introduces divergence resulting
in the serialization of the different code segments, we ensure that (based on the thread
id) the branching decision is identical for all the threads in each warp. In this example,
this is so because ® = w - Wg;,.. Each warp can execute independent control flow and
will skip through the switch statement to its associated code segment with minimal
penalty.

We have described a scheme where data resides only in SM memory. However, the
input and output of the application must be transferred from / to GM. Due to the long
latency of GM, any such transfer suffers a large delay, during which the requesting
thread (and its associated warp) must stall. By default, the GPU architecture replaces
the stalled warp with another available warp. This approach relies on a high enough
computation to memory transfer ratio such that alternative warps are available. If the
GM transfers are scattered across all warps, the memory access delay will impact all
threads. Instead, our code generation schemes prefetches from the GM within a few
warps, handling these transfers in parallel and without interfering with the execution
of the other warps [Hagiescu et al. 2011].

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

GPU Code Generation for ODE-Based Applications with Phased Shared-Data 55:9

3.1. Achieving Balance

Our scheme attains the optimal GPU performance only if the amount of computation
in each code segment is balanced such that the GPU pipeline is always full. Other-
wise, some of the warps will finish processing early, whereas the remaining warps are
not capable of ensuring sufficient GPU occupancy to fill the GPU pipeline. Our code
generation scheme distributes fine-grained computation blocks extracted from the loop
body among code segments located in different warps and obtains feedback regarding
the quality of the computational balance and pipeline occupancy by analyzing the PTX
assembly generated by the CUDA compiler.

The loop body consists of a list of instructions corresponding to an integration step
for each variable. We can cluster these instructions into groups that exhibit only inter-
iteration dependencies, because each integration step is independent of the others.
These clusters are (eq, eq1, . . . eq,). We initially compile the entire loop body as a single
thread and analyze its PTX assembly, obtaining the number of PTX instructions in
each cluster i as PTX(eq;). We use this information to determine how to place these
code clusters across threads in order to balance the pipeline occupancy.

Given the throughput stated in the documentation of the GPU for each arithmetic
operation, we model the number of cycles required to issue each PTX instruction in the
GPU pipeline. The pipeline has a latency of 22 cycles, and multiple warps are multi-
plexed by the GPU hardware to issue continuously instructions on the pipeline. The
Tesla 2.0 architecture supports the simultaneous execution of two half-warps, each of
them utilizing half the number of compute cores available. For single-precision floating
point instructions, the pipeline occupancy analysis is equivalent to the assumption that
a single full warp is processed at a time. By compiling the code for “fast math,” we also
ensure that the PTX instructions in the compiled code directly match the operations
supported by the architecture.

Using the earlier assumptions, we model, for example, floating-point add instructions
across one warp as being issued in a single cycle, whereas div instructions are issued
within eight cycles. We use the notation issue(div) = 8. We also model the timing of the
1d and st instructions that access SM memory. With proper data alignment, all SM
memory banks are utilized. Because of the inherent architectural two-way conflict on
SM memory banks, a memory access is issued every two cycles. The pipeline occupancy
represents the fraction of the execution cycles where a new operation is issued. For a
code segment of size PTX(code) instructions, this is calculated as:

> issue(®)

1ePTX(code)
22 . |PTX(code)|

o(code) =

Our code generation scheme has two objectives: (i) to ensure that all C warps have a
balanced number of instructions and (ii) to ensure that the pipeline occupancy achieved
by summing the occupancy induced by each warp exceeds (but is close to) 1. Because
the GPU has a fixed latency pipeline and we avoid GM accesses, when the occupancy
is 1 or below, the number of instructions corresponds to the latency of their execution.
Additional threads beyond an occupancy of 1 will queue for execution and lead only to
additional register pressure and subsequent performance degradation.

We estimate how many threads C are required to occupy the pipeline by analyzing the

average occupancy across all code segments: C = ((ml This is a reasonable
~Ueqn

approximation because distributing the code over C threads increases the occupancy
C times. We chose which clusters to allocate to each code segment code; such that
[PTX(code;)| = £ TX(eq"Ug‘“U“‘Ueq")'. We employ a greedy allocation, where instruction
clusters are allocated in sequence to each code segment.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

55:10 A. Hagiescu et al.

to global
memory

Fig. 3. Data movement during trajectory generation and binning.

3.2. Code Generation for the Systems Biology Application

We have implemented the automatic code generation scheme described previously for
the application presented in Section 2. The user specifies the model as equations using a
simple specification language. From these equations, the CUDA code that will perform
the simulation is generated.

The memory requirements of the code generating each trajectory are large. Storing
the data in SM memory will prevent GM bandwidth saturation. This is because the
dependencies between the variables in the system of ODEs require the entire front of
variables belonging to each trajectory to be computed together. Specifically, we recall
that each variable x has an associated equation in the ODE system. For each time
interval, the value of x at the end of the interval is determined by applying a Runge-
Kutta numerical integration using the current value of x and the current values of
other variables (and parameters) appearing in the ODE for x.

The computational pattern for each trajectory matches the loop body of the heteroge-
neous computation scheme introduced previously. We show the data movement during
one computation step in Figure 3. The equations are valid instruction clusters and are
distributed into compute threads C that will collaborate to generate a single trajectory.
This entails sharing of the variables and parameters within a group. The number of
threads in such a group is C. These threads read the current values of the variables

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

GPU Code Generation for ODE-Based Applications with Phased Shared-Data 55:11

(x) and parameters (p) from memory (step (1)). The Ax changes during a timestep are
computed in parallel and are stored back to memory (step (2)). The vector of variables
x is then updated (step (3)). This process is applied iteratively for each timestep (of
duration 7 = %). The O trajectories are computed in parallel to satisfy the lock-step
requirements of the GPU architecture. Each trajectory requires N; = T - r integra-
tion steps. The trajectory computation process is repeated for all N trajectories, hence
N=2.

In the binning steps of the application, the number of times the threads hit the
various intervals of values of the variables are counted. To do this, the vector x is
replicated as x (step (4)). The binning process executes in parallel, during the next
At iteration, using the memory access threads (M), which will store the results in a
large table located in GM (step (5)). This will ensure that the numerical integration
can continue during the binning process, which has long latency memory operations.

As a departure from the code generation scheme described previously, we require
additional synchronization among the C threads after each integration step. These C
threads belong to several warps; hence, they are scheduled independently, and their
execution may not be synchronized. Synchronization is achieved by a partial syn-
chronization primitive available since the Tesla 2.0 architecture. The bar.sync PTX
instruction allows for an explicit number of threads to be waited for at the barrier.
The number of threads may be smaller than the total number of threads executing
on the GPU. Once all of the C threads arrive at the barrier, they proceed to the next
integration step.

The vectors x, p, AX, and X together form the workset of the trajectory. All threads
of each SM have access to the dedicated SM memory, which is similar to a scratchpad
[Li et al. 2009]. To ensure that enough parallel threads can be instantiated, the com-
putation of each trajectory is unfolded onto the C threads. This enables a reduction of
the number of trajectories being processed concurrently. In this way, the total memory
footprint, consisting of the worksets of all © trajectories being computed in a SM, can
be kept within the limit of the available SM memory.

We have also carefully selected the placement of the worksets in the SM memory in
order to prevent bank conflicts. The number of banks is generally 2%, but in our device
is 2%. If the size of the worksets is an even number, the stride between worksetsis
increased by 1 by increasing the workset size to the next odd number. This is sufficient
to ensure that the hardware will coalesce the accesses to the SM memory, because 2*
consecutive worksets (accessed by adjacent threads in the same warp) cannot hit the
same bank [NVIDIA 2012]. Duplicating the data is not necessary, as the variables can
be accessed by all threads involved in the generation of the same trajectory.

The GPU architecture requires all threads belonging to a warp to have matching con-
trol flow in order to achieve the highest performance. Otherwise, the threads’ execution
will be serialized. Accordingly, we organize the C threads belonging to each trajectory
so that threads executed together in the same warp process the same subset of model
equations from different trajectories. Given a warp size of 32 threads, this eliminates
the control flow divergence in each warp if 3w, ® = w - 32.

However, © is constrained by the SM memory capacity to ® = %ﬁw Therefore,

it is not always feasible to instantiate a sufficient number of parallel trajectories in
order to completely fill each warp with C threads having similar control flow. In this
case, we have chosen to fill the rest of the warp with threads that belong to the next
equation group. This ensures the best utilization of the GPU register pool. However, to
maintain warp boundaries, we decrease the number of trajectories to the immediately
lower number that matches the equation 35 > —logo(Wsiz), © = Wiz - 2°. If a warp
contains multiple sets of threads, their execution is serialized, and we can model the

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

55:12 A. Hagiescu et al.

[GPU pipeline | [GPU pipeline |
K - ! !
[o e | ! | SIMD threads (warp)
! N sl
o aHE
------- : i i i (;
X i :)
i P ‘ s]| £
THE
E
g
[S —
© M) o M)
threads threads threads threads

Fig. 4. Concurrent execution of trajectories inside an SM.

combined warp as if several warps were executed. Ideally, the total number of issue
cycles for all C warps in the CUDA code has to match the pipeline length to ensure
full GPU occupancy. In contrast, when ® > Wg;,., multiple warps may encapsulate the
same code segment, and we determine C as follows:

22 - |PT X(eqo U .. .)|

Z lSSlLe(l) . {@/Wsizew
1ePT X(eq,...)

C =

The overall orchestration of the application on each SM is shown in Figure 4. In-
structions belonging to C warps are multiplexed onto the GPU pipelines. All of the
GPU pipelines execute in lock-step. M threads are scheduled from time to time to
transfer data to the GM. The specialized warps accessing GM are subject to delays of
up to 400 cycles. M threads are grouped together into specialized memory access warps
such that they will not interfere with the C threads’ executions. The same orchestration
is replicated on all SMs of the GPU. This can be easily implemented by computing a
fraction of the total number of trajectories on each SM.

For each trajectory, we generate the initial states using a Mersenne twister algorithm
based on the MT 19937 random number generator [Matsumoto and Nishimura 1998],
running in each of the C threads. This algorithm utilizes a large table stored in the
GM. Considering that this initialization step is done only once during the generation
of a trajectory, the overhead due to storing this table in GM is minimal.

The repetitive Runge-Kutta numerical integration process is at the heart of the
trajectory simulation algorithm. We used a fourth-order Runge-Kutta algorithm that
requires each equation to be applied four times as part of the integration step. The
code generation scheme produces the corresponding code for each equation and passes
it to the CUDA compiler. The PTX assembly is analyzed using the previously described
model to extract timing information for each equation. Our algorithm distributes the
equations so that the corresponding timing is balanced among the C threads. Because
we utilize a small number of threads, register pressure is low and there are no spills
to local memory, hence avoiding any additional delay.

4. RESULTS

We have implemented the scheme described in Section 3 and have used it to generate
CUDA code that was compiled for NVIDIA Tesla 2.0 (‘Fermi’) platforms using the CUDA
4.0 runtime. The target GPU is a S2050 at 1.15GHz with 2GB of memory. To evaluate
the performance of our GPU-based implementation, we utilized eight different models.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

GPU Code Generation for ODE-Based Applications with Phased Shared-Data 55:13

Table I. Models Used

Model Abbrev. Description

EGF-NGF EGF-NGF signalling pathway [Brown et al. 2004]

m201 Segmentation clock network [Goldbeter and Pourquie 2008]
m88 Thrombin-dependent MLC phosphorylation [Maedo et al. 2006]
syntheticl A variety of synthetic equations

synthetic2 A large number of synthetic equations

synthetic3 A set of short, balanced synthetic equations

synthetic4 A small number of unbalanced synthetic equations

synthetich A set of long, balanced synthetic equations

Table Il. Characteristics of the Models

‘ Model H |x| ‘ Pl ‘ At ‘ T ‘ r N Avg. ops ‘ +/— ‘ X ‘ - ‘
EGF-NGF || 32 | 20 | 60 | 100 100 108 7.4 87 106 | 44
m201 22 | 40 | 300 | 100 500 108 11.9 67 91 |33
m88 105 | 164 | 2 100 | 2 x 10% | 3 x 10* 13 419 | 942 | 2
syntheticl || 200 | 86 | 300 | 100 500 10% 6.7 650 | 680 | 0
synthetic2 || 205 | 163 2 10 | 2x10* | 3x10° 15 939 | 2,132 | 2
synthetic3 || 100 | 66 | 300 | 100 500 104 8.4 385 | 450 | 0
synthetic4 || 40 | 35 | 60 | 100 1000 | 5 x 10% 5.9 125 101 | 8
synthetic5 || 100 | 97 | 300 | 100 500 10* 14.2 601 821 | 0

These models included three realistic pathway models [Liu et al. 2011a], as well as five
synthetic models that tested various features of our scheme (Table II).

NVIDIA GPUs support both single-precision and double-precision floating point
types. However, the computational throughput for double precision is known to be
less than half of single precision, with significant overhead for divisions in the genera-
tion of GPUs that we used. For our application, single-precision computation suffices.
We chose the number of trajectories such that the resulting DBN approximation was
of sufficient good quality and that runtimes were sufficiently long.

Figure 6 shows the reaction network for the EGF-NGF model. The values for the
parameters of this model are known. However, to mimic realistic biopathways models,
we have set a subset of the parameters as “unknown” in each model and constructed
the DBN approximation accordingly. This considerably increases the computational
demands placed on the DBN construction algorithm. The same was done to two other
pathway models, namely m88 and m201. In addition, a set of synthetic benchmarks were
created to verify the scalability of our approach, as well as to stress test the “corner
cases.” syntheticl is a disparate set of 200 equations with varying size. synthetic2
consists of 205 equations, with many long equations that factor into a limited set of
terms. synthetic3is a set of 100 short equations of similar size. In contrast, synthetic4
consists of 40 unbalanced equations. Finally, synthetic5 contains 100 equations, 90%
of which is a balanced subset of long equations.

For each model, we listed the number of variables (|x|), the number of unknown
parameters (|p|), the simulation time between DBN nodes (A¢), the number of node
levels (T'), the number of integration steps (), and the total number of trajectories ().
We also listed the average number of operators within each model equation, as well as
the distribution of each operator’s type. For all models, the range of each variable and
unknown parameter was discretized into five intervals of equal size. A smaller number
of trajectories were computed for the larger models to keep the execution times within
reasonable limits.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

55:14 A. Hagiescu et al.

20000 8000
17000 16500

14000 j/ \\G\.o 5000
11000 rd 13500
egfngf m201

8000 T T T 1 [2000 T T T 1
0 4 8 12 16 0 2 4 6 8

13000 2100

10,703 1919
9000 _% 1300 1’ o 0\

5000 T T T | 500 T T T <0
0 8 16 24 32 0 8 16 24 32

86 100

628

6.7 80 +

e | T T N
48 60
29 Pl 40 W -

¢« mss theticl
1 — ; N wld — , .
0 6 12 18 24 0 16 32 48 64
5 50
3.66 36.19
3 ’M—W 25 *Mﬁw
1 T T T 1 0 T T T |
0 7 14 21 28 0 6 12 18 24
15 360 2

1288 M
12 7&% 285 / 3369
9 210

6 / 135

1 synthetic2 & 6/ synthetic3
3 T T T T 1 T T T 1
0 12 24 36 48 60 0 8 16 24 32
24 210 7379
16 140 4
9.06
¥ 000l oo™ oo |
0 T T T T 1 0 T T T 1
0 5 10 15 20 25 0 g 16 24 32
2100 250 72700

182048
1650 _ﬂ 200 _%
1200 150

750
1 syntheticd / synthetic5
300 " ; - 50 : . . :
0 4 8 12 0 g 16 24 32
1500 165
1000 110
60038 68.79
380 A (3\ D MW
0 Dmfd : . . 0 , i . ,
0 8 16 24 32 0 6 12 18 24

Fig. 5. Performance characterization of the proposed scheme (upper graph for each benchmark) versus
the homogeneous approach (lower graph) on Tesla 2.0 S2050. The x-axis represents C for the proposed
scheme and the number of warps for the homogeneous approach, whereas the y-axis represents how many
trajectories are computed every second.

The following evaluation strategy was used. We implemented the target applica-
tion using both a homogeneous computation approach (where the workset is stored
in GM, as the datasets do not fit SM memory) and the proposed heterogeneous ap-
proach. To emphasize the efficiency of the proposed flow, we characterized a broad de-
sign space by varying the number of threads of both homogeneous and heterogeneous

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

GPU Code Generation for ODE-Based Applications with Phased Shared-Data 55:15

freeEGFR EGF NGF freeNGFR
Y Y Membrane

boundEGFR““'; o boundNGFR"';
1 \d
! VRN 7 .
i Sos Sos* €3G C3G
! - L
dlfreeEGFR] i ot ~
% = 0.0121008 x [boundEGFR] - —r : /_L\
dlboundearry 0000218503 x [EGF] x [freeEGFR] PISK DIk E Ras Ras* Rapl Rapl*
ST - 0.0000218503 x [EGF] x [freeEGFR] -
dt 0.0121008 X [boundEGFR] ~ ! E \T/ii E
diSos] 1611.97 x [P90Rsk*] x [Sos*] b - t it RafGap*----- a H
dt P - ! v - v
[Sos*] + 896896 v I T S
694.731 x [boundEGFR] x [Sos] — i i Rat Raf* B-Raf B-Raf*
[Sos] + 6086070 Akt Akt* ! : \ ~
389.428 x [boundNGFR] x [Sos] ~ ; | RasGap H [S RafPP ———ooem 3 H
[Sos] +211.266 SRS [J i ;______________________.
1
d[Sos*] _ 694.731 x [boundEGFR] X [Sos] N :
dt [Sos] + 6086070 ! Mek Mlek*
389.428 x [boundNGFR] x [Sos] |)y !
= N —
[Sos] + 211.266 pQOFmORSK ! v PPlZA
1611.97 x [PIORsk*] x [Sos*] <P " P
[Sos*] + 896896 N r. H
|
| L____i. _____ |
L

Fig. 6. The reaction network diagram of the EGF-NGF pathway [Brown et al. 2004]

approach schemes, producing a large spectrum of kernel geometries. For the homoge-
neous implementation, we varied the thread block size, whereas for the heterogeneous
implementation, we varied C, the number of C threads collaborating to generate a
trajectory.

In addition to an overall performance evaluation of our framework, we will show the
contribution of each component of the framework: the proposed heterogeneous thread
execution scheme, the usage of shared memory, the separation of the GM accesses, and
the load balancing.

In Figure 5, we show a comparative design-space exploration for the eight models
we considered. We overlap the performance of both the homogeneous and the hetero-
geneous implementations on the same graphs. For homogeneous graphs, the x-axis
represents the total number of warps in a thread block, whereas for heterogeneous
graphs, it represents the number of C threads. The performance is measured in tra-
jectories per second. The performance of the homogeneous implementation ends up
always being lower, as it is bound by the GPU memory bandwidth. In addition, this
performance cannot be trivially estimated, as it depends on many factors such as the
GM bandwidth, GPU occupancy, and register pressure. Large performance variations
are observed when the number of threads (warps) is varied.

In contrast, our proposed heterogeneous scheme has a predictable as well as sig-
nificantly higher performance. For all benchmarks, performance increases steadily as
more parallel code segments are created.

A single code segment, containing all ODEs (the first point in each heterogeneous
graph in Figure 5), is equivalent to a homogeneous implementation where the data have
been moved from GM to SM memory. The performance is low, as having a single code
segment prevents data reuse across threads, leading to a higher ratio of data/thread.
Only ® threads can be run concurrently due to the limited size of the SM memory.
This indicates that simply changing the location of the workset without refactoring the
computation pattern does not provide any performance boost.

Initially, splitting the code leads to a nearly linear performance increase with re-
spect to the number of resulting code segments C. This shows that the resulting code
segments can be well balanced and that the required synchronization has negligible
overhead. Eventually, as more code segments are added, the performance reaches a
plateau. This corresponds to reaching full pipeline occupancy. From this point onward,

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

55:16 A. Hagiescu et al.

Table Ill. Performance of the Proposed Approach Compared to a Homogeneous GPU Implementation

Setup Runtime(s)
Model x| ‘ N T.-r Homogeneous ‘ Our scheme ‘ Speedup
EGF-NGF | 32 | 3x 108 104 280.29 157.14 1.8x
m201 16 | 3x10% | 5x10% 1,563.6 403.5 3.9x
m88 105 | 3x10* | 2x 108 8190 4596 1.8x
syntheticl || 200 104 5 x 104 276.3 121.67 2.3x
synthetic2 || 205 | 3x 10% | 2 x 10° 331 233 1.4x
synthetic3 | 100 104 5 x 10* 57.54 28.01 2.1x
synthetic4 || 40 | 5x 10* | 10 x 10* 83.28 27.47 3.0x
synthetic5 || 100 104 5 x 10* 145.36 44.05 3.3x

Table 1V. Execution Configuration, Register, and SM Usage of the Models

Model H Block Threads | Reg. Used ‘ SM Used (KB) ‘
EGF-NGF 64 x 6 32 36.25 (75.5%)
m201 128 x 4 49 46.50 (97.0%)
m88 16 x 23 63 37.69 (78.5%)
syntheticl 8 x 28 33 28.97 (60.4%)
synthetic2 8 x 24 63 28.22 (58.8%)
synthetic3 16 x 16 39 32.94 (68.6%)
synthetic4 64 x17 35 47.75 (99.5%)
synthetich 16 x 16 39 42.56 (88.7%)

Table V. Automatically Chosen Configurations

Model [IR | C | Coptimal | Penalty |
EGF-NGF 64 =32 x 2 6 7 2.8%
m201 128 = 32 x 22 4 4 0%
m88 16=32x2"1 | 22 24 1.7%
syntheticl 8=32x22 | 28 28 0%
synthetic2 8=32x22 | 24 24 0%
synthetic3 16=32x2"1 | 16 16 0%
synthetic4 64 =32 x 2! 7 7 0%
synthetich 16=32x2"1| 16 18 1.0%

there is no benefit from creating additional code segments. Instead, the performance
experiences a small degradation due to the granularity of the load balancing and also
due to the additional register pressure. For the smaller benchmarks, performance de-
grades significantly more when too many C threads are created. In this case, the load
balancer handles fewer equations, and their granularity prevents adequate balancing.

As part of our code generation scheme, we have proposed an automated configuration
selection algorithm. We have validated the automatically determined values against
the design space in Figure 5. The value for C produced by this algorithm, related
to the value determined through design space exploration, shows that we incur a
penalty of less than 3%. Table V captures the actual penalty and the computation steps
taken in automatically selecting a configuration. The other parameter determining
aconfiguration, ® (the number of trajectories computed in parallel on each SM), can be
easily derived from the workset size and rounded according to the scheme’s rules.

We have included the overall results in Table III. The speedup achieved by the
heterogeneous scheme indicates the suitability of the proposed approach. Table IV
includes additional details about the number of threads in each thread block of the
kernel, the number of registers used, and SM memory occupancy.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

GPU Code Generation for ODE-Based Applications with Phased Shared-Data 55:17

Table VI. Benefit of Heterogeneous Groups and Specialized Memory Threads

Heterogeneous Approach || Specialized Memory Access Threads
Model C Speedup C+M Additional speedup
EGF-NGF 7 1.65x 641 1.09x
m201 5 3.45x 4+1 1.13x
m88 24 1.78x 22 4 2 1.01x
syntheticl | 32 2.07x 28 +4 1.11x
synthetic2 28 1.27x 24+ 4 1.10x
synthetic3 | 18 2.04x 16 + 2 1.03x
synthetic4 8 2.70x 7+1 1.11x
synthetic5 || 18 3.03x 16+ 2 1.09x

Table VII. Contribution of Thread Balancing to the Overall Speedup

Model H Naive Balancing Speedup ‘ Additional Speedup ‘
EGF-NGF 1.62x 1.11x
m201 3.80x 1.03x
ma88 1.50x 1.20x
syntheticl 1.53x 1.50x
synthetic2 1.20x 1.20x
synthetic3 1.70x 1.25x
synthetic4 2.31x 1.30x
synthetich 3.00x 1.11x
Average 2.08x 1.21x

In addition to SM memory usage and heterogeneous thread usage, we evaluate the
contribution of the other individual components of our framework. We evaluate the
impact of the memory thread specialization by comparing the speedup achieved by
the models (i) when heterogeneous threads are used but computation and memory ac-
cesses are mixed within the same threads and (ii) when compute and memory threads
are distinct. Table VI underlines the benefit of this separation. The additional speedup
introduced by specialized memory access threads reaches up to 13%. The specialized
threads provide better opportunity for data coalescing. In addition, because computa-
tion threads never stall, the C threads can more quickly reuse the small amount of SM
memory.

We also provide experimental data that indicate the benefit of the proposed thread
balancer. We compare to a naive load balancing, where the same number of equations
is allocated to each compute thread. Unless the equations have the same complexity,
some of the threads finish processing earlier, and the GPU is not fully utilized, leading
to a significant performance degradation, as shown in Table VII. The proposed thread
balancer can improve performance up to 1.5x for the set of benchmarks explored.

The results indicate that the heterogeneous scheme alone provides most of the per-
formance improvement. Using heterogeneous threads not only exposes more parallel
computation but also enables data reuse in SM memory; hence, the GM traffic is sig-
nificantly reduced, whereas the level of parallelism increases.

5. CONCLUSION

In this article, we have proposed a novel GPU code generation strategy and have
demonstrated its usefulness in the context of a computational systems biology appli-
cation. This application consists of approximating the dynamics of a high-dimensional
system of ODEs with many unknown rate constants as a DBN.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

55:18 A. Hagiescu et al.

The main challenge was in reorganizing the computation in order to utilize the
significant amount of fine-grained parallelism that exists due to the phased coupling
of the variables at each integration step. In addition to the coarse-grained parallelism
between the computations of different trajectories. A naive GPU implementation that
merely exploits the coarse-grained parallelism does not scale well for large models,
because the intermediate data will be too large to be held in SM memory.

Another key idea driving our strategy is load balancing heterogeneous threads via
a static timing model. Our experiments show that this is vital for good performance.
Our overall method works well for high-dimensional systems of ODEs. Our results
show that the performance of a conventional GPU implementation is both deficient
and difficult to predict.

Our work shows that intricate knowledge of the GPU is required to obtain high
performance. The good news is that this intricate knowledge can be built into an
automated code generation scheme. Consequently, in our experiments, we were able
to achieve up to 3.9x improvement over a conventional GPU implementation across a
range of case studies despite using an automated code generation scheme.

We have used a specific systems biology application that has the generic mix of
features that illustrate the advantages of our scheme. Our future goal is to further
extend this scheme to other applications in which the system model is a set of ODEs and
the analysis involves binning information during the process of generating trajectories.
Such applications can be identified in a variety of fields, such as economics; engineering;
and physical, biological, and environmental sciences. In particular, the application
developed in Palaniappan et al. [2013], in which the powerful SMC technique is used
to analyze a system of ODEs, is a good fit, and our current effort is on adapting our
code generation scheme to this application in particular and to develop a GPU-based
SMC procedure for distributed stochastic dynamical systems in general.

REFERENCES

Amo, A. V., Lam, M. S., SetHI, R., anD ULLmaN, J. D. 2006. Compilers: Principles, Techniques and Tools, 2 ed.
Addison Wesley.

ALDRIDGE, B. B., BURkE, J. M., LAUFFENBURGER, D. A., AND SorGER, P. K. 2006. Physicochemical modelling of
cell signalling pathways. Nature Cell Biology 8, 1195-1203.

Bastour, C. 2004. Code generation in the polyhedral model is easier than you think. In Proceedings of the
13th International Conference on Parallel Architectures and Compilation Techniques (PACT04). IEEE
Computer Society, Washington, DC, 7-16.

Bonin, F. anD BiaaN, S. 2009. Heterogeneous multicore parallel programming for graphics processing units.
Sci. Program. 17, 4, 325-336.

Brown, K. S., Hiii, C. C., CaLERO, G. A., LEE, K. H., SETHNA, J. P., AND CERIONE, R. A. 2004. The statistical
mechanics of complex signaling networks: nerve growth factor signaling. Physical Biology 1, 184-195.

CHEN, L., ViLLA, O., AND Gao, G. R. 2011. Exploring fine-grained task-based execution on multi-GPU systems.
In Proceedings of the 2011 CLUSTER Conference. 386—394.

Graskowsky, P. N. 2009. NVIDIA’s Fermi: The First Complete GPU Computing Architecture. Retrived De-
cember 2, 2013 from http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky NVIDIA’s_
Fermi-The_First_Complete_GPU.pdf.

GOLDBETER, A. AND PourquiE, O. 2008. Modeling the segmentation clock as a network of coupled oscillations
in the Notch, Wnt and FGF signaling pathways. Journal of Theoretical Biology 252, 574-585.

Haciescy, A., Huyng, H. P, Wong, W. F., anp Gon, R. S. M. 2011. Automated architecture-aware mapping
of streaming applications onto GPUs. In Proceedings of the 2011 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS’11).

Hong, S. anp Kiv, H. 2009. An analytical model for a GPU architecture with memory-level and thread-
level parallelism awareness. In Proceedings of the 36th Annual International Symposium on Computer
Architecture (ISCA09). ACM, New York, NY, 152—-163.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

GPU Code Generation for ODE-Based Applications with Phased Shared-Data 55:19

Horwmarti, A., Samapi, M., Wonr, M., Mupcg, T. N., AND MAHLKE, S. A. 2011. Sponge: Portable stream program-
ming on graphics engines. In Proceedings of the 16th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’11). 381-392.

Kuronos. 2012. Khronos OpenCL. http:/www.khronos.org/opencl/.

Kirano, H. 2002. Computational Systems Biology. Nature 420, 206-210.

KoLLER, D. anD FriepMAN, N. 2009. Probabilistic Graphical Models: Principles and Techniques (Adaptive
Computation and Machine Learning). MIT Press.

L1, L., FEng, H., anD XuE, J. 2009. Compiler-directed scratchpad memory management via graph coloring.
ACM Trans. Archit. Code Optim. 6, 3, 1-17.

Ly, B., Haciescy, A., PaLaniapran, S. K., CHATTOPADHYAY, B., Cut, Z., Wong, W.-F., aND THiaGcArAJAN, P. S. 2012.
Approximate probabilistic analysis of biopathway dynamics. Bioinformatics 28, 11, 1508-1516.

Ly, B., Hsu, D., anD TH1AGARAJAN, P. S. 2011a. Probabilistic approximations of ODEs based bio-pathway
dynamics. Theor. Comput. Sci. 412, 21, 2188-2206.

Liu, B., TH1AGARAJAN, P. S.; AND Hsu, D. 2009. Probabilistic approximations of signaling pathway dynamics. In
CMSB, P. Degano and R. Gorrieri, Eds., Lecture Notes in Computer Science Series, vol. 5688. Springer,
251-265.

Liu, B., ZuANG, J., Tan, P. Y., Hsu, D., BLom, A. M., LeEong, B., SETHI, S., Ho, B., DiNg, dJ. L., AND THIAGARAJAN,
P. S. 2011b. A computational and experimental study of the regulatory mechanisms of the complement
system. PLoS Computational Biology 7, 1, e1001059.

MaEkDo, A., Ozaki, Y., SIVAKUMARAN, S., Akivama, T., UrakuBo, H., Usawmi, A., Sato, M., KaisucHi, K., AND KURODA,
S. 2006. Ca?*-independent phospholipase A2-dependent sustained Rho-kinase activation exhibits all-
or-none response. Genes to Cells 11, 1071-1083.

Matsumoro, M. anp NisHiMmUra, T. 1998. Mersenne twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 3-30.

Murpny, K. P. 2002. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. thesis,
University of California, Berkeley.

Nicgkouis, J. AND Darry, W. J. 2010. The GPU computing era. IEEE Micro 30, 56—69.

NVIDIA. 2012. NVIDIA CUDA.

Owens, J. D., Houston, M., LUEBKE, D., GREEN, S., STONE, J. E., AND PaiLLips, J. C. 2008. GPU computing.
Proceedings of the IEEE 96, 5, 879—-899.

OWwENS, J. D., LUEBKE, D., GovINDARAJU, N., HARRIs, M., KRUGER, J., LEFOHN, A. E., aAND PurckeLL, T. J. 2007. A
survey of general-purpose computation on graphics hardware. Computer Graphics Forum 26, 1, 80-113.

Pavraniapran, S. K., Gyori, B. M., Liy, B., Hsu, D., AND THiAGARAJAN, P. S. 2013. Statistical model checking based
calibration and analysis of bio-pathway models. In Proceedings of the 11th International Conference on
Computational Systems Biology (CMSB’13).

Ryoo, S., RobricuEs, C. 1., BacHSorkHI, S. S., STONE, S. S., Kirk, D. B., anD Hwu, W.-m. W. 2008. Optimization
principles and application performance evaluation of a multithreaded GPU using cuda. In PPoPP’08.
73-82.

SILBERSTEIN, M., SCHUSTER, A., GEIGER, D., PATNEY, A., AND OWENS, J. D. 2008. Efficient computation of sum-
products on GPUs through software-managed cache. In Proceedings of the 22nd Annual International
Conference on Supercomputing (ICS’08). ACM, New York, NY, 309-318.

Worre, M. 2010. Implementing the PGI accelerator model. In Proceedings of 3rd Workshop on General
Purpose Processing on Graphics Processing Units (GPGPU’10). 43-50.

YE, X,, Fan, D., LiN, W, Yuan, N., anp IenNE, P. 2010. High performance comparison-based sorting algorithm
on many-core GPUs. In Proceedings of the 28th IEEE International Parallel & Distributed Processing
Symposuim (IPDPS’10). 1-10.

Youngs, H. L. anp Stvmons, R. G. 2006. Statistical probabilistic model checking with a focus on time-bounded
properties. Information and Computation 204, 9, 1368-1409.

ZHANG, Y. AND OWENS, J. D. 2011. A quantitative performance analysis model for GPU architectures. In Pro-

ceedings of the 2011 IEEE 17th International Symposium on High Performance Computer Architecture
(HPCA’11). IEEE Computer Society, Washington, DC, 382-393.

Received August 2012; revised November 2013; accepted November 2013

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 55, Publication date: December 2013.

