
Recognition of 3D Package Shapes for Single Camera Metrology

Ryan Lloyd, Scott McCloskey
Ryan.Lloyd@Honeywell.com, Scott.McCloskey@Honeywell.com

Honeywell ACS Labs, Golden Valley, MN

Abstract

Many applications of 3D object measurement have be-
come commercially viable due to the recent availability of
low-cost range cameras such as the Microsoft Kinect. We
address the application of measuring an object’s dimen-
sions for the purpose of billing in shipping transactions,
where high accuracy is required for certification. In par-
ticular, we address cases where an object’s pose reduces
the accuracy with which we can estimate dimensions from a
single camera. Because the class of object shapes is limited
in the shipping domain, we perform a closed-world recogni-
tion in order to determine a shape model which can account
for missing parts, and/or to induce the user to reposition
the object for higher accuracy. Our experiments demon-
strate that the addition of this recognition step significantly
improves system accuracy.

1. Introduction
The estimation of an object’s dimensions has long been

of interest in many commercial applications, but the high
costs of 3D cameras has - to date - precluded their use in
retail settings with lower budgets. As such, the advent of
low-cost range cameras like the Microsoft Kinect has re-
invigorated the interest in vision-based metrology for retail
settings. We address the application of Microsoft Kinect-
like active stereo cameras to object metrology for retail
shipping operations, where the dimensions of an object are
used - in part - to determine the shipping fare. Because
the estimated dimensions are used for a commercial trans-
action, most countries require certification of the system’s
accuracy under the intended use case. This includes, in par-
ticular, accuracy testing under general object poses relative
to the camera.

There are several object poses which are problematic for
single-camera metrology. Consider the case of a prism ly-
ing on the ground such that only one face is visible to the
camera, as shown in Figure 1. In this case, the three dimen-
sions of the smallest cuboid bounding the observed points
on the object are smaller than the dimensions of the small-

Figure 1: A prism with self-occlusion. The back half of the object
is not visible. Our system recognizes the package as a prism lay-
ing flat and exploits symmetry of the prism to include the absent
back half in measurements. The system fits a minimum volume
bounding box around the package. The ground truth dimensions
are length=648 mm, width=153, and height=136.

est cuboid bounding all of the object, so a naive algorithm
would produce a significant under-estimate of the object’s
depth. The same issue exists for cylinders in a similar pose,
due to self-occlusion of the object. While it is conceptu-
ally straightforward to add a second camera which provides
complementary views of missing surfaces, the associated
doubling of cost and installation complexity weighs against
such an approach, and engineering issues such as the inter-
ference of two cameras’ active illumination also makes it
unappealing.

We note that cases of self-occlusion can be handled by
extrapolating the missing surfaces if the shape of the ob-
ject is known. Instead of adding a second camera, then,
we take advantage of the limited domain of shipped objects
(the vast majority of them are either cuboids, cylinders, or
prisms). Starting from the 3D data produced by an active
stereo camera, we construct a 2D feature histogram which
is classified using a Support Vector Machine (SVM) to de-
termine a combination of object shape and pose. As in the

1

figure above of the prism, shape models improve the dimen-
sioning accuracy of cases with self-occlusion.

In addition to handling self-occlusion, we use shape
recognition to identify cases where limits of the sensor’s
accuracy may lead to high dimensioning errors. As in other
3D sensing modalities, active stereo systems suffer from
‘mixed pixels’ [4], where the depths of two different parts
of the scene combine to give erroneous 3D points that don’t
correspond to real world objects. By detecting object con-
figurations that give rise to large depth discontinuities -
namely upright cylinders and prisms - we tell the user to
re-position a package for a better estimate.

Our method is evaluated at both the component and sys-
tem level. At the component level, we test on a set of about
1500 images, and find a recognition accuracy of 99%. At
the system level, we demonstrate that the use of shape-based
models and rejection of bad poses significantly improves
measurement accuracy in the presence of self-occlusion. On
a subset of around 500 test images with known ground truth
dimensions, mean absolute error of the three dimensions
is reduced by 72/72% for prisms/cylinders/boxes, respec-
tively, with a small (5%) increase in mean absolute error
for boxes arising from a few cases of mis-classification. On
balance, this brings the system performance on prisms and
cylinders in line with the box performance, and should al-
low for certification.

2. Related Work
Hetzel et al. present a method for recognizing objects

in range images by organizing features into histograms [5].
They use three local features at each measured point: shape
index (derived from curvature) [7], surface normal in spher-
ical coordinates (θ, φ), and “pixel depth” normalized to [0,
256). The “pixel depth” of a point is the depth from the sen-
sor to the point, but the depths over an object are normalized
to the byte scale. They compute these features at all points
for a particular object and then build a histogram from the
features. However, the “pixel depth” feature is too sensitive
to changes in object pose, and thus requires a larger training
set than is practical in our case. Given a test object, they
compute the χ2-divergence between the test object and all
histograms residing in a training database. The trained ob-
ject with the lowest χ2-divergence indicates the test object’s
class (and even pose). That is, they use 1-NN classification,
so both the accuracy and runtime are dependant on the num-
ber of labeled training samples.

Other popular object recognition schemes with 3D data
include spin images from Johnson and Hebert [6]. Körtgen
et al. [8] use 3D shape contexts, extending the 2D shape
contexts of Belongie et al. [1]. Radu et al. describe 3D
objects with several different feature histograms, including
fast point feature histograms [12] and viewpoint feature his-
tograms [13]. Their features are based on relationships be-

tween an anchor point and points in its neighborhood. His-
tograms are local; each anchor point has its own histogram.
These histograms are invariant to point density, and they
satisfy other invariants.

Many of these methods provide finer grain recognition
than the method we present, at an unacceptably high com-
putational cost. We have a relatively small number of
classes, and have no need to distinguish fine pose differ-
ences as in previous work. Our method needs to be fast,
due to the high throughput of retail shipping centers, and
produce an accurate classification in under 300ms.

Like our system, several previous methods use SVMs
in object recognition. In [11], Roobaert et al. use SVMs
to recognize objects from 2D RGB images. They use a
3-dimensional vector per image, which simply equals the
average RGB intensities. Similarly, Chapelle et al. clas-
sify 2D color images by forming color model histograms of
the images (in HSV space) and then using the histograms
as feature vectors in SVMs [3]. In the case of packages,
methods like these that use color features do not help in
classification. Most packages, regardless of shape, are ei-
ther cardboard brown or white. Packages often have logos
and writing in unpredictable colors.

3. Method
In this section, we discuss our approach to segmenting,

describing, recognizing, and estimating the size of pack-
ages. This method works with any sensor that provides in-
formation from which a computer can build an organized
3D point cloud, i.e. 3D points arranged in a 2D matrix cor-
responding to the rasterization of the range image. For each
case, we use an organized point cloud derived from a single
disparity image from the range camera. Note that we only
consider the depth data produced by the sensor, ignoring
color information.

In light of the shipping domain and the differing perfor-
mance observed between upright and lying packages, we
recognize the following five classes:

• Rectangular boxes, i.e. cuboids
• Right circular cylinders laying flat on the ground
• Right circular cylinders standing vertically
• Right regular prisms with triangular bases laying flat

on the ground
• Right regular prisms with triangular bases standing

vertically

Much of the needed discrimination can be achieved by
considering two features of points on the object: curvature
c and orientation θ relative to the ground plane. Regular
boxes, for instance, will be dominated by points with zero
curvature, and with orientations parallel or orthogonal to the
ground (for the top and lateral faces, respectively). Surface

Class Surface θ (rad) c
Box

Lateral faces π
2 0

Top face 0 0
Cylinder Flat

Lateral surface 0 to π > 0
Circular bases π

2 0
Cylinder Vertical

Lateral surface π
2 > 0

Circular base 0 0
Prism Flat

Lateral faces π
3 0

Triangular bases π
2 0

Prism Vertical
Lateral faces π

2 0
Triangular base 0 0

Table 1: Expected curvature (c) and orientation (θ) features over
the surfaces of ideal geometric shapes.

points on a cylinder lying flat will have non-zero curvature
and a continuous range of orientations w.r.t. the ground. Ta-
ble 1 breaks down the features we expect over ideal package
shapes. The table considers only smooth surfaces and not
edges or corners, since these constitute a negligible fraction
of surface points.

Considering just the histograms of c and θ, boxes and
vertical prisms are likely to be confused. We add another
feature describing the shape of the package’s occluding con-
tour, as viewed from above, which is one of three simple
geometric shapes: equilateral triangle, rectangle, or circle.
Table 2 lists the likely categorical value of this extra trait for
each class.

Class Top Face Shape
Box Rectangle
Cylinder Flat Rectangle
Cylinder Vertical Circle
Prism Flat Rectangle
Prism Vertical Equilateral Triangle

Table 2: Expected top face shape for each class of packages.

3.1. Algorithm Overview

The algorithm must first locate the ground plane and seg-
ment bodies above the plane. For each segmented package,
the algorithm follows this outline:

1. Smooth the object with moving least squares
2. Compute the surface normal at each point
3. Determine the angle, θ, between each point’s surface

normal and the ground normal

4. Compute curvature, c, at each point
5. Fill a 2D histogram with dimensions c and θ
6. Determine the 2D shape of the top of the package
7. Create a 201-dimensional feature vector containing the

histogram elements and the top shape descriptor
8. Classify the feature vector with a SVM

3.2. Estimating a Ground Plane

Finding a ground plane accurately is important because
we examine objects relative to it. Identifying some surface
as the ground provides an early step in segmenting bodies.
We define the ground plane as the largest plane in the cloud,
which usually is the floor around the package(s). The largest
plane has the most points near it (that is, in the plane’s sup-
port) among all other planes.

We search for the largest plane in a structured manner.
We break the 2D image plane into a regular grid of n × n
pixel (px) cells. We use n=32 px, which gives a suitable
tradeoff between the number of cells (and thus speed) and
the likelihood that at least one 32×32 patch contains mostly
ground. For each cell, we locally find the 3D points at po-
sitions (0, 0), (0, n − 1) and (n − 1, 0). We compute the
3D plane through these three points and determine the sup-
port. The support mask contains all points within a maxi-
mum distance (such as 20 mm) from the plane. After find-
ing the plane of biggest support (in terms of px), we com-
pute a plane of best fit through the support points via least
squares.

3.3. Segmenting Above-Ground Objects

After finding the ground plane, we find above-ground
points and segment them into bodies. Above-ground points
are those in the direction of the ground’s normal.

Euclidean clustering segments above-ground objects in
an organized point cloud. The algorithm is based purely
on clustering points that are spatially close in XYZ space
and near each other on the image plane. We start searches
from seed points on a regular grid. A search proceeds in a
depth-first manner, using 4-connectivity. When checking a
neighbor of the current node, the algorithm adds the neigh-
bor to the stack if its L1 distance from the current node is
below a threshold. Euclidean clustering can help segment
bodies that overlap on the image plane but are otherwise
separated in 3D space. Figure 2 gives an example of seg-
menting packages.

3.4. Smoothing the Object

After isolating the 3D points belonging to a package,
we use moving least squares (MLS) [9] to smooth the sur-
face of the package. Levin gives an overview of how MLS
works [10]. We use MLS from the Point Cloud Library
[14]. Smoothing the cloud is essential for accurately com-
puting local features. Without the smoothing step, the sur-

Figure 2: Result of Euclidean clustering.

(a) Test cylinder

(b) Before MLS (c) After MLS

Figure 3: Before and after images of applying moving least
squares to a point cloud of a cylindrical mailing tube.

face appears rough close-up with abrupt changes between
points. These abrupt changes cause erratic surface normals
and inaccurate curvature values. Figure 3 shows a result of
applying MLS.

MLS adjusts each measured point according to a locally
fit polynomial surface. For each point, the algorithm finds
other points in its neighborhood. MLS defines a local coor-
dinate frame at the anchor point. It defines the frame by first
finding a plane of best fit through the points in the neigh-
borhood. The plane’s normal provides one basis vector, and
the other two basis vectors are coincident with the plane.
The origin of the frame is at the anchor point. The algo-
rithm transforms the points in the neighborhood to the local
frame. It then computes an approximating bivariate polyno-
mial of best fit through the neighborhood in a least squares
sense. If the anchor point is at (0, 0, 0) and the polynomial
is f, then its new position is at (0, 0, f(0, 0)). A transfor-
mation maps the smoothed point back to the global frame.
MLS is a slow part of our object recognition scheme be-
cause finding the neighbors of each anchor point (via an
octree) is time-consuming. The run-time for MLS depends
on the quantity of points on the package, and it is generally
10% to 35% of the total run-time for object recognition.

3.5. Building a Feature Histogram

The feature histograms we build are based on two fea-
tures at each point over an object and then combine them
into a histogram. The first feature is the angle, θ, between
the local surface normal and the ground’s normal. Let the
estimated ground’s normal be ~g, and let the local surface
normal estimated at an anchor point be ~n. To determine ~n,
we build a covariance matrix for the XYZ positions of the
anchor point and points in its neighborhood of a certain ra-
dius. Suppose the center of gravity for the local region is
~m = (x̄, ȳ, z̄). Define the 4x4 transformation matrix T as:

T =

[
I3 −~m
~0T 1

]
(1)

Let A be a homogeneous 4×nmatrix of the following form
with one point from the region per column, where n is the
number of points in the region:

A =


x0 x1 · · · xn−1

y0 y1 · · · yn−1

z0 z1 · · · zn−1

1 1 · · · 1

 (2)

Set B to the non-homogeneous form of TA. Then, the 3x3
covariance matrix Σ is:

Σ =
BBT

n
(3)

Next, we run PCA on Σ. The eigenvector associated with
the smallest eigenvalue provides an estimate for the surface
normal at the anchor point. That is, ~n = ~v1, where ~v1 is
associated with the smallest eigenvalue λ1 of Σ among the
three eigenvalues.

We need to ensure all normals are consistent and point
towards the optical axis. Initially, each surface normal could
point in one of two directions, and a normal could wrongly
point into a surface rather than up from the surface. Let ~u ∈
R3 be a real-world point described in the camera’s frame,
with origin at the focal point. Let ~n ∈ R3 be a surface
normal at ~u. Then, ~n must be flipped if

cos(φ) =
−~u · ~n
‖~u‖ · ‖~n‖

< 0 (4)

Correspondingly, let ~n = −~n if −~u · ~n < 0.
Finally, the first feature, orientation w.r.t. ground, is

found via:

θ = cos−1

(
~g · ~n
‖~g‖ · ‖~n‖

)
(5)

The second feature is curvature. From the previous PCA
on Σ, we define curvature as the ratio of the smallest eigen-
value to the sum of the eigenvalues. That is,

(a) Test box

(b) Surface normals mapped
to RGB space

(c) Curvature (brighter regions
mean higher curvature)

Figure 4: Surface normals and curvature for a box.

c =
λ1

λ1 + λ2 + λ3
(6)

We use PCL’s routines for computing the local surface
normal and curvature. Refer to Figure 4 for a visual repre-
sentation of surface normals and curvature.

We compute the two features at each of the object’s
points and put the features in a 2D relative histogram. We
use 10 uniform bins for curvature, ranging from 0 to 0.08.
We use 20 uniform bins for θ, which varies from 0 to π ra-
dians. Figure 5 shows typical histograms for the classes of
packages. Note the similarities between histograms in the
same class.

3.6. Top Shape Categorization

The module that classifies the top shape of the pack-
age projects its points to the ground plane. The projected
points form a binary “projection image,” where a non-zero
pixel corresponds to a projected point. Each projected point
forms a circle of radius 2 pixels on the projection image. We
use a relatively large radius to fill in gaps between projected
points. In the projection image, 1 pixel = 1 mm2.

We first test if the package’s top resembles an equilateral
triangle. We find the largest contour among the clusters of
non-zero points in the projection image. We approximate
the contour with a polygon. The polygon needs three ver-
tices to continue. The three interior angles are ∠A, ∠B,
∠C. Define the triangle score as:

t = |π/3− ∠A|+ |π/3− ∠B|+ |π/3− ∠C| (7)

If t < 1, and package height > 3 · max(length, width),
then return “equilateral triangle.” In essence, the top shape

(a) Boxes

(b) Flat cylinders

(c) Vertical cylinders

(d) Flat prisms

(e) Vertical prisms

Figure 5: Relative histogram features for classes of packages with
six examples per class. θ is on the vertical axis, and c is on the
horizontal axis. (0, 0) is in the upper-left corner of each histogram.
Brighter cells correspond to higher frequencies.

of the package must be a triangle with interior angles near
60◦ and the package must be tall in order for the top shape
to be an equilateral triangle.

If the package fails the test for an equilateral triangle as
the top shape, then it tests for a circle. Let n be the number
of non-zero pixels in the projection image. Fit a minimum
area bounding rectangle around the projected points, and
suppose the bounding rectangle has dimensions w and h.
Define the rectangle score as the proportion of the bounding
rectangle’s area that contains points:

r =
n

wh
(8)

If r < 0.88, and package height > 3·max(length, width),
then return “circle.” Otherwise, return “rectangle.”

3.7. Training and Testing a SVM

We use libsvm for training a support vector machine
to perform package classification [2]. We train a 5-class
SVM, using the 1-versus-1 approach to training a SVM
with more than two classes. A binary model exists be-
tween every possible pair of classes for a total of 10 mod-
els. We use equal weights for all classes. Additionally, we
use the histogram intersection kernel, which we add to lib-
svm’s source code. The histogram intersection kernel has
this form, where ~u,~v ∈ Rn are feature vectors:

k(~u,~v) =

n∑
i=1

min(ui, vi) (9)

Our feature vectors are 201-dimensional, corresponding to
the number of cells in a histogram plus the descriptor for
the top-down package shape. We scale the feature vectors,
which include the categorical descriptor of a package’s top
shape, so each cell is in [0, 1].

Given a point cloud containing test package(s), the com-
puter follows the above steps to build a feature vector for
each package. The machine then uses libsvm and the
trained support vector machine to classify the new package.
The class with the most votes when classifying the package
with the 10 models serves as a prediction of the test pack-
age’s class.

4. Experimental Design

Figure 6 shows a RGB image from the PrimeSense
Carmine 1.082 device with example outputs from our ob-
ject recognition module. Beyond this anectdotal example,
this section describes the experimental setup used to evalu-
ate both the object recognition performance and its impact
on the accuracy of the overall system.

To create a package shape recognition module, we train
a SVM and test it using the previously mentioned method.
We grab images from PrimeSense Carmine 1.08x devices.
For our large-scale testing, each range image contains ex-
actly one package with limited clutter. A planar floor con-
sumes most of the image around the package. We find the
largest plane in the image, which serves as the ground. We
then iteratively compute a plane of best fit for the ground
using least squares. Although each image has one package,
we run Euclidean clustering to extract a complete mask for
the package and ignore any background clutter. After iso-
lating a package, we build a 201-D feature vector for it.

Figure 6: Packages displayed with measurements and labels.

For both training and testing, we capture diverse pack-
ages from a wide variety of viewpoints. The objects are di-
verse in scale and shape. Some boxes are cardboard, while
others are machined from plastic. We use cylinders of var-
ious radii and heights. The packages and ground have di-
verse rotations relative to the camera. The camera is also at
various distances from the packages (between about 0.7 and
2.5 m).

4.1. Training

We train a SVM with 3,427 examples of real packages.
Table 3 gives counts of the objects used. A large number
of cases are boxes because we had gathered range images
of boxes for other analysis. During training, we discover an
optimal cost of C=32.

Class Count
Boxes 2654
Cylinders Flat 432
Cylinders Vertical 144
Prisms Flat 107
Prisms Vertical 90

Table 3: Counts of objects used in training

4.2. Testing Classification Accuracy

We test the 5-class SVM with a set of 1,487 packages.
All these images are new and do not appear in training. For
each package, we create a 201-dimensional vector and clas-
sify it using the trained SVM. Classification accuracy of this
component test is presented in Section 5.

4.3. Testing Dimensioning Accuracy

Because the purpose of our object recognition module is
to improve the performance of object metrology, it is more

important to determine how object recognition impacts the
accuracy of measuring objects. Our dimensioning system
fits a minimum volume bounding box (or MVBB) around a
package. This bounding box is the smallest box that con-
tains all the package’s 3D points, after suitable outlier re-
jection for stray points. The bottom face of the MVBB is
always coincident with the ground, which reduces the num-
ber of degrees of freedom of the box when creating it. When
a cylinder or prism is self-occluded, the naive dimension-
ing algorithm is unaware of the hidden points on the pack-
age and often initially underestimates the dimensions of the
MVBB. However, we can adjust the dimensioning method
after determining the package type. If the system labels a
package as a flat cylinder or flat prism, then it adjusts the
dimensions of the MVBB to better fit the object. If the sys-
tem discovers that a package is a vertical cylinder or vertical
prism, it prompts the user to lay the package flat so it can
dimension the object more accurately. We use 474 packages
having groundtruth dimensions of MVBBs–a subset of the
1,487 packages–for testing dimensioning accuracy.

5. Results
Classification is accurate. The correct classification rate

is 99.06% for the test set of 1,487 packages. Table 4 gives
a confusion matrix. Most of the confusion arises from the
system incorrectly classifying flat cylinders and flat prisms
as boxes. This confusion could be due to the fact that these
three classes have a rectangular top shape.

Classifying and measuring packages is fast. Run time
depends on the number of points in a package and thus
the package size. Our program is single-threaded. We test
the run time on a desktop PC with two Intel Xeon quad-
core processors (each core runs at 2.93 GHz) and 12 GB
of main memory. The object recognition module typically
takes 0.16 to 0.29 seconds. The entire measuring process
usually takes 0.6 to 1.1 seconds.

Package shape recognition improves dimensioning accu-
racy overall. Figure 7 gives relative histograms of the di-
mensioning error with and without object recognition. The
system misclassifies one box, which leads to a negligible
drop in overall dimensioning accuracy for boxes. Measure-
ment errors for cylinders are overall smaller after object
recognition. After recognizing vertical cylinders, we ex-
clude the estimates because such detections would induce
the user to re-position the object. Identifying flat cylinders
allows us to consider the often hidden lateral surface when
dimensioning. Measurements for prisms show much more
significant improvement. Prior to object recognition, the
dimensioner does not account for the hidden surfaces of a
prism, and it often underestimates the size of a bounding
box. When the system identifies a flat prism, it exploits
symmetry and obtains a more accurate MVBB. We ignore
vertical prisms upon recognizing them. Table 5 shows the

mean errors for boxes, cylinders, and prisms with and with-
out object recognition.

Class Mean abs error
before recogni-
tion

Mean abs error
after recognition

Cylinders 8.14 2.26
Prisms 21.57 6.14
Boxes 4.31 4.53

Table 5: Mean absolute dimensioning error (in mm) before and
after using object recognition

6. Conclusions, Limitations, Future Work
We presented a 3D object recognition method which im-

proves the accuracy of dimensions estimated from mailing
packages. With respect to our key criteria - classification
accuracy and speed - we have demonstrated the utility of
SVM-based classification of a histogram feature containing
the orientation and curvature of surface points, along with
a categorical feature describing the contour of the object’s
projection. Relative to previous work on 3D object recog-
nition, our method is faster and is tailored to the particular
application domain. We seek the smallest combination of
features helpful in classifying objects in our application.

The method we present for object recognition works well
in the limited domain of shipped packages, where only a
few classes of basic geometric shapes are needed. Whereas
our method may not extend to more general categories of
3D objects, other methods may be more useful for applica-
tions involving diverse object types. In the future, we could
incrementally improve the recognition accuracy by updat-
ing the SVM given new data on observed packages.

We still need to determine how camera-object distance
affects recognition accuracy. We notice that histograms ap-
pear blurrier as the distance between the camera and pack-
age increases. A greater distance results in an object having
fewer points, and each point has a neighborhood with fewer
neighbors. However, our intended operating range in com-
mercial environments is small (between about 0.75 and 2.5
m), and we obtain high recognition accuracy with cases in
this range.

Acknowledgements
KINECT is a registered trademark of Microsoft Corpora-

tion. XEON is a registered trademark of Intel Corporation.
All other trademarks used herein are the trademarks of their
respective owners.

References
[1] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching

and object recognition using shape contexts. Pattern Analysis and

Predicted Label
Box F. Cyl. V. Cyl. F. Prism V. Prism

Groundtruth Class

Box 390 1 0 0 0
F. Cyl. 7 317 0 0 0
V. Cyl. 1 0 223 0 0
F. Prism 5 0 0 303 0
V. Prism 0 0 0 0 240

Table 4: Confusion matrix from testing a 5-class SVM on 1,487 packages.

Cylinders Prisms Boxes

Before

After

Figure 7: Relative histograms of dimensioning error, organized by package shape and before and after using object recognition.

Machine Intelligence, IEEE Transactions on, 24(4):509–522, 2002.
2

[2] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for
support vector machines. ACM Transactions on Intelligent Sys-
tems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm. 6

[3] Olivier Chapelle, Patrick Haffner, and Vladimir N Vapnik. Support
vector machines for histogram-based image classification. Neural
Networks, IEEE Transactions on, 10(5):1055–1064, 1999. 2

[4] Martial Hebert and Eric Krotkov. 3d measurements from imaging
laser radars: how good are they? Image and Vision Computing,
10(3):170–178, 1992. 2

[5] Günter Hetzel, Bastian Leibe, Paul Levi, and Bernt Schiele. 3d ob-
ject recognition from range images using local feature histograms. In
Computer Vision and Pattern Recognition, 2001. CVPR 2001. Pro-
ceedings of the 2001 IEEE Computer Society Conference on, vol-
ume 2, pages II–394. IEEE, 2001. 2

[6] Andrew E. Johnson and Martial Hebert. Using spin images for effi-
cient object recognition in cluttered 3d scenes. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 21(5):433–449, 1999.
2

[7] Jan J Koenderink and Andrea J van Doorn. Surface shape and cur-
vature scales. Image and vision computing, 10(8):557–564, 1992.
2

[8] Marcel Körtgen, Gil-Joo Park, Marcin Novotni, and Reinhard Klein.
3d shape matching with 3d shape contexts. In The 7th central Eu-
ropean seminar on computer graphics, volume 3, pages 5–17, 2003.
2

[9] Peter Lancaster and Kes Salkauskas. Surfaces generated by moving
least squares methods. Mathematics of computation, 37(155):141–
158, 1981. 3

[10] David Levin. Mesh-independent surface interpolation. Geometric
modeling for scientific visualization, 3:37–49, 2003. 3

[11] Danny Roobaert and Marc M Van Hulle. View-based 3d object
recognition with support vector machines. In Neural Networks for
Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal
Processing Society Workshop., pages 77–84. IEEE, 1999. 2

[12] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point
feature histograms (fpfh) for 3d registration. In Robotics and Au-
tomation, 2009. ICRA’09. IEEE International Conference on, pages
3212–3217. IEEE, 2009. 2

[13] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, and John Hsu.
Fast 3d recognition and pose using the viewpoint feature histogram.
In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ Interna-
tional Conference on, pages 2155–2162. IEEE, 2010. 2

[14] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library
(pcl). In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 1–4. IEEE, 2011. 3

http://www.csie.ntu.edu.tw/~cjlin/libsvm

