

INDIAN INSTITUTE OF SCIENCE Bangalore, India भारतीय विज्ञान संस्थान बंगलूर, मारत

SERIUS

Solar Energy Research Institute for India and the United States

Solar Energy Research Institute for India and the United States (SERIIUS)

Office of Science, BES Site Visit NREL, October 26, 2012

Kamanio Chattopadhyay, *IISc-Bangalore* Lawrence L. Kazmerski, *NREL SERIIUS Co-Directors*

Fundamental R&D Enabling International Collaboration

- Address common goals and grand challenges
- Focus on fundamentals: more "pre-competitive"
- Integrated science: theory, synthesis, characterization, testing
- Significant opportunity for training/education
 - students/postdocs
 - technical exchange/fellowships
 - Note these are both internal and external
 - Student/Faculty Exchange Through Mageep
 - Potential Links to other groups in India/US/Corporations
- Utilize unique facilities and value capabilities
- Understand technology development (& deployment) needs specific to each country

US National Academy: "Our energy system is, after all, much more than a set of technological arrangements; it is also a deep manifestation of society's economic, social, and political arrangements."... "collective international action."

Solar Energy Research Institute for India and the United States (SERIIUS)

A Joint Research Consortium for Accelerating Solar Electricity Development

India

United States

Consortium Leads

Indian Institute of Science-Bangalore

Dr. Kamanio Chattopadhyay Indian Institute of Science Bangalore 560 012, India 91-80-2293 2262 kamanio@materials.iisc.ernet.in National Renewable Energy Laboratory Dr. Lawrence Kazmerski National Renewable Energy Laboratory 1617 Cole Blvd., Golden, CO USA 80401 303-384-6600 kaz@nrel.gov

Research Thrust Leadership

Indian Institute of Technology Bombay Center for the Study of Science, Technology and Policy Sandia National Laboratories RAND Corporation

Consortium Partners Institutes and National Laboratories

International Advanced Research Centre for Powder Metallurgy and New Materials Solar Energy Center Lawrence Berkeley National Laboratory

University Partners

Indian Institute of Technology Madras Indian Association for the Cultivation of Science Arizona State University Carnegie Mellon University Colorado School of Mines Massachusetts Institute of Technology Purdue University Stanford University University of Central Florida University of South Florida Washington University in St. Louis

Industry Partners

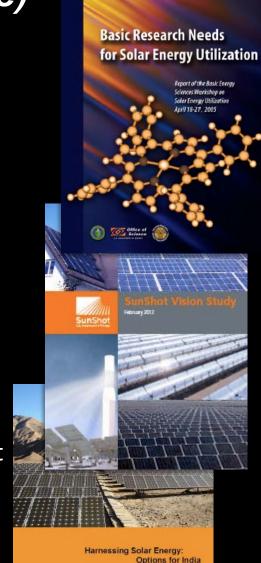
Clique Developments Ltd. Hindustan Petroleum Corporation Ltd. Moser Baer India Ltd. Thermax Ltd. TurboTech Precision Engineering Ltd. Wipro Ltd. Corning Incorporated General Electric Company Cookson Electronics MEMC Corporation Solarmer Energy, Inc.

DE-FOA-0000506: U.S.-India Joint Clean Energy Research and Development

Our Team:

Strong Synergy US/India (PV-example)

DOE Basic Research Needs/Priority Areas


- Maximum energy from solar photons at low costs
- Nanostructures for solar energy conversion; low cost and high efficiencies
- Materials and architectures for solar energy; assembling complex structures
- Identify and quantify critical technical, economic and policy issues

Critical Barriers called out by DOE for PV

- Understand materials and structures to improve conversion efficiency
- Optimize molecular, polymeric and nanocrystalline structures to produce systems
- High-throughput and continuous (roll-to-roll) processes that do not require high temperature or vacuum

Critical Barriers–India

- Earth abundant and green materials
- Low capital manufacturing at multiple scales
- Distributed power generation and integration
- Degradation mechanisms (reliability, dust)

Center for Study of Science, Technology and Policy

Some India-Specific Considerations

Nehru Mission for off-grid

- 2000 MW off-grid
- 20 million solar lighting systems

Off-grid/distributed applications

- Land & water requirements
- Water pumping, desalination
- Cottage manufacturing
- Different price points, form factors, performance

Avoid scale-down penalty for small systems (e.g., CSP) Hybrid systems Reliability in Indian environment

Manufacturing

- Low capital fabrication approaches
- Design for frugal innovation

Research Design

- Analysis- and assessment-driven
- Multidisciplinary, bi-national teams
- Industry integration into multiinstitutional projects
- "Use-inspired" R&D

Two-tier Project Structure

		Research Thrusts							
ign iven	Thrusts	Sustainable Photovoltaics (PV)			Multiscale Concentrated Solar Power (CSP)			Solar Energy Integration (SEI)	
ry, ms ation rojects R&D	Activities	Earth Abundant PV	Advanced Process/Technology	Multiscale Modeling and Reliability	High-T, Closed-Cycle, Bravton Cycle	Low-T Organic Rankine Cycle	Thermal Storage & Hybridization	Roadmapping, Analysis and Assessment	Grid Integration and Energy Storage
ucture	Projects	Consortium Projects			Consortium Projects			Consortium Projects	
		Core Projects			Core Projects			Core Projects	

• **CONSORTIUM PROJECTS:** disruptive, transformative R&D

• CORE PROJECTS: core industry partner-led and focused

Thrust: Sustainable Photovoltaics

Accelerate the development of disruptive PV technologies

Activity

Earth Abundant PV:

Develop new scalable absorbers based on Earthabundant materials and processes

- Thin-film absorber materials and processing

Organic PV materials and devices

Nanostructured absorbers and electrodes

Activity Advanced **Process/Manufacturing Technology:**

Develop ink-based and other advanced processes for PV elements based on new flexible substrates and printing techniques

- Solar-grade silicon
- Projects Thin-film absorber production
 - Flexible substrates
 - High throughput processing of thin-film PV

Activity **Multiscale Modeling** and Reliability:

Couple materials to module modeling with real-world reliability

- Integrated modeling
- Reliability

Į

- Novel materials for
 - intrinsic stability in harsh environments

Thrust: Multi-scale Concentrated Solar Power

Increase the power block cycle efficiency and decrease solar collector cost with innovative designs without scale-down penalty for smaller scale (25kW-1MW)

High T Brayton Cycle:

Develop scalable supercritical 20-80 bar 600-800°C Brayton cycles with 50% efficiency

- (100 kW to 1 MW)
 - High T, high P CO2 receiver and exchanger
 - Heliostats for Brayton

Low T Rankine Cycle:

- Develop organic Rankine cycle with at < 330°C with > 25% efficiency (25kW-1MW)
 - ORC collector
 - Small-scale positive displacement expander for ORC
 - Small-scale turbo expanders

Thermal Storage and

Hybridization: Develop hybridized storage systems for the diverse temperature ranges of Brayton and Rankine converters

 Storage and hybridization

Thrust: Solar Energy Integration

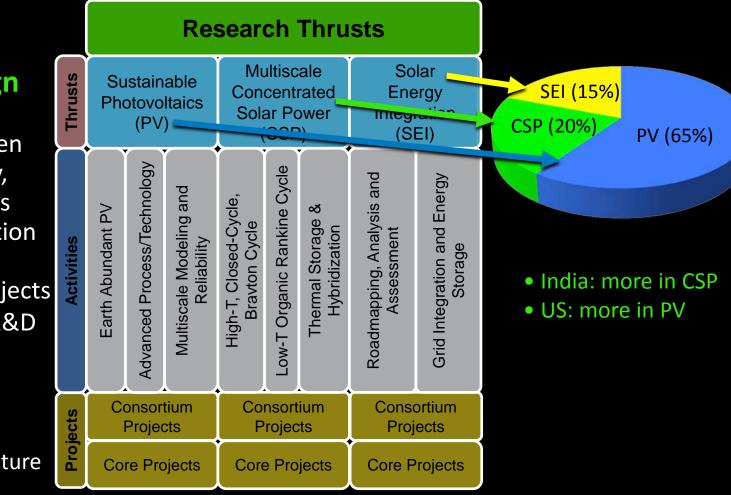
Analysis and assessment of technical, economic, environmental and policy aspects for developing and deploying solar technologies

Technology Roadmapping, Analysis, and Assessment

Analyze the market, policy and technology data to develop roadmaps for bankable deployment options for solar electric conversion

- Roadmapping and policy assessment
- Computational tools for economic assessment, bankability, and deployment

Grid Integration & Energy Storage


Quantify interactions of solar electricity on the grid in India and predict optimum deployment and interconnection

- Grid integration and energy storage
- Interoperability and compatibility for PV
- Novel Storage Materials for Solar Hydrogen from PV Electrolysis

Research Design

- Analysis- and assessment-driven
- Multidisciplinary, bi-national teams
- Industry integration into multiinstitutional projects
- "Use-inspired" R&D

Two-tier Project Structure

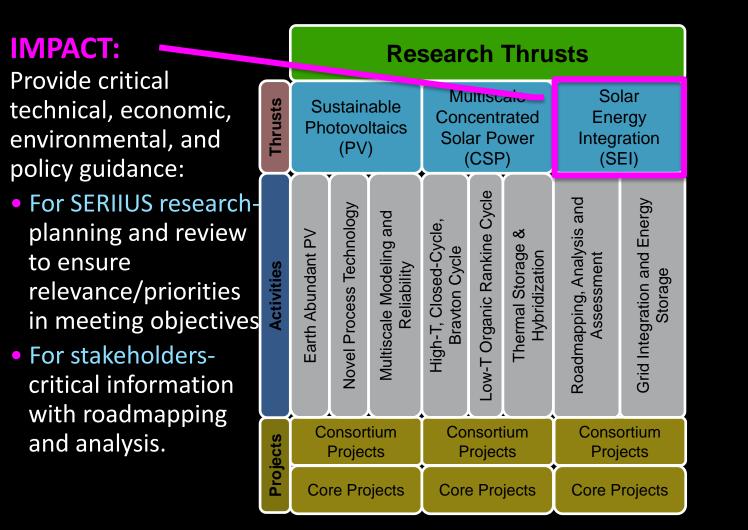


SERI **US**

- **CONSORTIUM PROJECTS:** disruptive, transformative R&D
- **CORE PROJECTS:** core industry partner-led and focused

IMPACT:

- Significantly accelerate disruptive PV technologies
- Provide foundation on which future Indian PV industry can build


IMPACT:

Significantly reduce levelized cost of electricity:

- increasing the power block efficiency
- decreasing the solar collector cost with innovative designs & optical materials.

SERI **US**

- **CONSORTIUM PROJECTS:** disruptive, transformative R&D
- CORE PROJECTS: core industry partner-led and focused

• **CONSORTIUM PROJECTS:** disruptive, transformative R&D

SERI **US**

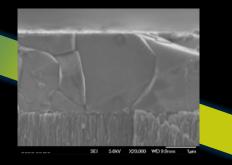
• CORE PROJECTS: core industry partner-led and focused

The Science of Sustainable Photovoltaics . . .

Materials: CIGS, CZTS, and OPV

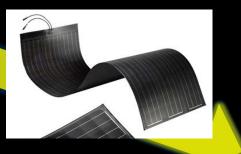
Inks and synthesis

- Understanding metalorganic decomposition
- Molecular precursor design
- Synthesis to desired materials
- Inks:
- Absorbers
- Transparent Conductors
- Contacts/Packaging



Deposition

- Desired precursor with no residual organics
- Designed to densify and allow grain growth
- Compatible with other layers


The Technology of Developing Low-Cost Atmospheric Processes . . .

Processing

Device quality:

- Rapid thermal processing
- Optical processing

Integration

 Materials/devices integrated onto flexible substrates

The Science of Multiscale Concentrating Solar Power...

Scientific Challenges/Technology Innovations

High-temperature, closed-cycle CO₂-Brayton (100kW-1MW)

 High-temperature receivers, expanders, low-cost heliostats and Brayton power cycles to increase the gross cycle efficiency to >50% to meet SunShot goals.

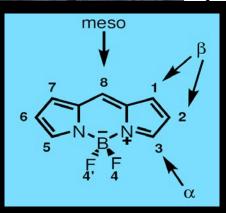
Low-temperature organic Rankine cycle (25kW-1MW)

- Low-cost , parabolic trough collectors that have optical efficiencies of >70%, operate up to 230°C, and have
 <2% thermal loss (overcome scale-down penalty).
- Develop small (25 kWe) turbo-expanders that have greater than 80% isentropic efficiency.

Thermal storage and hybridization

 Advanced, low-cost thermal storage for integration into high temperature Brayton CO₂ cycles and low temperature organic Rankine Cycles

Key Focus: Water Independent, Hybridization



The Science Solar at the Nanoscale . . .

Nanostructured Materials for PV

Coupling novel nanostructures to new dyes for enhanced performance in dye-sensitized solar cells (DSSC)

- Science Challenges:
 - -To develop & integrate dye/ nanostructure
 - -To enhance performance and stability of DSSC
- Shared US-India knowledge:
 - nanostructured materials from US
 - novel BODIPY dyes from India

Novel Nanostructured Coatings for CSP and PV Dust Mitigation

New generation dust resistant coatings

- Science Challenge: To develop & validate novel nanotechnology-based, durable superhydrophobic (and superhydrophilic) plasmonic metamaterials
- Low-surface energy metal nitrides (CrN, MoN, TIN, ZrN) as protective films for CSP reflectors (and PV modules)

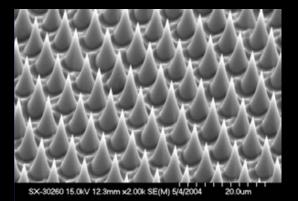


Image of superhydrophobic structure (left) that forms a surface with virtually no contact area with water (right).

The Science and Technology of Solar Energy Integration (SEI)

Roadmapping

- Barriers to deployment (India vs. US)
- Bankability
- Technology/policy assessments
 - grid-connected and off-grid
 - storage requirements
 - hybridization
- Identification of R&D needs

Grid Integration and Dispatchability

- Grid analysis in India
- Rural/off-grid power
- Storage, hybridization

Hybridization for the Survival of CSP Technolog

CSP Today USA 2012 was from June 27 utilization. The follo through the 28th in Las Vegas as advantages to hybrid CSP plan

CSP in conjunction with Natural Ga 3) to create new hybrid plants or

dding CSP on to existing plants was

brid CSP and NG plant, for example,

nidday to supply the steam to the

urbine. During periods of cloud cover

uld use both gas turbine and steam

ed. The operation modes of the

both gas and solar would used, switching to solar during

- · Enables gas burning at high CC efficiencies >52% vs. -40% in a PV During the session, Hybridization with a separate Open Cycle Gas CSP's new lifeline, the concept of using
 - Solar Thermal and NG com each other in a hybrid steam based plant
 - Such a combination allows sta output during changes
 - Smooth transition different operation modes: only, gas only, hybrid

Integration and Communication

SERIIUS Web Gateway (www.SERIIUS.org) REAL-TIME INTERNATIONAL RESEARCH PARTNERING

Web Gateway www.SERIIUS.org

- Public Information Access
- Research Partner Secure Access

Modeling & Simulation Hub

Remote Access Hub

Solar (PV, CSP modeling) Simulation routines ADEPT toolbox Materials and device design Computational science portal

Remote learning and training On-line equipment, data acquisition Secure research information access

SERIUS

Solar Energy Research Institute for India and the United States

Please contact us if you are interested in participating in our internship program! <u>David.ginley@nrel.gov</u> <u>Larry.kazmerski@nrel.gov</u> kamanio <kamanio@materials.iisc.ernet.in>

Thank you • श्क्रिय