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Introduction

This dissertation concerns the geometry of complex and symplectic manifolds, and

Kähler geometry, which unifies both. The original aim of the project was to under-

stand the quotient construction for Kähler manifolds, which uses differential geometry,

and the quotient construction for complex algebraic manifolds, which uses Geometric

Invariant Theory, and to explain how these two constructions are related.

In the event, this goal proved too ambitious to tackle fully in the time and space

available. Instead, we have concentrated mostly on the differential-geometric side

of the story, discussing complex manifolds, almost complex structures and integra-

bility; Hermitian, Kähler and hyperkähler metrics; examples and conditions for a

manifold to be complex or almost complex; symplectic manifolds, and examples in-

cluding toric symplectic manifolds; and quotient constructions for symplectic and

Kähler manifolds. We do discuss some algebraic geometry topics, namely projective

complex manifolds, Chow’s Theorem and the Kodaira Embedding Theorem, and GIT

quotients, although these are covered briefly.

We now summarize the contents of each chapter.

Chapter 1

This first chapter is a self-contained discussion about fundamental concepts in com-

plex geometry. We analyze different definitions of complex manifold and discuss the

different compatible structures that they can carry. We also study Kähler manifolds,

which provide one of the most important types of structures in complex geometry.

And as a fundamental example of a Kähler manifold we analyze the projective space

CPn, whose complex submanifolds are the subject of (projective) complex algebraic

geometry. This leads us to a fundamental theorem in geometry, the Kodaira Em-

bedding Theorem, that explains which complex compact manifolds can be embedded

in projective space, and hence are objects of study in projective algebraic geometry.

Lastly, we discuss holonomy groups as a way to understand and classify different

geometric structures on Riemannian manifolds.
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Chapter 2

In this chapter we explain some of the fundamental concepts of symplectic geometry.

We aim at understanding what the symplectic structure on a manifold, i.e., a non-

degenerate closed 2-form, means both topologically and geometrically. Topologically,

because we are interested in the topological conditions that ensure that a symplectic

form exists on a manifold. Geometrically, because by Darboux’s Theorem, symplectic

manifolds are all locally isomorphic. Although all Kähler manifolds are symplectic,

there are many examples of symplectic manifolds with an integrable complex structure

which are not Kähler. Here we describe the first example that was constructed. Lastly,

we discuss of one of the most important tools used to study symplectic manifolds,

J-holomorphic curves.

Chapter 3

This last chapter is dedicated to the study of quotient constructions for different

geometric structures. We construct explicit examples of quotients and discuss the

differences and relationship between the different approaches. We begin by studying

symplectic group actions and moment maps and learn how to construct quotients

of symplectic manifolds using the Marsden-Weinstein-Meyer reduction. We will see

how the resulting quotient can be understood in terms of combinatorial data when the

group is a maximal torus. We discuss Kähler quotients as a similar construction to the

symplectic case and, after this, we consider the conditions under which the Kähler

quotient will be equivalent to the GIT quotient in algebraic geometry. Lastly, we

hyperkähler quotient as a generalization of the Kähler quotient construction, closely

related to symplectic reduction.
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Chapter 1

Complex Geometry

In this chapter we discuss different structures on complex manifolds and how they

are compatible. We also discuss the conditions under which a complex manifold is

projective and lies then in the area of study of algebraic geometry and which are

Kähler. We can see these relations as follows

Complex Geometry ⊃ Kähler Geometry ⊃ Projective Geometry.

We will also study hyperkähler manifolds as a generalization of Kähler geometry

and how the different types of geometric structures can be classified by the different

holonomy groups of each manifold. It is important to remark that complex geometry

represents a small part of the geometry of manifolds carrying an endomorphism J

of the tangent bundle such that J2 = −id. Only those manifolds which have an

integrable almost complex structure will be studied using the techniques of complex

geometry.

The main references for this chapter are [4–9,15,18–20,22,23,32,36].

1.1 Complex Manifolds

Definition 1.1. Let M be a real manifold of dimension 2n. A complex chart on

M is a pair (U , ψ), where U is open in M and ψ : U → Cn is a diffeomorphism

between U and some open set in Cn. Equivalently, ψ gives a set of complex coordinates

(z1, . . . , zn) on U . If (U1, ψ1) and (U2, ψ2) are two complex charts, then the transition

function is ψ12 : ψ1(U1 ∩ U2) → ψ2(U1 ∩ U2), given by ψ12 = ψ2 ◦ ψ−1
1 . We say M is

a complex manifold if it has an atlas {(Ui, ψi) : i ∈ I} of complex charts (U , ψ), such

that all the transition functions are biholomorphic as maps from open subsets of Cn

to open subsets of Cn.
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Example 1.2 (Complex Manifold). Here we give three different examples of complex

manifolds.

(i) Let us consider the manifold M = Cn. (U , ψ) = (Cn, idCn) is a chart on Cn and

{(Cn, idCn)} is an atlas on Cn.

(ii) Let us consider the manifold given by the projective space CPn.

Let Uk = {[z0 : z1 : · · · : zn] ∈ CPn : zk 6= 0} for each k = 0, 1, . . . n. Then Uk is

open in CPn.

We can define a map ψk : Uk −→ Cn by

ψk ([z0 : · · · : zk−1 : zk : zk+1 : · · · : zn]) =

(
z0

zk
, . . . ,

zk−1

zk
,
zk+1

zk
, . . . ,

zn
zk

)
.

Let us write two maps ψi : Ui −→ Cn and ψj : Uj −→ Cn as

ψi ([z0 : · · · : zi−1 : zi : zi+1 : · · · : zn]) 7−→
(
z0

zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn
zi

)
= (v1, . . . , vn)

and

ψj ([z0 : · · · : zj−1 : zj : zj+1 : · · · : zn]) 7−→
(
z0

zj
, . . . ,

zj−1

zj
,
zj+1

zj
, . . . ,

zn
zj

)
= (w1, . . . , wn)

for 0 ≤ i < j ≤ n.

The transition function ψij = ψj ◦ ψ−1
i maps {(v1, . . . , vn) ∈ Cn : vi 6= 0} to

{(w1, . . . , wn) ∈ Cn : wj+1 6= 0} by

ψj ◦ ψ−1
i (v1, . . . , vn) = (w1, . . . , wn)

=
(
z0/zi
zj/zi

, . . . , zi−1

zj
, zi
zj
, zi+1

zj
, . . . ,

zj−1

zj
,
zj+1

zj
, . . . , zn

zj

)
=

(
v1
vj
, . . . , vi

vj
, 1
vj
, vi+1

vj
, . . . ,

vj−1

vj
,
vj+1

vj
, . . . , vn

vj

)
.

This is a biholomorphic mapping. So (Ui, ψi), (Uj, ψj) are compatible and

{(Uk, ψk) | k = 0, . . . , n} is a complex chart on CPn. The charts (Uk, ψk) for

k = 0, 1, . . . , n form a holomorphic atlas for CPn and thus CPn is a complex

manifold.

(iii) Let n > 1, and a ∈ C∗, 0 < |a| < 1. Let Z act on Cn\{0} by holomorphic

transformations (z1, . . . , zn) 7→ (akz1, . . . , a
kzn) with k ∈ Z. Then the quotient

(Cn\0) /Z is diffeomorphic to S1×S2n−1. Hence S1×S2n−1 is a complex man-

ifold. This example is due to Hopf and is named the Hopf manifold after him.

Calabi and Eckmann [8] extended this result to show that the product of odd

dimensional spheres are complex manifolds.
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We now explain an alternative, differential geometric way to define complex man-

ifolds. We no longer deal with holomorphic coordinates and charts, but prefer to

think of vector fields on a manifold, tensors and tangent spaces. This new point of

view, widens the range of manifolds that can be studied using geometric methods to

those manifolds that do not fit into Definition 1.1. We will see that, under certain

conditions, given by Theorem 1.7, both definitions are equivalent.

Definition 1.3. Let V be a vector space. A complex structure on V is a linear

map:

J : V −→ V with J2 = −id.

Definition 1.4. If M is a real 2n-dimensional manifold, and we can define a smooth

field of complex structures as given in Definition 1.3 on the tangent bundles J :

TpM → TpM where J2 = −idTpM and we make the underlying vector space into

a complex vector space by setting (a + ib) · v = a · v + b · J(v), for a, b ∈ R and

v ∈ TM , then J is an almost complex structure on the manifold and (M,J) is an

almost complex manifold.

A complex manifold M as given in Definition 1.1 will also admit further structure

on its tangent bundle. Let M be a real 2n-dimensional manifold. If we complexify

the tangent bundle TM (isomorphic to R2n) we obtain the bundle

TM ⊗R C
↓
M

with fiber (TM ⊗C)p = TpM ⊗C at p ∈M . The complex vector space TpM ⊗R C is

isomorphic to C2n.

Proposition 1.5. If M has an almost complex structure J , then J induces a splitting

of the complexified tangent and cotangent bundles TM ⊗RC and T ∗M ⊗RC such that

we can decompose the complex tangent bundle as

TpM ⊗R C ∼= T 1,0
p M ⊕ T 0,1

p M,

where T 1,0M = {v ∈ TM ⊗ C | Jv = iv} and T 0,1M = {v ∈ TM ⊗ C | Jv = −iv}
are eigenspaces for the eigenvalues i and −i of J respectively.

Definition 1.6. Suppose M is a 2n-dimensional manifold and J an almost complex

structure on M . Let f : M → C be a smooth function and write f = u+ iv. We call

f a holomorphic function or J-holomorphic if du = Jdv, i.e., df ◦ J = idf .
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Note that the splitting of the complexified tangent bundles of a manifold M pro-

duced by the almost complex structure J does not guarantee the existence of an atlas

of complex charts (U , ψ), such that all the transition functions as in Definition 1.1 are

holomorphic. Indeed the conditions set in Definition 1.6 will only be satisfied under

certain quite restrictive conditions.

Theorem 1.7 (Newlander-Nirenberg). The almost complex structure J gives each

tangent space TpM the structure of a complex vector space. A necessary and suf-

ficient condition for there to exist a holomorphic chart around each point of M ,

is the vanishing of the Nijenhuis tensor NJ of J , where we write NJ(v, w) =

[v, w] + J ([Jv, w] + [v, Jw])− [Jv, Jw] for all smooth vector fields v, w on M .

The Nijenhuis tensor NJ represents an obstruction to the existence of holomorphic

functions on M (see Joyce 5.1, [23]). The equations that a function f must satisfy

in order to be holomorphic on M , as given in Definition 1.6, are called the Cauchy-

Riemann equations. For n = 1, the manifold always admits holomorphic coordinates,

but for n > 1 the Cauchy-Riemann equations are overdetermined, and NJ is an

obstruction to the existence of holomorphic functions on M . If NJ 6= 0, then there can

still exist some holomorphic functions on M , but not enough to construct holomorphic

coordinates. Thus, an almost complex manifold only admits many, i.e., enough,

holomorphic functions if the Nijenhuis tensor NJ vanishes.

The Newlander-Nirenberg Theorem 1.7 implies a new definition of complex man-

ifold as a 2n-dimensional manifold with an almost complex structure J such that

NJ ≡ 0. This definition is equivalent to Definition 1.1.

If we can define a structure J on a real 2n-dimensional manifold M such that the

Nijenhuis tensor NJ vanishes, then the Newlander-Nirenberg Theorem 1.7 ensures

that there exist locally holomorphic coordinates (z1, . . . , zn) on M so that M is a

topological space X with an atlas of charts (Ui, ψi) defined on it such that the transi-

tion functions ψij are holomorphic as defined in Definition 1.1. In this case, we define

the complex manifold (M,J) as an almost complex manifold with integrable complex

structure J , i.e, NJ = 0. This integrability condition is also given by the fact that

the Lie bracket of two (1, 0) vector fields described in Proposition 1.5 should be also

of type (1, 0).

4



1.2 Compatible Structures

We have discussed two different definitions of complex manifold. The first definition

depends on the possibility of defining holomorphic functions on a manifold, while

the second relies on the integrability of the almost complex structure J defined on

a manifold M , which ensures a vanishing tensor NJ . Thus a more general idea of

almost complex manifold follows, where none of the almost complex structures on

the manifold M are integrable and we therefore no longer have holomorphic functions

on M . In this section we define further structures on manifolds, and we explain how

they are compatible with one another.

1.2.1 Metrics

A metric on a manifold is given by a tensor that assigns to each point p ∈ M an

inner product on the tangent space TpM . That is, a metric g on a manifold M

determines an inner product on each tangent space TpM , so that 〈X, Y 〉 := g (X, Y )

for X, Y ∈ TpM . Depending on how we define g(X, Y ) we can define different metrics

on M .

Definition 1.8. A Riemannian metric g on M determines an inner product on

each tangent space TpM defined as 〈X, Y 〉 := g(X, Y ) for X, Y ∈ TpM depending

smoothly on p ∈ M such that g(X, Y ) is a positive definite bilinear symmmetric dif-

ferential form on M . A Riemannian manifold (M, g) is a differentiable manifold,

equipped with a Riemannian metric.

We now analyze the conditions under which a Riemannian metric is compatible

with an almost complex structure on a manifold (M,J).

Definition 1.9. If a Riemannian metric g on an almost complex manifold (M,J)

is compatible with the complex structure J on (M,J) so that 〈JX, JY 〉 = 〈X, Y 〉,
that is, g(X, Y ) = g(JX, JY ) for all p ∈ M and X, Y ∈ TpM , then g is called a

Hermitian metric on (M,J).

Proposition 1.10. An almost complex manifold M can always be equipped with a

Hermitian metric.

Proof. If g is any Riemannian metric, then

h(X, Y ) =
1

2
(g(X, Y ) + g(JX, JY ))

is a Hermitian metric.

5



1.2.2 Differential Forms

We have approached complex and almost complex manifolds in terms of the almost

complex structure J : TpM → TpM , the role of its integrability as explained in

Theorem 1.7, and the possibility of defining a tensor g, a metric, that is compatible

with J . Now we analyze manifolds by considering the space of differential forms

on their tangent bundles. Important references for the material discussed here are

[7, 9, 15, 23,36].

de Rham Cohomology

There are several different ways to define the cohomology of topological spaces, for

instance, singular cohomology, Čech cohomology, Alexander-Spanier cohomology. If

the topological space is sufficiently nice (for instance paracompact and Hausdorff),

then the corresponding cohomology groups are all isomorphic. Here we study the de

Rham cohomology of a smooth n-manifold M .

Definition 1.11. Let C∞
(
ΛkT ∗M ⊗R C

)
denote the space of smooth complex differ-

ential forms of degree k on M , then we can write the exterior differential d as

d : C∞
(
ΛkT ∗M ⊗R C

)
−→ C∞

(
Λk+1T ∗M ⊗R C

)
, (1.1)

where T ∗M is the cotangent bundle, ΛkT ∗M ⊗RC is a complex vector bundle over M

and C∞
(
ΛkT ∗M ⊗R C

)
is the space of smooth sections of ΛkT ∗M⊗RC. The exterior

differential d satisfies the Leibnitz rule and d ◦ d = 0.

Since d ◦ d = 0, the chain of operators

0
d−→ C∞

(
Λ0T ∗M ⊗R C

) d−→ C∞
(
Λ1T ∗M ⊗R C

) d−→ · · · d−→ C∞ (ΛnT ∗M ⊗R C)
d−→ 0

(1.2)

forms a complex and we may find the corresponding cohomology groups.

Definition 1.12. The kernel of d are the closed forms and the image of d are the

exact forms.

Definition 1.13 (de Rham Cohomology Groups). For k = 0, . . . , n we define the

kth de Rham cohomology group of M by

Hk
dR(M ;C) =

Ker(d : C∞
(
ΛkT ∗M ⊗R C

)
−→ C∞

(
Λk+1T ∗M ⊗R C

)
)

Im(d : C∞ (Λk−1T ∗M ⊗R C) −→ C∞ (ΛkT ∗M ⊗R C))
.
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Remark 1.14. The de Rham cohomology of a smooth manifold M , Hk
dR(M ;C) is

isomorphic to the cohomology Hk(M ;C) of M as topological space.

If we endow an oriented n-manifold M with a Riemannian metric g, then we

obtain a volume form dVg on M , which can be used to integrate functions on M .

The Hodge star ∗ is an isomorphism of vector bundles ∗ : ΛkT ∗M → Λn−kT ∗M ,

which is defined as follows. For α and β k-forms, ∗β is the unique (n− k)-form that

satisfies the equation α ∧ (∗β) = (α, β)dVg for all k-forms α on M .

Definition 1.15. Let (M, g) be a Riemannian manifold, then we can define the cor-

responding adjoint differential operator d∗ where

d∗ : C∞
(
Λk+1T ∗M ⊗R C

)
−→ C∞

(
ΛkT ∗M ⊗R C

)
(1.3)

by

d∗α = (−1)kn+n+1 ∗ d(∗α).

Let α be a k-form and β be a (k+1)-form. Then 〈dα, β〉L2 =
∫
M

(dα, β)dVg =∫
M

dα ∧ ∗βdVg =
∫
M

dα ∧ ∗β − d(α ∧ ∗β) =
∫
M

dα ∧ ∗β − dα ∧ ∗β ± α ∧ d(∗β) =∫
M

(α, ∗d(αβ))dVg = 〈α, d∗β〉L2 .

Thus d∗ has the formal properties of the adjoint of d. As d2 = 0 we find that

(d∗)2 = 0, so that the corresponding chain of operators form a complex, similar to the

expression given in Equation (1.2), of which we can compute the cohomology groups

as

Hk
dR (M,R) ∼=

Ker
(
d∗ : C∞

(
ΛkT ∗M ⊗R C

)
−→ C∞

(
Λk−1T ∗M ⊗R C

))
Im (d∗ : C∞ (Λk+1T ∗M ⊗R C) −→ C∞ (ΛkT ∗M ⊗R C))

.

Theorem 1.16. For (M, g) a compact Riemannian manifold, we write the Lapla-

cian as

∆d = dd∗ + d∗d (1.4)

and we have

Ker(dd∗ + d∗d) = Hk

where the elements of Hk are called the harmonic k-forms.

Lemma 1.17. For (M, g) a compact manifold, we have ∆α = 0 ⇐⇒ dα = 0 and

d∗α = 0.

Corollary 1.18. On a compact Riemannian manifold, every harmonic function is

constant.

Theorem 1.19 (Hodge’s Theorem). Let (M, g) be a compact, oriented Riemanninan

manifold. Then every de Rham cohomology class on M contains a unique harmonic

representative, and Hk ∼= Hk
dR(M,R).

7



Dolbeault Cohomology

Given an almost complex structure J on a manifold M , the decomposition of the

complex tangent bundle as TM ⊗R C = T 1,0M ⊕ T 0,1M given in Proposition 1.5

induces a similar decomposition on the bundles of complex differential forms:(
ΛkT ∗M

)
⊗R C =

⊕
p,q

p+q=k

Λp,qM,

where Λp,qM is the bundle ΛpT ∗
1,0
M ⊗C ΛqT ∗

0,1
M . A section of Λp,qM is called a

(p, q)-form which is a complex-valued differential form which can be expressed in local

holomorphic coordinates (z1, . . . , zn) as∑
1≤i1<i2<...<ip≤n
1≤j1<j2<...<jq≤n

fi1...ip,j1···jqdzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq .

The exterior differential operator d in Equation (1.1) splits informally as

dαp,q = (NJ · α)p+2,q−1 + ∂αp+1,q + ∂̄αp,q+1 + (NJ · α)p+2,q−1 , (1.5)

where ∂ and ∂̄ are operators such that

∂ : C∞ (Λp,qM) −→ C∞
(
Λp+1,qM

)
(1.6)

∂̄ : C∞ (Λp,qM) −→ C∞
(
Λp,q+1M

)
, (1.7)

and NJ is the Nijenhuis tensor as given in Theorem 1.7.

If the almost complex structure J defined on the manifold M is integrable, i.e, M

is a complex manifold and NJ ≡ 0, then we can rewrite Equation (1.5) as

dαp,q = ∂αp+1,q + ∂̄αp,q+1, (1.8)

which we rewrite more easily as

d = ∂ + ∂̄. (1.9)

Proposition 1.20. If M is a complex manifold then ∂ ◦ ∂ = 0, ∂̄ ◦ ∂̄ = 0 and

∂ ◦ ∂̄ + ∂̄ ◦ ∂ = 0.

Proof. We have d2 = 0 and since d = ∂ + ∂̄ we can write

d2 = (∂ + ∂̄)(∂ + ∂̄) = ∂2 + [∂ ◦ ∂̄ + ∂̄ ◦ ∂] + ∂̄2 = 0.

8



We have that ∂2 maps (p, q)-forms to (p+ 2, q)-forms, ∂ ◦ ∂̄ + ∂̄ ◦ ∂ maps (p, q)-forms

to (p+ 1, q+ 1)-forms and ∂̄2 maps (p, q)-forms to (p, q+ 2)-forms respectively. Thus

each component vanishes separately, and we have

∂2 = ∂ ◦ ∂̄ + ∂̄ ◦ ∂ = ∂̄2 = 0.

Since ∂̄2 = 0 for each p = 0, . . . , n, the chain of operators

0
∂̄−→ C∞

(
Λp,0M

) ∂̄−→ C∞
(
Λp,1M

) ∂̄−→ · · · ∂̄−→ C∞ (Λp,nM) (1.10)

forms a complex and we may find the corresponding cohomology groups.

Definition 1.21 (Dolbeault Cohomology Groups). For p, q = 0, . . . , n we define the

Dolbeault cohomology groups of M by

Hp,q

∂̄
(M ;C) =

Ker
(
∂̄ : C∞ (Λp,qM) −→ C∞ (Λp,q+1M)

)
Im
(
∂̄ : C∞ (Λp−1,qM) −→ C∞ (Λp,qM)

) .
If we impose the extra condition given in Definition 1.15 that the complex manifold

(M,J) carries a Hermitian metric g, then the coadjoint operator to d given by d∗ as

defined in Equation (1.3) splits similarly as

d∗ = ∂∗ + ∂̄∗, (1.11)

where we define formal adjoints ∂∗ and ∂̄∗ in a similar way as ∂ and ∂̄ in Equa-

tions (1.6) and (1.7) by

∂∗ : C∞
(
Λp+1,qM

)
−→ C∞ (Λp,qM) and ∂̄∗ : C∞

(
Λp,q+1M

)
−→ C∞ (Λp,qM) .

The corresponding Laplacian operators are

∆∂ = ∂∂∗ + ∂∗∂ (1.12)

and

∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄. (1.13)
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Compatibility

Since any almost complex manifold M can always be equipped with a Hermitian

metric as we saw in Definition 1.9, we have that to each Hermitian metric g we

can always associate a 2-form ω. The 2-form ω and the complex structure J are

compatible if ω(JX, JY ) = ω(X, Y ) and ω(X, JX) > 0 for X, Y ∈ TpM at each

point p ∈M and X 6= 0.

Lemma 1.22. ω, g and J are compatible if and only if g(X, Y ) = ω(X, JY ) where g

is a Riemannian metric. In this case, any two of g, J or ω determine the third so

ω(X, Y ) = g(X, JY ) and J(X) = g̃−1 (ω̃ (X))

where

ω̃ : TM −→ T ∗M, g̃ : TM −→ T ∗M

are the linear isomorphisms induced by the bilinear forms ω and g.

1.2.3 Connections and Curvature

Let (M, g) be a manifold and E → M a vector bundle on M . Then a connection

on E is a map

∇ : C∞ (E) −→ C∞ (E ⊗ T ∗M) , (1.14)

such that the Leibnitz rule given by

∇ (fe) = e⊗ df + f∇e,

holds for e ∈ C∞(E) where C∞(E) is the space of smooth sections of E, T ∗M is the

cotangent bundle of M , and f is a smooth function f : M → R.

Theorem 1.23 (Fundamental Theorem of Riemannian Geometry). Let (M, g) be

a Riemannian manifold. Then (M, g) always has a unique preferred connection ∇
on TM called the Levi-Civita connection which satisfies ∇g = 0, and is torsion-

free, i.e., the torsion tensor T (X, Y ) = ∇XY −∇YX − [X, Y ] vanishes and we have

∇XY −∇YX = [X, Y ] for X and Y vector fields.

The curvature of a connection measures how close a connection is to being flat.

The curvature of the Levi-Civita connection, is denoted by R(∇) and is a tensor Ra
bcd.

• The Ricci curvature of a Riemannian metric g is Rab = Rc
acb.

• The scalar curvature of g is s = gabRab.

Definition 1.24. A Riemannian metric g is Ricci-flat if Rab = 0.

10



1.3 Kähler Manifolds

Definition 1.25. Let (M,J) be a complex manifold. A Hermitian metric g on M

is called Kähler if dω = 0, where ω(X, Y ) = g(X, JY ) is the associated 2-form. The

closed 2-form ω is called the Kähler form of g. Then, if g is a Kähler metric on a

complex manifold (M,J, g) with Kähler form ω, (M,J, g) is a Kähler manifold. The

condition on the 2-form ω given by dω = 0 is called the Kähler condition.

Proposition 1.26. Let (M,J, g) be a complex manifold with Hermitian metric g.

Then the following conditions are equivalent:

(i) ∇J = 0,

(ii) ∇ω = 0,

(iii) dω = 0,

where g is a Hermitian metric on M with respect to J , ω is the corresponding Her-

mitian form and ∇ is the Levi-Civita connection.

Proof sketch. Since ω is a 2-form, dω is a 3-form and hence locally determined by(
2n
3

)
functions. We also find that ∇ω ∈ C∞ (Λ2T ∗M ⊗ T ∗M) is locally determined

by
(

2n
2

)
·2n functions. Hence we deduce that ∇ω lies in a bigger vector space than dω.

In fact, ∇ω ∼= dω⊕NJ , where NJ is the Nijenhuis tensor. Now since we have defined

(M, g, J) to have an integrable complex structure, then NJ = 0 so that ∇ω = dω.

So dω = 0 iff ∇ω = 0, i.e., (ii) and (iii) are equivalent. (i) and (ii) are equivalent as

∇g = 0.

We now give examples of how to construct a Kähler metric on a complex manifold.

Note that a Kähler metric is a Riemannian metric on a complex manifold that is

compatible with J is a natural way.

Example 1.27 (Complex Manifold with Kähler Metric). The Euclidean metric g on

Cn is given by

g = 1
2

∑n
k=1(dz1 ⊗ dz̄k + dz̄k ⊗ dzk) =

∑n
k=1(dx2

k + dy2
k)

ω = i
2

∑n
k=1 dzk ∧ dz̄k =

∑n
k=1 dxk ∧ dyk.

The 2-form ω = i
2

∑
dzi ∧ dz̄i is the Kähler form of the Kähler metric g on Cn.

11



Example 1.28 (Fubini-Study metric). The complex projective space CPn can be made

into a Kähler manifold by defining an appropriate metric. This metric is called the

Fubini-Study metric.

Firstly, we define the projection

π : Cn+1\{0} −→ CPn
(z0, . . . , zn) 7−→ [z0 : z1 : · · · : zn].

We can show there exists a unique 2-form ωFS on CPn such that

π∗(ωFS) = i∂∂̄ log |Z|2
= i

∑n
j,k=1

∂2

∂zj∂z̄k
log |Z|2dzjdz̄k.

where |Z|2 = |z0|2 + · · ·+ |zn|2. Then ωFS is the Kähler form of a Kähler metric gFS

on CPn called the Fubini-Study metric.

It is important to remark that the Kähler metric is inherited by the complex

submanifolds of a Kähler manifold.

Proposition 1.29. If S is a complex submanifold of a Kähler manifold M , then the

restriction of g to S is also Kähler. Any complex submanifold of a Kähler manifold

is a Kähler manifold.

Proof. If S ⊂M is a manifold and ω is the associated (1, 1)-form of a Kähler metric on

M , we find that the associated (1, 1)-form of the induced metric on S is the restriction

to S of ω. Thus if M is Kähler then S is Kähler.

Remark 1.30. The condition given in Proposition 1.29 is very strong since we require

the submanifold to be complex.

As we have seen, the conditions for a manifold to admit a Kähler form are quite

restrictive. Indeed, we need the complex structure to be integrable and furthermore,

the 2-form ω has to be non-degenerate and closed, i.e. dω = 0. These conditions

provide the following results which follow from the results in Subsection 1.2.2 but are

not true in general for non-Kähler manifolds.

Definition 1.31 (Lefschetz operators). For (M,J, ω) a Kähler manifold we can define

two further operators called the Lefschetz operator L and the dual Lefschetz

operator
∧

by

L : C∞
(
ΛkT ∗M ⊗R C

)
−→ C∞

(
Λk+2T ∗M ⊗R C

)
(1.15)

and ∧
: C∞

(
Λk+2T ∗M ⊗R C

)
−→ C∞

(
ΛkT ∗M ⊗R C

)
(1.16)

by L(α) = α ∧ ω, and
∧

= L∗.
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The operators d, d∗, ∂, ∂∗, ∂̄, ∂̄∗, L and
∧

are related by the Kähler identities

as given in [36, Chapter 6] and are essential for developing Hodge Theory for Kähler

manifolds.

Proposition 1.32. The operators d, d∗, ∂, ∂∗, ∂̄, ∂̄∗, L and
∧

satisfy the identities

[
∧
, ∂̄] = −i∂∗, [

∧
, ∂] = i∂̄∗. (1.17)

These identities are used in proving the following results, also a Kähler identity,

that will be important to study the cohomology of Kähler manifolds.

Proposition 1.33. For (M,J, ω) a Kähler manifold, the Laplacian splits as

∆d = ∆∂ + ∆∂̄.

Proof. Using the definitions of the coadjoint operator d∗ as given in Definition 1.15

and Equations (1.9) and (1.11) we find

dd∗ + d∗d = (∂ + ∂̄)(∂ + ∂̄)∗ + (∂ + ∂̄)∗(∂ + ∂̄) = (∂∂∗ + ∂∗∂) + (∂̄∂̄∗ + ∂̄∗∂̄),

since by Equation 1.17 we have that ∂̄∂∗ = −∂∗∂̄ and ∂∂̄∗ = −∂̄∗∂. Then we write,

∆d = ∆∂ + ∆∂̄.

where ∆d, ∆∂ and ∆∂̄ are Laplacians associated to the operators d, ∂ and ∂̄ as given

in Equations (1.4), (1.12) and (1.13) respectively.

Proposition 1.34. For (M,J, ω) a Kähler manifold we find the following relations

between Laplacians,

∆∂ = ∆∂̄ =
1

2
∆d.

Proof. For a proof see Voisin [36, Theorem 6.7, p.141].

Theorem 1.35 (Hard Lefschetz Condition). The linear map

L[ω]r : Hn−r(M ;C) −→ Hn+r(M ;C), L[ω]r ([x]) = [ω]r ∪ [x]

is an isomorphism. In this case we call ω a Lefschetz element.
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Theorem 1.36 (Hodge Decomposition). Let (M,J, ω) be a compact Kähler manifold.

Every Dolbeault cohomology class on (M,J, ω) has a unique harmonic representative,

i.e.,

Hp,q ∼= Hp,q

∂̄
(M ;C)

and the spaces Hp,q are finite-dimensional. Hence, we have the following isomorphism:

Hk
dR(M ;C) ∼= Hk ∼=

⊕
p,q

p+q=k

Hp,q ∼=
⊕
p,q

p+q=k

Hp,q

∂̄
(M ;C)

where Hk
dR(M ;C) are the de Rham cohomology groups as given in Definition 1.13 and

Hp,q

∂̄
(M ;C) are the Dolbeault cohomology groups as given in Definition 1.21 and the

isormorphism

Hk
dR(M ;C) ∼=

⊕
p,q

p+q=k

Hp,q

∂̄
(M ;C)

is called the Hodge decomposition.

As a consequence of the Hodge Decomposition Theorem 1.36 we find the following

properties of the Betti numbers of Kähler manifolds.

Proposition 1.37. Let M be a compact complex manifold on which there exists a

Kähler metric. Then

• Even Betti numbers β2q(M) are positive

• Odd Betti numbers β2q+1(M) are even

Proposition 1.38 (Gompf [13]). A closed complex surface S is Kähler iff b1(S) is

even. Every simply connected compact complex surface is Kähler.

The restrictive conditions that guarantee that a manifold is Kähler, imply that

there are many non-Kähler complex manifolds.

Example 1.39 (Complex Manifold without Kähler Metric). We have shown before in

Example 1.2 that the 2n-dimensional manifold M = S2n−1×S1 for n > 1 is a complex

manifold. Now [ω] ∈ H2(M), if there existed a Kähler metric with Kähler form ω

then n!vol(M) =
∫
M
ωn > 0. But

∫
M
ωn = [ω]n · [M ] = 0 as [ω] ∈ H2(S2n−1×S1) = 0.

Thus, by Proposition 1.37 M is not a Kähler manifold. Indeed, by Künneth Theorem

the Betti numbers of M are bk(M) = 1 for k = 0, 1, 2n − 1, 2n and bk(M) = 0

otherwise.

14



The Kähler Cone

Let (M,J) be a fixed compact complex manifold. We find

H2(M ;R) ⊂ H2(M ;C)

and

H2(M ;R) ∩H1,1(M,C) ⊂ H2(M ;C)

if M admits a Kähler metric.

If ω is a Kähler form on (M,J), then [ω] ∈ H2(M ;R)∩H1,1(M ;C) and we define

K = {[ω] : ω is a Kähler form}

to be the Kähler cone.

Proposition 1.40. K is an open, convex cone in H2(M ;R) ∩H1,1(M ;C).

Proof. Let ω be a Kähler form and η any closed real (1, 1)-form. Then ω + εη is

a Kähler form if ε is small enough
(
ε · 1

2
||η||C0 < 1

2

)
. So K is open in H2(M ;R) ∩

H1,1(M ;C). Now, let [ω1], [ω2] ∈ K, then t[ω1] + (1− t)[ω2] ∈ K for all t ∈ [0, 1]. This

follows as tω1 + (1 − t)ω2 is also a Kähler form. So K is convex. Since tω is also

Kähler for all t > 0, K is a cone.

The Kähler cone can sometimes be described explicitly.

Example 1.41. Let (M,ω) = CP1 × CP1. Then the corresponding Kähler cone is

given by K = {(x, y) : x, y > 0} ⊂ R2 = H2(CP1 × CP1;R).

1.3.1 Complex Projective Varieties

We have seen that CPn admits a Kähler metric, the Fubini-Study metric. So a

very important type of Kähler manifolds is given by complex submanifolds of CPn.

Moreover, a compact complex manifold is called projective if it is isomorphic to a

complex submanifold of CPn, for some n.

Proposition 1.42. Since CPn is a Kähler manifold, any complex submanifold of

CPn will also be Kähler. These submanifolds of CPn are defined as complex algebraic

varieties. Any compact complex manifold that can be embedded in CPn is Kähler.

Theorem 1.43 (Chow). All compact complex submanifolds of CPn are non-singular

algebraic varieties. i.e., defined by zeros of polynomials.
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Example 1.44 (Non algebraic submanifolds of CP2). Let M = {[1, z, exp(z)] : z ∈
C} ⊂ CP2. M is a non-closed complex submanifold of CP2 and it is not algebraic

since it is not locally defined by zeros of polynomials. Note that exp is a transcendental

function.

Example 1.45 (Rational Normal Curve of degree 3, Twisted cubic). We define a

holomorphic map
f : CP1 −→ CP3,
f : [x : y] 7−→ [x3 : x2y : xy2 : y3].

The image of CP1 under f , that we denote by M , is a complex submanifold of CP3

and is isomorphic as a complex manifold to CP1.

We can define M as a subset of CP3 as

M = {[z0 : z1 : z2 : z3] ∈ CP3 : z0z3 − z1z2 = 0, z0z2 − z2
1 = 0, z1z3 − z2

2 = 0},

which is the intersection of three conics.

Corollary 1.46. If a complex manifold does not admit a Kähler form, then it cannot

be projective.

Example 1.47. Hopf manifolds S1 × S2n−1 are not Kähler, hence they fail to be

projective.

However, there are Kähler manifolds which cannot be embedded in CPn and hence

cannot be studied using algebraic geometry.

Example 1.48. Here we give two important examples of Kähler manifolds which are

non-projective.

• Let Λ be a lattice in C2, so that Λ ∼= Z4 = {a1v1 + a2v2 + a3v3 + a4v4 : ai ∈ Z}.
Then C2/Λ is a complex torus. For a generic choice of {v1, . . . , v4}, C2/Λ will

not be projective.

• K3 surfaces are compact complex surfaces with c1 = 0 and b1 = 0. There

is a 20 dimensional family MK3 of K3 surfaces up to isomorphism. All K3

surfaces admit Kähler metrics. Inside MK3 are many 19-dimensional families

of projective K3 surfaces, but generic K3 surfaces are not projective.

The conditions under which a manifold can be embedded in CPn are given in

Kodaira embedding theorem.
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1.3.2 The Kodaira Embedding Theorem

A line bundle L over a compact complex manifold M is called very ample if L has no

base points in M , and the map ιL : M → CPn is an embedding of M in CPn. Also,

L is called ample if Lk is very ample for some k > 0.

A line bundle L →M is called positive if its Chern class c1(L) can be represented

as a de Rham cohomology class by a closed (1, 1)-form which is positive (ω(v, Jv) > 0).

Theorem 1.49. A line bundle L is ample iff it is positive.

Corollary 1.50. A compact complex manifold with positive line bundle is a projective

variety.

Theorem 1.51 (The Kodaira Embedding Theorem). A compact complex manifold

M can be embedded in CPn if and only if it has a closed, positive (1, 1)-form ω whose

cohomology class [ω] is rational. A metric whose (1, 1)-form is rational is a Hodge

metric.

Corollary 1.52. A compact Kähler manifold with a Hodge metric (integral cohomol-

ogy class) can be embedded in CPn. Hodge manifolds with integral cohomology class

can be embedded in CPn. M is embeddable in CPn iff [ω] is rational.

The Kodaira Embedding Theorem says that L is ample if and only if it is positive.

Therefore, a compact complex manifold with a positive line bundle is a projective

variety, follows from Chow’s Theorem 1.43 [23, p. 98]. Mn admits a holomorphic

embedding into CPn for some n ≥ m if M has a positive line bundle.

Corollary 1.53. Let (M,J, g) be a compact Kähler manifold with h2.0(M) = 0. Then

(M,J, g) is projective.

Proof. Let (M,J, g) be a compact Kähler manifold and h2,0(M) = h0,2(M) = 0 so

that H1,1(M) = H2(M ;C) and H1,1(M) ∩H2(M ;R) = H2(M ;R). The Kähler cone

KM of M is a nonempty open subset of H1,1(M) ∩H2(M ;R), so that KM is open in

H2(M ;R). But H2(M ;Q) is dense in H2(M ;R), so KM ∩H2(M ;Q) is nonempty. By

The Kodaira Embedding Theorem 1.51 there exists α ∈ KM ∩ H2(M ;Q) such that

kα ∈ K ∩H2(M,Z) for k > 1 an integer. Then kα ∈ KM , as KM is a cone, so there

exists a closed positive (1, 1)-form β on M such that [β] = kα.

Then there exists a holomorphic line bundle L over M with c1(L) = kα. Since

c1(L) is represented by a positive (1, 1)-form β, the Kodaira Embedding Theorem

shows that L is ample. L is an holomorphic line bundle and c1(L) = kα is ample.

Hence M is projective.
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1.3.3 Hyperkähler Manifolds

Hyperkähler manifolds are the geometric analogue of the algebra of quaternions, which

constitutes an extension of the algebra of complex numbers.

The algebra H of quaternions is generated by the symbols i, j, k satisfying the

identities
i2 = j2 = k2 = −1
ij = −ji = k, jk = −kj = i, ki = −ik = j.

(1.18)

Then a quaternion x is written as x = a0 + a1i+ a2j + a3k for a0, a1, a2, a3 ∈ R.

Definition 1.54 (Hyperkähler Manifold). A hyperkähler manifold is a 4m-dimensional

Riemannian manifold (M, g) where we have defined three orthogonal complex struc-

tures I, J and K on the tangent bundle which are covariant constant with respect

to the Levi-Civita connection and satisfy the quaternion algebra identities, given in

Equation (1.18).

Choosing any of I, J and K and ignoring the other two, so that we consider a

single automorphism of the tangent bundle, we see that M is a Kähler manifold.

For a1, a2, a3 ∈ R we find that a1I + a2J + a3K is also a complex structure, so

that g is Kähler with respect to a whole 2-sphere of complex structures. Also, a

hyperkähler manifold admits three compatible Kähler forms ωI , ωJ , ωK compatible

with the complex structures I, J and K respectively. If we fix on the complex

structure defined by I then ωI is the (1, 1)-form associated to the Kähler metric,

while ωC = ωJ + iωK is a closed holomorphic 2-form [1].

Example 1.55. The quaternionic space Hm with standard metric is a hyperkähler

manifold.

The different structure of the quaternionic algebra and the algebra of complex

numbers, also accounts for important differences between Kähler and hyperkähler

manifolds. A Kähler metric on a complex manifold can be modified to another one

by adding a Hermitian form i∂∂̄f for an arbitrary small C∞ function f , which ensures

that the space of Kähler metric is infinite dimensional [22]. This is not the case for

hyperkähler metrics.

Proposition 1.56. If there exists a hyperkähler metric on a compact complex mani-

fold, then up to isometry there is only a finite dimensional space of them.

Proposition 1.57. An irreducible hyperkähler metric is uniquely determined (up to

a constant scale factor) by its family of complex structures.
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This result is false for Kähler metrics, where there are many Kähler metrics on a

fixed complex manifold.

The existence of three complex structures I, J , K on a hyperkähler manifold also

accounts for further important features. The holomorphic volume form ωmC must for

a hyperkähler manifold give a covariant constant trivialization of the canonical line

bundle. The curvature of this bundle for any Kähler metric is the Ricci form, and so

a hyperkähler metric has in particular vanishing Ricci tensor, see Hitchin [22].

Hyperkähler manifolds are obviously Kähler. Moreover, they are also Ricci-flat.

Note however that not all Kähler and Ricci-flat manifolds are hyperkähler, since

the extra structure given by the three Kähler forms compatible with the three complex

structures may not exist. In this case, the manifold is a Calabi-Yau manifold.

Example 1.58. While it is very easy to construct examples of Kähler manifolds,

e.g. closed projective varieties, it is not so easy to construct examples of hyperkähler

manifolds. Important examples are the following:

• K3 surfaces are hyperkähler 4-manifolds and constitute one of the fundamental

examples.

• In higher dimensions, the Hilbert scheme of zero cycles on a K3 surface or a

2-dimensional complex torus yields a natural class of hyperkähler metrics, see

Hitchin [22].

• ALE spaces which are examples of non-compact hyperkähler 4-manifolds [26].

Hyperkähler manifolds may be constructed via twistor theory and as hyperkähler

quotients [22].

1.4 Holonomy Groups and Classification

Definition 1.59. Let M be a manifold, E a vector bundle over M and ∇E a con-

nection on E. Let us fix a point x ∈ M . We call γ a loop based at x if γ :

[0, 1] → M is a (piecewise)smooth path with γ(0) = γ(1) = x. The parallel trans-

port map Pγ : Ex → Ex is an invertible linear map so Pγ lies in the group of

invertible linear transformations of Ex. The set of linear transformations arising

from parallel transport along closed loops is a group called the holonomy group

Hol(∇E) = {Pγ : γ is a loop based at x}.
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Holonomy groups classify types of geometric structures and encode this informa-

tion about the manifold into purely algebraic terms. Note that holonomy groups will

provide information about our manifolds being Kähler or not, and about its curvature.

Proposition 1.60. Since parallel transport preserves the Riemann metric g the holon-

omy group of the Levi-Civita connection is contained in O(n). If the manifold M is

orientable, then its holonomy group lies in SO(n).

Since the holonomy group of a Riemannian manifold (M, g) is a subgroup of

O(n), we are interested in describing which subgroups of SO(n) are holonomy groups.

Under some simplifying assumptions, Berger proved that there are only 7 different

possibilities. It took more time to prove that there actually existed manifolds with

these holonomy groups.

Theorem 1.61 (Berger). Let M be a simply-connected manifold of dimension n and

g an irreducible, nonsymmetric Riemannian metric on M . Then Hol(g) is exactly

one of the following:

(i) SO(n).

(ii) n = 2m, Hol(g) = U(m) ⊂ SO(2m) for m ≥ 2. Represents Kähler manifolds.

(iii) n = 2m, Hol(g) = SU(m) ⊂ SO(2m) for m ≥ 2. Represents Kähler and

Ricci-flat manifolds, i.e., Calabi-Yau manifolds.

(iv) n = 4m, Hol(g) = Sp(m) ⊂ SO(4m) for ≥ 2. Represents hyperkähler man-

ifolds. (Kähler and Ricci-flat manifolds with m triples of compatible complex

structures J1, J2, J3).

(v) n = 4m, Hol(g) = Sp(m)Sp(1) ⊂ SO(4m) for m ≥ 2. Represents quaternionic

Kähler manifolds, which are neither Kähler nor Ricci-flat. (However, if the

curvature of the manifold is positive, its twistor space is Kähler).

(vi) n = 7, Hol(g) = G2 ⊂ SO(7).

(vii) n = 8, Hol(g) = Spin(7) ⊂ SO(8).

We can think of the groups O(n), U(m), Sp(m)Sp(1) and Spin(7) as automor-

phisms of Rn, Cm, Hm and O respectively with corresponding “determinant 1”sub-

groups given by SO(n), SU(m), Sp(m) and G2.

The following result follows from Proposition 1.26:
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Proposition 1.62. Let (M,J, g) be a Kähler manifold with g a Kähler metric. Then

the holonomy group is Hol(g) ⊆ U(m).

Proof. Since the holonomy group Hol(g) preserves constant tensors and we have

∇g = ∇J = ∇ω = 0 where∇ is the Levi-Civita connection, we deduce that g, J, ω are

constant tensors. Hence Hol(g) ⊆ {A ∈ GL(2,R) : A preserves g0, ω0, J0 ∈ R2m} =

U(m).

We have shown that if Hol(g) ⊆ U(m), then (M, g) is a Kähler manifold. If

we impose the extra condition that the metric is Ricci-flat, and (M, g) is simply-

connected, we restrict the holonomy group U(m) to its subgroup SU(m). These

groups represent Calabi-Yau manifolds which are indeed Kähler manifolds.

We can define a further restriction on the holonomy of Kähler manifolds given by

the relation Sp(m) ⊆ SU(2m) ⊂ U(2m). Note that Sp(m) = O(4m) ∩ GL(m,H).

This relation represents the fact that parallel translation preserves three complex

structures J1, J2 and J3 instead of only one, so the holonomy group is contained

in O(4m) and GL(m,H) corresponds to hyperkähler manifolds as were discussed in

Subsection 1.3.3. As Sp(m) ⊆ SU(2m), it follows that all hyperkähler manifolds are

Kähler and Ricci-flat.

The holonomy groups Sp(m) correspond to hyperkähler manifolds which are

Kähler and Ricci-flat and carry triples of complex structures and corresponding com-

patible metric instead of single complex structures as is the case by a Kähler manifold,

see Definition 1.25. This further geometric structure given by J1, J2 and J3 which

need not be present in Calabi-Yau manifolds accounts for the restriction from U(2n),

corresponding to Kähler and Ricci-flat manifolds, to Sp(n), which encodes the exis-

tence of triples of complex structures.

As explained in Proposition 1.37 for Kähler manifolds, hyperkähler metrics also

have consequences in the homological features of the manifold.

Remark 1.63. If H2,0(M,C) = C, M can be hyperkähler. Moreover we find the

following:

• dimCM = n and M is a Calabi Yau manifold, then

Hp,0(M) =

{
C p = 0, n
0 otherwise

• dimCM = 2k and M is hyperkähler manifold, then

Hp,0(M) =

{
C p = 0, 2, 4, . . . , 2k
0 otherwise
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We now discuss the three simplifying conditions used by Berger in his classification,

namely:

(i) M is simply connected,

(ii) g is irreducible,

(iii) M is non-symmetric.

To study simply-connectedness, we have to consider that the group Hol(g)

described in Definition 1.59 has an identity element which is contained in Hol0(g).

Definition 1.64. Let (M, g) be a Riemannian manifold. The set of linear trans-

formations arising from parallel transport only along loops which are homotopic to

the identity, is a subgroup of the whole holonomy group called the restricted holon-

omy group of M and denoted by Hol0(g). Hol0(g) is the connected component of the

identity element of Hol(g), i.e. Hol0(g) contains the identity of Hol(g).

Hol0(g) plays an important role in describing the holonomy groups of not simply-

connected manifolds. If (M, g) is not simply-connected, then we consider Hol0(g),

whereHol0(g) ⊂ Hol(g) is a normal subgroup ofHol(g) and the quotientHol(g)/Hol0(g)

is a discrete subgroup with a natural surjective morphism π1(M) � Hol(g)/Hol0(g).

If (M̃, g̃) denotes the universal Riemannian covering of (M, g), then Hol(g̃) =

Hol0(g̃) = Hol0(g), where g̃ is the pull-back metric on the universal cover M̃ of M ,

with π1(M̃) = 1.

Proposition 1.65. For M a simply-connected manifold, E a vector bundle over M

with fibre Rk and ∇E a connection on E, the holonomy Hol(∇E) is a connected Lie

subgroup of GL(k,R).

If g is locally reducible then Hol0(g) is product of holonomy groups in lower

dimensions.

Proposition 1.66. Let (M1, g1), (M2, g2) be Riemannian manifolds. Then the prod-

uct metric g1 × g2 has holonomy Hol(g1 × g2) = Hol(g1)×Hol(g2).

Lastly, symmetric Riemannian spaces were classified by Élie Cartan using his

classification of irreducible representations of Lie groups.

Example 1.67. In Example 1.27 we studied CPn as a complex manifold with a Kähler

metric, the Fubini-Study metric. CPn endowed with the Fubini-Study metric is a

symmetric space.
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Chapter 2

Symplectic Manifolds

Symplectic geometry is a cousin of complex geometry. Just as all complex mani-

folds are locally trivial (that is, locally biholomorphic to Cn), so by Darboux’ Theo-

rem, all symplectic manifolds are locally trivial (that is, locally symplectomorphic to

(R2n, ω0)). This means that all nontrivial symplectic and complex geometry concerns

global properties of symplectic and complex manifolds, in contrast to Riemannian

geometry or Kähler geometry, for instance, in which one has local invariants such as

curvature.

The study of the global structure of symplectic manifolds is the subject of symplec-

tic topology. Here we are interested in the topological conditions for the existence

a symplectic structure of a manifold, and what these topological conditions mean

geometrically. The main references for this chapter are [2, 9, 12–14,17,28,31,33,35].

2.1 Symplectic Structure

Definition 2.1. Let M be a 2n-dimensional manifold. A 2-form is nondegenerate

if for every nonzero vector X ∈ TpM for p ∈ M there exists a vector Y ∈ TpM such

that ω|p(X, Y ) 6= 0.

Definition 2.2. A manifold M equipped with a non-degenerate closed 2-form ω is

called a symplectic manifold (M,ω), and ω is called a symplectic form.

Theorem 2.3 (Darboux). Let (M2n, ω) be a symplectic manifold, and let p be a point

in (M,ω). Then around each point p ∈ (M,ω) there is a local coordinate system

(U , x1, . . . , xn, y1, . . . , yn) such that on U

ω =
n∑
i=1

dxi ∧ dyi.

Such a chart (U , x1, . . . , xn, y1, . . . , yn) is called a Darboux chart.
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Example 2.4. Let M = C2n with coordinates (x1, . . . , xn, y1, . . . , yn). Then

ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn

is a symplectic structure.

Proposition 2.5. Since the symplectic form ω on a manifold (M,ω) is closed and

non-degenerate, i.e., ωn 6= 0, we have that symplectic manifolds are orientable.

Proof. Since the symplectic form ω is closed, it represents a cohomology class

α = [ω] ∈ H2(M ;R)

If (M,ω) is closed, then the cohomology class an ∈ H2n(M ;R) is represented by

the volume form ωn ∈ C∞ (Λ2nT ∗M) and the integral of this form over M does not

vanish.

Example 2.6 (Cotangent bundle). The cotangent bundle T ∗M of any manifold Mk

is a symplectic manifold.

The cotangent bundle T ∗M is the vector bundle whose sections are 1-forms on

M , so T ∗M carries a tautological 1-form β ∈ C∞ (Λ1T ∗M) given by β|(x,α) = π∗(α)

where we have a map
π : T ∗M −→ M

(x, α) 7−→ x,

and we write ω = −dβ.

In standard local coordinates (x, y) where x ∈ Rn is the coordinate on M and

y ∈ Rn is the coordinate on the fibre TxM , the canonical 1-form and its differential

are given by the formulae

β = ydx, ω = dx ∧ dy.

Example 2.7. Let (M,J, g) be a Kähler manifold, with Kähler form ω. Since the

Hermitian metric g on M induces a positive definite bilinear symmetric differential

form g(X, Y ) on TpM , where X, Y ∈ TpM , we deduce that the 2-form ω is non-

degenerate. Since dω = 0, we find that ω is closed and non-degenerate and hence

symplectic.

Proposition 2.8. Any coadjoint orbit O ⊂ g∗ of a Lie group G has a natural sym-

plectic structure, [10].

The symplectic structure on a manifold is closely related to the almost complex

structure J we described in Section 1.1, see Definition 1.4. All symplectic manifolds

admit an almost complex structure.
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Definition 2.9. An almost complex structure J is compatible with the 2-form ω if

for every non-zero tangent vector u we have ω(u, Ju) > 0 and ω(u, Jv) = −ω(Ju, v).

Differential forms also have a cohomological interpretation, and indeed we will

use the cohomological features of the manifold M to understand which forms, and

consequently, which metrics we can define on the manifold.

Proposition 2.10. If M is a compact manifold with H2(M,R) = 0, then the manifold

M does not admit a symplectic structure.

Proof. Suppose ω is a symplectic structure on M . Then [ω]n = vol(M)n! > 0 in

H2n(M ;R) ∼= R. Hence [ω] 6= 0 in H2(M ;R), contradicting H2(M ;R) = 0.

Example 2.11. We have shown in Example 1.2 that the 2n-dimensional manifold

M = S2n−1 × S1 is a complex manifold, i.e. it admits a complex structure. Now, we

have H2(M,R) = 0 for n > 1, so we can deduce that M does not admit a symplectic

structure. Note that we proved in Example 1.39 that M carries no Kähler form.

The condition given in Proposition 2.10 is very strong and there exist complex

manifolds with H2(M,R) 6= 0 which do not admit a symplectic structure either.

Example 2.12.

• Let M = S1 × S3#CP2. Then we find β1 = 1 and β2 = 1 with b+
2 = 0 so M

does not carry any symplectic structure.

• The 8 dimensional complex manifold M = S2×S3×S3 has H2(M ;R) = R but

H4(M ;R) = 0. If ω is a symplectic form then [ω]4 = vol(M)4! > 0 as in the

proof of Proposition 2.10. But [ω]2 = 0 as H4(M ;R) = 0, so [ω]4 = 0 which is

a contradiction. So M admits no symplectic forms even though H2(M ;R) 6= 0.

Symplectic forms are closely related to almost complex structures. Indeed, ev-

ery symplectic manifold admits an almost complex structure which is compatible as

described in Definition 2.9. The converse is true for open manifolds.

Theorem 2.13 (Gromov). Every open almost complex manifold admits a symplectic

structure, see [28].

Thus, we are interested in studying under what conditions a closed manifold M

admits a symplectic structure. Note that if M does not admit an almost complex

structure, it will not admit a symplectic structure either.
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2.2 Almost Complex Structures and Symplectic

Manifolds

A manifold may fail to admit holomorphic coordinates and still carry almost complex

structures J on its tangent bundle. This obstruction to the existence of holomorphic

functions is due to the non-integrability of the structure J and is represented by the

Nijenhuis tensor NJ(v, w) as in Theorem 1.7. However, not all real 2n-dimensional

manifolds admit an almost complex structure. Whether we can define an almost

complex structure on a manifold M or not will depend on its topological features.

In the case of 4-dimensional manifolds, the topological conditions that must hold

in order to define a structure J on M and which guarantee the existence of such an

structure on M were set out by Ehresmann and Wu in the following theorem.

Theorem 2.14 (Ehresmann, Wu [13]). Let M be a compact, connected, differentiable,

oriented 4-manifold, and let c1(TM) ∈ H2(M,Z). There exists on M an almost

complex structure with first Chern class c1(TM) if and only if c1(TM) ≡ w2(M)

(mod 2) and c2
1[M ] = 3σ(M) + 2χ(M), where w2(M) is the second Stiefel-Whitney

class, c2
1[M ] is the Chern number c1c1[M ], σ(M) the signature and χ(M) the Euler-

Poincaré characteristic of M .

Remark 2.15. For any compact oriented 2n-manifold M , we have cn[TM ] = χ(M).

The following formula provides conditions on the Chern numbers c2
1[TS] and

c2[TS] for a surface S to admit an almost complex structure.

Theorem 2.16 (Noether’s Formula). For an almost complex 4-manifold S the integer

c2
1[TS] + c2[TS] ≡ 0 (mod 12). Also, 1− b1(S) + b+

2 (S) is even.

Example 2.17. We showed in Example 1.28 that CPn is a Kähler manifold. We

now check that Wu’s formula holds for M = CP2 verifying that it admits an almost

complex structure.

Proof. We can show that c1c1[CP2] =
(

3
1

)(
3
1

)
= 9 see [29]. The Euler characteristic is

χ(CP2) = 3, the signature is σ(CP2) = 1 so that c2
1[CP2] = 3× 1 + 2× 3 = 9 which is

the case. Thus Wu’s formula holds. Indeed, Noether’s formula holds since 9 + 3 ≡ 0

(mod 12).
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Example 2.18. CP2#CP2 does not admit an almost complex structure.

Proof. We compute the Euler characteristic to be χ(CP2#CP2) = χ(CP2)+χ(CP2)−
χ(S4) = 2 × 3 − 2 = 4. The signature is given by the trace of intersection form

QCP2#CP2 = QCP2 ⊕ QCP2 = I2×2 = 2. Now, if we could define an almost com-

plex structure J on M = CP2#CP2, then we could find c1c1[M ] such that c2
1[M ] =

c1c1[M ] = 2χ + 3σ = 14, but 14 + 4 6≡ 0 (mod 12) so by Noether’s formula we

conclude that M = CP2#CP2 does not admit an almost complex structure.

Note that H2(CP2#CP2) = Z⊕ Z which is non-zero, and we can see that a non-

zero 2-cohomology class does not guarantee that the manifold admits a symplectic

structure.

Example 2.19. #nCP2 admits an almost complex structure iff n is odd.

Proof. The Euler characteristic is χ(#nCP2) = n+2 and the signature is σ(#nCP2) =

n. Hence if we could define an almost complex structure J on M , then we could find

c1[TM ] ∈ H2(M ;Z) with c2
1[M ] = 2(n + 2) + 3n = 5n + 4 and c2[M ] = n + 2. But

(5n + 4) + (n + 2) = 6n + 6 6≡ 0 (mod 12) for n even, so by Noether’s formula we

deduce that n odd is a necessary condition for M to admit almost complex structures.

Now, the quadratic form is

Q = a2
1 + · · ·+ a2

n,

so writing c1[TM ] = (a1, . . . , an) in H2(M ;Z) ≡ Zn, we want to find odd integers

such that
n∑
i=1

a2
i = 2(n+ 2) + 3n = 5n+ 4. (2.1)

If (a1, . . . , an) is a solution for Equation (2.1), then

n∑
i=1

a2
i + 1 + 9 = (5n+ 4) + 10 = 5 (n+ 2) + 4,

and (a1, . . . , an, 1, 3) is a solution for n + 2. Thus we find that n odd is a sufficient

condition for #nCP2 to admit an almost complex structure.

Example 2.20. We saw that M = CP2 and N = #3CP2 both admit an almost

complex structure. We can check that M = CP2 is a Kähler manifold and hence

symplectic. N = #3CP2 however, fails to inherit a symplectic structure, see Gompf

[13, Prop 10.1.13].
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Proposition 2.21. The 4-sphere S4 does not admit an almost complex structure.

Proof. Let J be an almost complex structure on S4. Now, the first Chern class is

trivial since c1(TS4, J) ∈ H2(S4;Z) = 0, thus it follows that c1c1[S4] = 0. We also

find that the Euler characteristic of S4 is χ(S4) = 2 and the signature is σ(S4) = 0

(since all spheres are boundaries and hence have σ(Sn) = 0). But 3× 0 + 2× 2 6= 0

so we conclude that there exists no almost complex structure on S4.

Corollary 2.22. The 4-sphere S4 is not symplectic.

Proposition 2.23. If M1 and M2 are oriented 4-manifolds with almost complex struc-

tures, then W = M1#M2 has no almost complex structure with this orientation and

hence no symplectic structure.

Proof. Except in degrees 0 and 4, the Betti numbers of the connected sum are the

sums for the Betti numbers of the components. Hence,

1− b1(M1#M2) + b+(M1#M2) = 1− b1(M1)− b1(M2) + b+(M1) + b+(M2)
= 1− b1(M1) + b+(M1)− b1(M2) + b+(M2).

But 1 − b1(M1) + b+(M1) and 1 − b1(M2) + b+(M2) are even so −b1(M2) + b+(M2)

is odd. Hence 1 − b1(M1#M2) + b+(M1#M2) is odd, so M1#M2 does not have an

almost complex structure.

Example 2.24. However, if we consider two manifolds with almost complex struc-

ture but reversed orientation, we find that their connected sum can admit an al-

most complex structure. Let us consider M1 = T4 and M2 = CP2, we see that

M1#M2 = T4#CP2 admits an almost complex structure.

Similar topological conditions have been proved for manifolds of higher dimen-

sions, see Heaps [21].

Example 2.25. The 6-sphere S6 does admit an almost complex structure.

Proof. R7 = ImO = {a + be,Re a = 0} carries a vector product × which is bilinear

and skew symmetric given by u× v = Im(uv).

Let us define

Jx(y) = x× y.

If y ⊥ x, we have Jx(y) = x× y = xy + 〈x, y〉 = xy.

We now want to prove that Jx maps TxS
6 to itself and that J2

x = −Id. Let

x = a+ be be a unit imaginary octonion (ā = −a) and let y = c+de be any octonion.

Then we can compute x(xy) = −y.
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If y ∈ TxS6 , i.e. y is imaginary and y ⊥ x, then 〈x, xy〉 = −Re(x(xy)) = Re(y) =

0 so Jx maps TxS
6 to itself and J2

x = −Id.

Theorem 2.26. If M1 and M2 are 6-manifolds with almost complex structures, then

W = M1#M2 has also an almost complex structure.

Proof. This result follows from a theorem by Audin [2].

Example 2.27. S6 has an almost complex structure but no symplectic form since

H2(S6;R) = 0.

Remark 2.28 (M6#N6). Although the connected sum M#N of two almost complex

6-manifolds also carries an almost complex structure, it is an open question whether

the connected sum of two symplectic 6-manifolds can be also symplectic [28].

Example 2.29. The product of even dimensional spheres S2p×S2q admits an almost

complex structure iff (p, q) = (1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (3, 3). See Datta [11] for

the proof. However, for p or q > 1, the manifold is not symplectic.

Remark 2.30. If M is symplectic, noncompact and connected, then there is a sym-

plectic structure on M × S2n for each n. See Theorem 2.13.

Proposition 2.31. In dimension other than 2n = 2 or 2n = 6, the connected sum

M1#M2 of compact almost complex manifolds does not admit an almost complex

structure.

However, Geiges [12] proves that for M1, . . . ,Mk connected almost complex man-

ifolds of dimension 2n for n ≥ 2 the connected sum

W = M1# . . .#Mk#(k + 1)(S2 × S2n−2) (2.2)

also admits an almost complex structure. Note that W is the connected sum of an

odd number of manifolds.

In dimension 8, that is n = 4, we have that S2 × S6 admits an almost complex

structure so that the manifold given by Equation (2.2) is the connected sum of an

odd number of almost complex manifolds. Hence we deduce that the connected sum

of 2k+1 almost complex 8-manifolds admits an almost complex structure if there are

at least k + 1 S2 × S6 summands.

Remark 2.32 (Connected sum of an odd number of 8-manifolds). We can ask if the

connected sum of an odd number of almost complex 8-manifolds will admit an almost

complex structure even if we do not have the summands S2 × S6.
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In general, it is quite difficult to decide which closed almost complex manifolds

are also symplectic. Halic [17] in the 6-dimensional case and Pasquotto [31] in the

8-dimensional case prove that the sets of Chern numbers realized by almost complex

manifolds can also be realized by symplectic manifolds in that dimension. This how-

ever, only guarantees the existence of symplectic manifolds for any choice of Chern

numbers in dimension 6 and 8 and provides no tool to decide whether a manifold is

symplectic.

Proposition 2.33. If ω1, ω2 are Kähler forms on a compact manifold (M,J) and

[ω1] = [ω2] in H2(M ;R) then (M,ω1) ∼= (M,ω2) are symplectomorphic.

Proof. Let (M, tω1 + (1− t)ω2) be a family of symplectic manifolds and let t ∈ [0, 1].

There is no change in cohomology class, hence they are locally Hamiltonian isotopic.

2.3 Symplectic manifolds without Kähler structure

There are many important examples of complex manifolds which are not symplectic,

e.g. Example 1.39. However, we are interested in understanding and constructing

examples of manifolds which do admit a non-degenerate closed 2-form, i.e. they carry

a symplectic form, but no Kähler structure. This is also known as the Weinstein-

Thurston problem.

Important examples of symplectic manifolds are given by nilmanifolds and mani-

folds constructed from them.

Definition 2.34 (Nilmanifold [34]). A nilmanifold is a compact homogeneous space

of the form N/Γ where N is a simply connected nilpotent Lie group and Γ is a discrete

co-compact subgroup in N .

Example 2.35 (Nilmanifold). We give several important examples of nilmanifolds

• The torus Rn/Zn.

• The quotient M = U(n,R)/U(n,Z) is a nilmanifold where U(n,R) is the nilpo-

tent Lie group of upper triangular matrices having 1’s along the diagonal and

U(n,Z) is the subgroup of U(n,R) with integer entries. In the special case

n = 3, the quotient manifold M = U(3,R)/U(3,Z) is called the Heisenberg

nilmanifold.
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Proposition 2.36 (Tralle and Oprea [34]). All 4-dimensional nilmanifolds admit

symplectic structures.

However, there are nilmanifolds which are not symplectic.

Example 2.37. The 6-dimensional nilmanifold U(4,R)/U(4,Z) is not symplectic,

see [34, p.54. Example 1.8.].

Theorem 2.38. A symplectic nilmanifold M of Lefschetz type, see Theorem 1.35 is

diffeomorphic to a torus.

Corollary 2.39. Let M = N/Γ be a compact nilmanifold. If M is a Kähler manifold,

then it is diffeomorphic to a torus.

The first example of a symplectic non-Kähler manifold was constructed in 1976

by Thurston, and is named the Kodaira-Thurston manifold (KT ) after him.

Example 2.40 (Kodaira-Thurston [33]). This manifold is the first example of a

complex symplectic manifold admitting no Kähler structure.

We can construct it in different ways:

(i) Geometrically, the Kodaira-Thurston manifold is obtained by taking the product

of the Heisenberg nilmanifold M = (U(3,R)/U(3,Z)) and the circle so that we

write KT = (U(3,R)/U(3,Z))× S1.

(ii) KT is also the quotient R4/Γ where Γ is the affine group of transformations

generated by

γ1 := (x1, x2, y1, y2) 7−→ (x1, x2 + 1, y1, y2)
γ2 := (x1, x2, y1, y2) 7−→ (x1, x2, y1, y2 + 1)
γ3 := (x1, x2, y1, y2) 7−→ (x1 + 1, x2, y1, y2)
γ4 := (x1, x2, y1, y2) 7−→ (x1, x2 + y2, y1 + 1, y2).

(iii) KT is a a flat 2-torus bundle over a 2-torus. Kodaira had shown that KT has

a complex structure. However, π1(KT ) = Γ, hence H1(R4/Γ;Z) = Γ/[Γ,Γ] has

rank 3.

(iv) Let ρ : Z ⊕ Z → Diff(T 2) be a representation of the group Z ⊕ Z into the

diffeomorphism group of a group T 2 defined by

(1, 0) −→ id and (0, 1) −→
(

1 1
0 1

)
,
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where the matrix denotes the transformation of T 2 covered by the linear trans-

formation of R2. This representation determines a T 2-bundle over T 2,

T 2 −→ KT −→ T 2, and KT = T̃ 2 ×Z⊕Z T
2,

where Z⊕ Z acts on T̃ 2 by covering transformations and on T 2 by ρ.

We can compute that the first Betti number is β1 = 3. Since compact Kähler

manifolds have even odd Betti numbers, KT is not Kähler.

Remark 2.41. The Kodaira-Thurston manifold KT has an integral symplectic form

ω, that is [ω] ∈ H2(KT,Z). Hence it follows that (KT, ω) can be embedded symplec-

tically into CP5, see [28, p. 251]. We write ˜CP5 for the symplectic blow up of CP5

along the image of KT . ˜CP5 is simply-connected, since CP5 is. Since H3( ˜CP5) is

isomorphic to H1(KT ), we deduce that ˜CP5 is symplectic but has no Kähler structure,

as b3( ˜CP5) is odd.

2.4 J-holomorphic Curves

We have seen under what conditions a manifold carries an almost complex structure.

As we saw in Section 1.1, that an almost complex manifold will only have many holo-

morphic functions if the almost complex structure J is integrable, i.e., the Nijenhuis

tensor NJ ≡ 0. So, in general, almost complex manifolds will have few J-holomorphic

functions. However, they will have plenty of J-holomorphic curves. Since we have

seen that, in general, it is difficult to know whether an almost complex manifold ad-

mits integrable complex structures, it is very important to analyze structures that

are independent of this feature.

Definition 2.42 (J-holomorphic Curves). A J-holomorphic curve on a manifold M

is a map f from a compact Riemann surface Σ, with complex structure j, to M , such

that

df ◦ j = J ◦ df : TΣ −→ TM

(i.e., df is a complex linear bundle map).

Remark 2.43. If M is endowed with a symplectic structure ω, and J and ω are

compatible, then smoothly embedded J-holomorphic curves are also symplectically em-

bedded.
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J-holomorphic curves are holomorphic with respect to the non-integrable almost

complex structure J . The use of J-holomorphic curves allows us to define invariants

that can distinguish one symplectic manifold from another. Gromov-Witten invari-

ants are based on J-holomorphic curves and they are important in String Theory

and Mirror Symmetry. J-holomorphic curves make it possible to study the global

structure of symplectic manifolds.
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Chapter 3

Quotient Constructions

In this chapter we analyze how to construct quotient spaces of manifolds with some

given features under the action of a group.

We have seen that in many cases the properties of a given manifold are inherited

by its submanifolds, e.g., all complex submanifolds of a Kähler manifold are also

Kähler.

We have also seen that considering a manifold as the quotient of another manifold

under a group action can provide useful information about its features, i.e., S1 ×
S2n−1 = (Cn\{0}) /Z or the characterization of CPn as the quotient of Cn+1\{0}
under multiplication by complex scalars.

In general, we will be interested in analyzing under which conditions the quotient

space is a manifold and which features it inherits from the original manifold after

taking the quotient under the group action.

We are going to consider four different types of quotient constructions:

• Symplectic quotients, in which we construct a moment map.

• Kähler quotients, in which we construct a Kähler structure on the submanifold

given by the quotient space under the group action.

• GIT quotients, in which we choose a linearization of the action of the group

and consider the orbits under its action.

• Hyperkähler quotients which are rarer, but have important applications.
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3.1 Symplectic Group Actions, Moment Maps, and

Quotients

Symmetries are modelled using group actions. Thus we are interested in studying the

action of a group G on a manifold M and in identifying the orbits of the action.

Definition 3.1 (Group action on M). A group action of a Lie group G on a manifold

M is given by a map
Ψ : G×M −→ M

(γ, x) 7−→ γ · x
satisfying:

(i) The map (γ, x) 7−→ γ · x is smooth,

(ii) γ · (δ · x) = (γ · δ) · x, for all γ, δ ∈ G,

(iii) 1 · x = x.

If the Lie group G acts by symplectomorphisms on the manifold M , then the action

is called symplectic.

Definition 3.2. Let (M,ω) be a symplectic manifold, G a Lie group, g the Lie algebra

and Ψ : G → Sympl(M,ω) a symplectic action. The action Ψ is Hamiltonian if

the exists a map

µ : M −→ g∗

that satisfies:

(i) For each X ∈ g, let

• µX : M −→ R, µX(p) := 〈µ(p), X〉, be the component of µ along X

• X# be the vector field on M generated by the one-parameter subgroup

{exp tX|t ∈ R} ⊆ G.

Then dµX = ιX#ω, i.e., µX is a Hamiltonian function for the vector field X#.

(ii) µ is equivariant with respect to the given action Ψ of G on M and the coadjoint

action Ad∗ of G on g∗

µ ◦Ψg = Ad∗g ◦ µ.

The vector (M,ω,G, µ) is then called a Hamiltonian G-space and µ is a moment

map.
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We are interested in the conditions that guarantee that a symplectic action of a

Lie group G is Hamiltonian, so that we can construct a moment map.

We define two conditions for the existence of a moment map:

(a) Let x ∈ g and let ξ(x) be a vector field. ξ(x) ·ω needs to be exact for all x ∈ g.

Given ξ(x) · ω is closed, so we need [ξ(x) · ω] = 0 in H1(M,R).

(b) Suppose (a) holds, then there exists µ : M → R with dµx = ιX#ω for all x ∈ g

where we need to choose µ equivariant.

Sufficient conditions for (a) to hold:

• H1(M ;R) = 0; rov

• ω is exact.

If (a) holds, a sufficient conditions for (b) to hold is that G is compact.

Proposition 3.3 (Existence of moment maps). Let (M,ω) be a symplectic manifold.

If H1(M ;R) = 0 and G is compact, then a moment map exists.

Corollary 3.4. If ω is exact and invariant and G is compact a moment map always

exists.

However, the obstruction to the existence of a moment map lies in the Lie algebra

cohomology. A moment map µ always exists if G is semisimple, even when H1(M) 6=
0.

Theorem 3.5. (Audin [3, III.2.1]) Let M be a compact symplectic manifold endowed

with an action of S1. Assume the action is Hamiltonian. Then it has fixed points.

Theorem 3.6. A symplectic S1-action on a closed 4-manifold is Hamiltonian iff it

has fixed points.

Theorem 3.7 (Frankel’s Theorem, McDuff [27]). A circle action which preserves the

complex structure and the Kähler form on a compact Kähler manifold M is Hamilto-

nian if and only if it has fixed points.

This is however not the case for symplectic manifolds in which we find examples

of actions with fixed points that are not Hamiltonian since they are not exact. So we

are interested in the conditions that must be set on a symplectic action to make it

Hamiltonian.
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Proposition 3.8. A symplectic torus action on a compact symplectic 2n-dimensional

manifold of Lefschetz type is Hamiltonian if and only if it has fixed points.

Remark 3.9. In the presence of the Lefschetz type condition, see Theorem 1.35, a

symplectic circle action S1 ×M → M on a closed symplectic manifold M has fixed

points if and only if the orbit map ι : S1 →M is trivial on homology.

3.1.1 Marsden-Weinstein-Meyer Reduction

We often do not want to distinguish between points which lie in the same orbit of

a group action and take the quotient M/G creating a quotient space. That is, if

we consider the manifold modulo the orbits of the group action, so that we consider

the quotient of the manifold under the action of the group G, we obtain a new

manifold. Under certain conditions the quotient space inherits properties from the

original manifold.

Symmetries in a mechanical system correspond to conserved quantities. We will

be interested in studying the space generated by the moment map µ of the action

of G on M and in analyzing the orbit space µ−1(0)/G. The quotient is constructed

using the moment map of the action and identifying the orbits.

Theorem 3.10 (Marsden-Weinstein-Meyer). Let (M,ω,G, µ) be a Hamiltonian G-

space for a compact Lie group G. Let ι : µ−1(0) ↪→M be the inclusion map. Assume

that G acts freely on µ−1(0). Then

• the orbit space Mred = µ−1(0)/G is a manifold.

• π : µ−1(0)→Mred is a principal G-bundle.

• there is a unique symplectic form ωred on Mred satisfying ι∗ω = π∗ωred.

The orbit space µ−1(0)/G together with the symplectic form ωred is a new sym-

plectic manifold, which we write as the Marsden-Weinstein quotient M//G. This new

symplectic manifold has dimension dim(M//G) = dimM − 2 dimG.

Remark 3.11. If a moment map exists, then a symplectic quotient exists, but may

be singular.

Remark 3.12. If the action of the compact Lie group G acting on M is free, then

M/G is a manifold and π : M →M/G is a principal bundle. Note that singularities

may occur when the action of G on M is not free.
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Example 3.13. We define the action of S1 on the symplectic manifold (Cn+1, ω) as

follows,
S1 × Cn+1 −→ Cn+1

(eit, (z0, . . . , zn)) 7−→ (eitz0, . . . , e
itzn)

where the moment map is given by

µ(z) = −1

2
|z|2 +

1

2
.

Thus we find

µ−1(0) = S2n+1,

so that

µ−1(0)/S1 = S2n+1/S1 ∼= CPn,

and we write

(Cn+1, ω)//S1 = (CPn, ω).

However, depending on how we define the group G to act on the manifold M , we

obtain different quotient spaces.

Example 3.14 (Quotient space with singularities).

• Let us consider the action of S1 on C2 as follows,

S1 × C2 −→ C2(
eiθ, (z1, z2)

)
7−→ (eikθz1, e

iθz2)

where k > 0 is an integer.

In this case the moment map is given by

µ(z) = −1

2

(
k|z1|2 + |z2|2

)
ξ < 0 is a regular value, µ−1(ξ) is an ellipsoid. The stabilizer of (z1, z2) ∈ µ−1(ξ)

is {1} if z2 6= 0 and Zk if z2 = 0. It has one cone singularity of type k with

angle 2π
k

. µ−1(ξ)/S1 is a teardrop orbifold. This is the weighted projective line

CP1
k,1.

• Let us consider the action of S1 on C2 as follows,

S1 × C2 −→ C2(
eiθ, (z1, z2)

)
7−→ (eikθz1, e

i`θz2),

for k, ` > 0 coprime.

In this case the moment map is given by

µ(z) = −1

2

(
k|z1|2 + `|z2|2

)
.
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– Stabilizer of (z1, 0) is Zk for z1 6= 0

– Stabilizer of (0, z2) is Z` for z2 6= 0

– Stabilizer of (z1, z2) is {1} for z1, z2 6= 0

µ−1(ξ)/S1 has two cone singularities of type k and `. This is CP1
k,`.

• However, if we model the action of S1 on C2 as eiθ(z1, z2) 7→ (eiθz1, e
iθz2), then

the quotient µ−1(ξ)/S1 = S3/S1 = CP1.

3.1.2 The Atiyah-Guillemin-Sternberg Convexity Theorem

The Atiyah-Guillemin-Stenberg convexity theorem asserts that when G is a torus Tn

and M is a symplectic compact manifold, the moment map image µ(M) is a convex

polytope. The proof uses Morse theory, and relies on the fact that moment maps for

symplectic forms are non-degenerate.

Theorem 3.15 (Atiyah-Guillemin-Sternberg). Let (M,ω) be a compact connected

symplectic manifold, and let Tn be an n-torus. Suppose that Ψ : Tn → Sympl(M,ω)

is a Hamiltonian action with moment map µ : M → Rn. Then

• the level sets of µ are connected.

• the image of µ is convex.

• the image of µ is the convex hull of the images of the fixed points of the action

The image µ(M) of the moment map is called the moment polytope.

Example 3.16. Let us consider the action of the torus T2 on CP2 as defined by

(eiθ1 , eiθ2) · [z0 : z1 : z2] = [z0 : eiθ1z1 : eiθ2z2],

which has moment map µ : CP2 → R2 of the form

µ[z0 : z1 : z2] = −1

2

(
|z1|2∑2
i=0 |zi|2

,
|z2|2∑2
i=0 |zi|2

)
,

and their moment map values are

[1 : 0 : 0] 7−→ (0, 0)
[0 : 1 : 0] 7−→ (−1

2
, 0)

[0 : 0 : 1] 7−→ (0,−1
2
).
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The corresponding moment polytope is

??????????????

•

•

•
(0, 0)

(0,−1
2
)

(−1
2
, 0)

Definition 3.17 (Effective actions). The G-action is called effective if each element

g 6= 1 in G moves at least one x ∈M .

Example 3.18. The S1-action on S3 defined by t(z1, z2) = (tm1z1, t
m2z2) is effective

if and only if m1 and m2 are relatively prime.

Proof. If k > 1 divides m1 and m2, then we can write t(z1, z2) = (tm1z1, t
m2z2) =((

tk
)m1/k z1,

(
tk
)m2/k z2

)
which has fixed points for t = e

2πi
k , i.e., t does not move any

point of S3.

Corollary 3.19. Under the conditions of the convexity theorem, if the Tn-action is

effective, then there must be at least n+ 1 fixed points.

Proposition 3.20. Let (M,ω,Tn, µ) be a Hamiltonian Tn-space. If the action of Tn

is effective, then dimM ≥ 2n.

Definition 3.21 (Toric symplectic manifold). A toric symplectic manifold is a com-

pact connected symplectic manifold (Mn, ω) equipped with an effective Hamiltonian

action of a torus Tn of dimension equal to half the dimension of the manifold, and

with a choice of a corresponding moment map µ : M → Rn.
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3.1.3 Delzant Theorem

We do not have a classification of symplectic manifolds, but we do have a classification

of toric symplectic manifolds in terms of combinatorial data.

Theorem 3.22 (Delzant). Let the group G = Tn act on the compact symplectic

manifold (M,ω). If dimG = 1
2

dimM , the moment polytope µ(M2n) determines the

Hamiltonian manifold (M,ω, µ) up to isomorphism.

Corollary 3.23. Hamiltonian Tn-spaces where dimM = 2n are classified by the

image of the moment map. In this case, the polyhedron determines the manifold.

Definition 3.24 (Delzant Polytope). A Delzant polytope ∆ in Rn is a convex polytope

satisfying

• it is simple: there are n edges meeting at each vertex.

• it is rational: the edges meeting at the vertex p are of the form p+tui, 0 ≤ t <∞
for ui ∈ Zn, i = 1, . . . , n.

• it is smooth: u1, . . . , un can be chosen to be a basis for Zn.

Proposition 3.25. Toric manifolds are classified by Delzant polytopes. There is a

one-one correspondence
toric manifolds ←→ Delzant polytopes
(M2n, ω,Tn, µ) ←→ µ(M)

3.1.4 Constructions of Toric Symplectic Manifolds

In this section we give some explicit examples of the construction of different Delzant

polytopes arising from different toric actions. We also consider how the blow up

process of a manifold at a point changes the corresponding polytope.

Example 3.26. The circle S1 acts on CP1 by

eiθ · [z0 : z1] = [z0 : eiθz1],

and has moment map

µ : CP1 −→ R
[z0 : z1] 7−→ −1

2

(
|z1|2

|z0|2+|z1|2

)
,

the fixed points are
[1 : 0] 7−→ 0
[0 : 1] 7−→ −1

2
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so that the corresponding moment polytope is

•

•

0

−1
2

Example 3.27. In this example we model two different actions of G = T3 on the

manifold CP3 such that the first one is a toric action with the image of the moment

map given by a Delzant polytope, while the second action is not effective and will not

provide a toric action. We will see that in the second model, the image of the moment

map is not Delzant.

• Let the torus T3 act on CP3 by

(eiθ1 , eiθ2 , eiθ3) · [z0 : z1 : z2 : z3] = [z0 : eiθ1z1 : eiθ2z2 : eiθ3z3],

with moment map µ : CP3 → R3 of the form

µ ([z0 : z1 : z2 : z3]) = −1

2

(
|z1|2∑3
i=0 |zi|2

,
|z2|2∑3
i=0 |zi|2

,
|z3|2∑3
i=0 |zi|2

)
,

so that the fixed points are

[1 : 0 : 0 : 0] 7−→ (0, 0, 0)
[0 : 1 : 0 : 0] 7−→ (−1

2
, 0, 0)

[0 : 0 : 1 : 0] 7−→ (0,−1
2
, 0)

[0 : 0 : 0 : 1] 7−→ (0, 0,−1
2
).

The corresponding moment polytope in R3 is

tttttt

�������������
ffffffffffffff

?????????????

•

•

•
•
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• However, if we define the action of the torus T3 on CP3 by

(eiθ1 , eiθ2 , eiθ3) · [z0 : z1 : z2 : z3] = [z0 : e2iθ1z1 : e4iθ2z2 : e6iθ3z3],

which has moment map

µ ([z0 : z1 : z2 : z3]) = −

(
|z1|2∑3
i=0 |zi|2

,
2|z2|2∑3
i=0 |zi|2

,
3|z3|2∑3
i=0 |zi|2

)
,

so that the fixed points are

[1 : 0 : 0 : 0] 7−→ (0, 0, 0)
[0 : 1 : 0 : 0] 7−→ (−1, 0, 0)
[0 : 0 : 1 : 0] 7−→ (0,−2, 0)
[0 : 0 : 0 : 1] 7−→ (0, 0,−3)

and the corresponding moment polytope in R3 is

rrrrrrrrrr

��������������������������������

iiiiiiiiiiiiiiiiii

*************************** •

•

•

•

We can see that the action of the torus is not locally free so it does not provide

a Delzant polytope. Indeed, this polytope is related to the one in the first part of

the example by a linear map given by 2 0 0
0 4 0
0 0 6

 ,

whose inverse is not an integer matrix. In order to obtain a Delzant polytope,

the corresponding matrix must be an invertible integer matrix with inverse an

integer matrix.
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• Let us consider the map given by the matrix 1 1 1
0 1 1
0 0 1

 .

The corresponding torus action is given by

(eiθ1 , eiθ2 , eiθ3) · [z0 : z1 : z2 : z3] = [z0 : eiθ1+iθ2+iθ3z1 : eiθ2+iθ3z2 : eiθ3z3],

which has moment map

µ ([z0 : z1 : z2 : z3]) = −1

2

(
|z1|2∑3
i=0 |zi|2

,
|z1|2 + |z2|2∑3

i=0 |zi|2
,
|z1|2 + |z2|2 + |z3|2∑3

i=0 |zi|2

)
,

so that the fixed points are

[1 : 0 : 0 : 0] 7−→ (0, 0, 0)
[0 : 1 : 0 : 0] 7−→ (−1

2
,−1

2
,−1

2
)

[0 : 0 : 1 : 0] 7−→ (0,−1
2
,−1

2
)

[0 : 0 : 0 : 1] 7−→ (0, 0,−1
2
)

which defines a Delzant polytope.

Example 3.28. The action of T2 on CP1 × CP1 as

(eiθ, eiη) · ([z0 : z1], [w0 : w1]) =
([
z0 : eiθz1

]
,
[
w0 : eiηw1

])
with moment map

µ ([z0 : z1], [w0 : w1]) = −1

2

(
|z1|

|z0|2 + |z1|2
,

|w1|
|w0|2 + |w1|2

)
with fixed points

([1 : 0], [1 : 0]) 7−→ (0, 0)
([1 : 0], [0 : 1]) 7−→ (0,−1

2
)

([0 : 1], [1 : 0]) 7−→ (−1
2
, 0)

([0 : 1], [0 : 1]) 7−→ (−1
2
,−1

2
)

The corresponding moment polytope is

•

••

•
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Blow up Constructions

We are going to consider the Delzant polytopes of manifolds blown up at one point.

Example 3.29. In this example we consider Hirzebruch surfaces. Let us consider

the subset of CP1 × CP2

Wk = {([z0 : z1], [w0 : w1 : w2]) ∈ CP1 × CP2 | zk0w1 = zk1w0}

where k ∈ N.

Wk is a complex submanifold of CP1 × CP2. The restriction of the projection

CP1 × CP2 → CP1 to Wk is a bundle over CP1 with fiber CP1. Since CP1 and CP2

carry a symplectic structure, the manifold CP1 ×CP2 will be also symplectic and Wk

is a symplectic submanifold.

We now consider the action of T2 on CP1 × CP2 as

(eiθ, eiη) · ([z0 : z1], [w0 : w1 : w2]) =
([
eiθz0 : z1

]
,
[
ekiθw0 : w1 : eiηw2

])
with moment map

µ ([z0 : z1], [w0 : w1 : w2]) =

(
−1

2

(
|z0|2

|z0|2 + |z1|2
+

k|w0|2

|w0|2 + |w1|2 + |w2|2

)
,−1

2

|w2|2

|w0|2 + |w1|2 + |w2|2

)
so that the fixed points are

([1 : 0], [1 : 0 : 0]) 7−→ (−1+k
2
, 0)

([1 : 0], [0 : 1 : 0]) 7−→ (−1
2
, 0)

([1 : 0], [0 : 0 : 1]) 7−→ (−1
2
,−1

2
)

([0 : 1], [1 : 0 : 0]) 7−→ (−k
2
, 0)

([0 : 1], [0 : 1 : 0]) 7−→ (0, 0)
([0 : 1], [0 : 0 : 1]) 7−→ (0,−1

2
).

The image of the momentum mapping µ : Wk : R2 is shown below

?????????????? •

••

••

Note that when k = 1, the manifold W1 is the the projective plane blown up at a point.
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Symplectic Blow-up

Definition 3.30. Let us consider the manifold R2n, that is, (x1, y1, . . . , xn, yn) and

0 ∈ R2n. Let Bε(0) be an open ball of radius ε about the origin 0. Then we define the

symplectic blow up by
R2n\Bε(0)

∼
= M̃

where ∼ collapses the sphere Sε(0) down to CPn−1.

The U(1)-action is defined by

(xj, yj) 7−→ (cos θxj + sin θyj, cos θyj − sin θxj).

We define a map

π : Sε(0) −→ CPn−1 =
Sε(0)

U(1)

Then we find that a natural way to make M̃ into a manifold and ω̃ into a symplectic

form on M̃ such that ω̃|M̃\CPn−1 ≡ ωR2n|R2n\B̄ε(0).

Let (M,ω) be a symplectic manifold and p ∈M a point. By Darboux Theorem 2.3,

we have ∃p ∈ U ⊂M such that (U , ω|U) ≡ (V , ω0|V) where 0 ∈ V ⊂ R2n.

If we choose ε > 0 small enough such that Bε(0) ⊂ V then we have

M̃ =
M\Bε(0)

∼

This manifold M̃ has reduced volume given by

vol(M̃, ω̃) = vol(M)− vol(Bε(0)).

Example 3.31. Let us consider the blowup of CP2 at [1 : 0 : 0]. We can write it as

˜CP2 = {([z0 : z1], [w0 : w1 : w2]) ∈ CP1 × CP2 | z0w2 = z1w1}.

˜CP2 is a complex submanifold of CP1 × CP2 and carries a Kähler form, so ˜CP2 is a

symplectic manifold.

We now define a compatible action of T2 on ˜CP2 as

(eiθ, eiη) · ([z0 : z1], [w0 : w1 : w2]) =
([
eiθz0 : eiηz1

]
,
[
w0 : eiθw1 : eiηw2

])
with symplectic form

αωCP1 + ωCP2

where α > 0 is a parameter.
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The moment map of the action is

µ ([z0 : z1], [w0 : w1 : w2]) =

(
−1

2

(
α|z0|2∑1
i=0 |zi|2

+
|w1|2∑2
i=0 |wi|2

)
,−1

2

(
α|z1|2∑1
i=0 |zi|2

+
|w2|2∑2
i=0 |wi|2

))
.

(3.1)

We now set s = |w1|2
|w0|2+|w1|2+|w2|2 and t = |w2|2

|w0|2+|w1|2+|w2|2 for s, t ≥ 0 and s + t ≤ 1 so

that we can write (z0, z1) in terms of w0, w1 and w2 as

|z0|2

|z0|2 + |z1|2
=

s

s+ t
,

|z1|2

|z0|2 + |z1|2
=

t

s+ t
.

Then we can rewrite Equation (3.1) as

(s, t) 7−→
(
−1

2

(
αs

s+ t
+ s

)
,−1

2

(
αt

s+ t
+ t

))
,

so that the fixed points are

(1, 0) 7−→ (−α+1
2
, 0)

(0, 1) 7−→ (0,−α+1
2

)
(ε, 0) 7−→

(
−1

2

(
αε
ε

+ ε
)
, 0
)

= (−α
2
, 0) for ε→ 0

(0, ε) 7−→
(
0,−1

2

(
αε
ε

+ ε
))

= (0,−α
2
) for ε→ 0.

The image of the moment map is shown below

???????????????????????????? ??????????????

••

•

•

−α+1
2

−α
2

−α
2

−α+1
2

The volume of (M,ω) decreases when it is blown up to (M̃, ω̃) Audin [3].

This is the blow-up of CP2 at one point. In general, the blowing-up process produces

a truncated polytope. Note that in Example 3.16 we modelled the torus action of T2

on CP2 and we found that the moment map image is a triangle. After blowing up CP2

at one point, we find that the corresponding image for the moment map is a truncated

triangle, that is, a trapezoid.

Depending on the values of α, the area of the triangle that we cut off will vary.

This corresponds to the size of the exceptional divisor.
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3.2 Kähler Quotients

The Kähler quotient is closely related to the symplectic quotient. Since all Kähler

manifolds are symplectic we can use the Marsden-Weinstein-Meyer Reduction ex-

plained in Subsection 3.1.1 so that the quotient space will also be a symplectic man-

ifold. However, Kähler manifolds have the special feature that its almost complex

structure needs to be integrable, i.e., Kähler manifolds have holomorphic functions.

So we will be interested in constructing quotient spaces that inherit these further

properties and are also Kähler manifolds. We begin with an example of symplectic

reduction applied to a Kähler manifold.

Example 3.32. Let M = Cn with its standard Hermitian structure and the action

of the circle G = S1 by scalar multiplication. The moment map µ : Cn → R is

µ(z) = −1

2
|z|2,

and µ−1(0) = S2n−1. The symplectic quotient is

S2n−1/S1 = CPn−1 = (Cn\{0}) /C∗,

so that M s = Cn\{0} and CPn−1 inherits a natural Kähler metric, the Fubini Study

metric.

We see that the quotient space also carries a Kähler structure. If we consider the

action of any compact Lie group G on a Kähler manifold M , and we assume that G

preserves both the metric, the complex structure, and the symplectic structure, then

under mild conditions there is a moment map

µ : M −→ g∗

where g∗ is the dual of the Lie algebra of G. The components of µ are Hamiltonian

functions corresponding to the flows defined by one-parameter subgroups of G. µ is

G-equivariant. The manifold

Mξ = µ−1(ξ)/G

where ξ is a regular value for µ inherits a natural symplectic structure. Mξ also

inherits a Riemannian metric. Together with the symplectic form ω this defines an

almost complex structure J which makes Mξ a Kähler manifold [1].

Proposition 3.33. M//G := µ−1(ξ)/G is a new Kähler manifold of dimension

dimM − 2 dimG.
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We can also construct the Kähler quotient using a different method.

Let (M,J, g) be a Kähler manifold and let G be a real compact Lie group acting

on (M,J, g). We want to consider the complexification GC of the Lie group G and the

complexification gC = g ⊗R C of the Lie algebra g. The G-action naturally extends

to a holomorphic GC-action, with the additional generating vector fields JξM , ξ ∈ g.

However, M/GC may not be Hausdorff, so that we may need to restrict to the

“stable”points of M , i.e. M st ⊂ M and consider the quotient M st/GC to obtain

a completely holomorphic description of a complex manifold in M//G as a Kähler

quotient. We will stabibly in Section 3.3.

If everything works, we obtain a quotient M//G that we can identify with M/GC

as a complex manifold.

Example 3.34. Let us consider the manifold Ca+b with a C∗-action defined by

(z1, . . . , za, za+1, . . . , za+b) 7−→ (uz1, . . . , uza, u
−1za+1, . . . , u

−1za+b).

The Kähler quotient is Ca+b//U(1). We construct a moment map

µ = −1

2

(
|z1|2 + . . .+ |za|2 − |za+1|2 − . . .− |za+b|2

)
and we find

Mξ = µ−1(ξ)/U(1)
= {(z1, . . . , za+b) : |z1|2 + . . .+ |za|2 − |za+1|2 − . . .− |za+b|2 = −2ξ}/U(1).

• For ξ > 0, we find that Mξ is a Ca vector bundle over CPb−1.

• For ξ < 0, we find that Mξ is a Cb vector bundle over CPa−1.

• At ξ = 0 we have a singularity, a complex cone on CPa−1 × CPb−1.

Example 3.35 (Kähler quotient). Let G be the circle S1 acting on CP2 acting via

the representation
ρ : S1 −→ U(3)

t 7−→

 1 0 0
0 t 0
0 0 t

 .

Then the moment map is defined as

µ(ξ) = −1

2

(
|x1|2 + |x2|2

|x0|2 + |x1|2 + |x2|2

)
.
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Thus [x0 : x1 : x2] ∈ µ−1(ξ) if and only if

−(1 + 2ξ)
(
|x1|2 + |x2|2

)
= 2ξ|x0|2.

Therefore,

• µ−1(ξ) is empty if ξ < −1
2

or ξ > 0.

• −1
2
, 0 are not regular values of µ.

• If −1
2
< ξ < 0 then µ−1(c) can be identified by taking x0 = 1 with sphere of

radius
∣∣∣ 2ξ

1+2ξ

∣∣∣ in C2 ⊂ CP2 so that the Kähler quotient is µ−1(c)/S1 ∼= CP1.

3.3 GIT Quotients

GIT provides another view of the construction of quotients of a manifold under the

action of a group. In this case, the manifold we consider is a complex projective

variety M as in Subsection 1.3.1, and the group G is a complex reductive group.

Fundamental references for GIT are [24,30].

Theorem 3.36. A complex Lie group G is reductive iff it is the complexification of

any maximal compact subgroup K.

Example 3.37. The following are some examples when we consider C,

SO(n) −→ SO(n,C)
SU(n) −→ SL(n,C)
U(n) −→ GL(n,C).

If M is a projective algebraic variety (with Kähler class coming from a projec-

tive embedding) then M is the projective variety whose projective coordinate ring is

essentially the G-invariant part of the projective coordinate ring of M [1].

To apply GIT to construct quotients, we consider the action of the group G on the

projective coordinate ring A(M) of the complex variety M . We require a linearisation

of the action of G, i.e, an ample line bundle L on M and a lift of the action of G

to L. So for some projective embedding M ⊂ CPn determined by L for k � 0, (see

Subsection 1.3.2), the action of G on M extends to an action on CPn given by a

representation

ρ : G −→ GL(n+ 1,C)

to obtain an induced action of G on C[x0, . . . , xn] and on A(M), and taking for Lk

the standard line bundle O(1) on CPn.

50



We consider the subring A(M)G of A(M) consisting of the elements of A(M)

which are invariant by G. A(M)G is a graded complex algebra, and because G is

reductive, we find that A(M)G is finitely generated, and hence we can associate a

complex projective variety to it [30].

Definition 3.38. Let M be a projective complex algebraic variety and G a reductive

complex Lie group acting on M . Then we write M//GIT G for the projective variety

associated to the ring of invariants A(M)G.

Under some conditions, a Kähler quotient can be identified with the quotient

variety associated by GIT to the complexified group action. And in the same way

that we have to make a choice for the moment map to obtain the Kähler or symplectic

quotient as seen in the examples of Subsection 3.1.4, we have to choose a linearization

of the action of G to construct the GIT quotient M//GIT G, see [24].

Then we have the GIT quotient M//GIT G if we work in algebraic geometry,

and the Kähler quotient µ−1(0)/G if we work in Kähler geometry. The resulting

complex manifolds are biholomorphic away from singularities, and the two quotient

constructions provide the same space, up to homeomorphism (and diffeomorphism

away from singularities) [25].

We now discuss the fact that the inclusion of AG(M) in A(M) defines a rational

map φ : M → M//G that will not in general be well defined everywhere on M ,

since there may be points of M ⊂ CPn where every G-invariant polynomial vanishes.

The points in M for which there exist some non-vanishing f ∈ AG(M) are called

semistable points. The set of semistable points in M is written as M ss.

Proposition 3.39. Two semistable points p1, p2 are called s-equivalent iff the clo-

sures OG(p1) and OG(p2) of the G-orbits of p1 and p2 meet in M ss and we have

φ(p1) = φ(p2). Topologically, M//G is the quotient of M ss by the s-equivalence rela-

tion.

Definition 3.40. We define a point p ∈ M to be a stable point if it has a neigh-

bourhood in M ss such that every G-orbit meeting this neighbourhood is closed in M ss,

and is of maximal dimension equal to the dimension of G.

If M st = M ss and we have no strictly semistable points, then M//G = M st/G.

Example 3.41. Let us consider the quotient of C2 under the action of the group C∗.
We are going to construct the quotient using GIT and Marsden-Weinstein-Meyer

reduction.
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(i) Let us consider the GIT quotient given by C2//GIT C∗ where u ∈ C∗ acts on

(z1, z2) ∈ C2 by

u : (z1, z2) 7−→ (uz1, u
−1z2).

Then the orbits of the action are given by:

(a) {(z1, z2) : z1z2 = c where c ∈ C\{0}}.

(b) {(z1, 0) : z1 6= 0}.

(c) {(0, z2) : z2 6= 0}.

(d) {(0, 0)}.

As a topological space C2/C∗ is non-Hausdorff: C with a triple point at 0, so

we need to restrict to some (semi) stable open subset before taking the quotient.

There is a C∗-equivariant line bundle L on C2 such that each linearization is of

the form Lk for k ∈ Z. There are three interesting cases:

– k > 0,

– k < 0,

– k = 0.

Depending on the choice of linearisation, the behaviour of the orbits described

in (a) to (d) is as follows:

– When k > 0, the orbits described in (a), (b) are stable and the ones de-

scribed in (c), (d) are unstable.

– When k < 0, the orbits described in (a), (c) are stable while (b), (d) are

unstable.

– When k = 0, the orbit described in (a) is stable and (b), (c), (d) are

semistable.

The quotient is C in each case.

(ii) If we now construct the symplectic quotient of C2 under the action of S1 as in

Example 3.13 taking n = 1, we obtain the following

C2//C∗ = µ−1(0)/S1 = S3/S1 ∼= CP1,

where µ(z) = −1
2

(|z1|2 + |z2|2) + 1
2

is the corresponding moment map, and CP1

is considered as a symplectic manifold. With the appropriate linearisation, C2\0
is stable and 0 is unstable.
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Thus, more generally, we have the following quotient construction

Cn//GIT C∗ = (Cn\0)/C∗ = CPn−1.

In the following example, we find different choices for the linearisation of the action

of G.

Example 3.42.

• Let us consider the action of C∗ on CP1 which we define as follows

C∗ × CP1 −→ CP1

t[z1 : z2] 7−→ [z1 : tz2]

so the orbits are {[1 : t], t 6= 0}, {[1 : 0]}, {[0 : 1]} and we have no good categorical

quotient.

• Let us consider the action of C∗ on C2\{0} which we define as follows

C∗ × C2\{0} −→ CP1

t(z1, z2) 7−→ [tz1 : tz2]

which we can identify with the map ρ : C2\{0} → CP1 and defines a good

categorical quotient.

3.4 Hyperkähler Quotients

Let M be a hyperkähler manifold and let G be a compact Lie group of automor-

phisms of M . Using the 3 symplectic structures ωI , ωJ , ωK of M as defined in

Subsection 1.3.3, we get 3 moment maps µI , µJ , µK which we can combine into a

single quaternionic moment map

µ : M −→ g∗ ⊗ R3, (3.2)

which is G-equivariant. Let ζ ∈ g∗ ⊗ R3 be fixed by G and assume this is a regular

value of µ. Then the manifold

Mζ = µ−1(ζ)/G

has 3 induced symplectic structures which, together with the induced metric, define

a hyperkähler structure.
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The following map µC is the moment map with respect to the holomorphic sym-

plectic form ωC of the action of the complex group GC:

µC = µJ + iµK : M −→ g∗ ⊗R C.

It is holomorphic with respect to the complex structure I on M .

Thus µ−1(ζ), where µ is the quaternionic moment map given in Equation 3.2, can

be rewritten in the form

µ−1
1 (a) ∩ µ−1

C (b)

for some a ∈ g and b ∈ g⊗ C.

We have that away from its singularities

µ−1
J (0) ∩ µ−1

K (0) = (µJ + iµK)−1 (0)

is a complex submanifold of M and
(
µ−1
I (0) ∩ µ−1

J (0) ∩ µ−1
K (0)

)
/G is the hyperkähler

quotient, so the hyperkähler quotient is the Kähler quotient of the Kähler manifold

µ−1
C (b), see Hitchin [22].

Proposition 3.43. Let M be a hyperkähler manifold and G a compact Lie group

acting freely on µ−1(ξ). Then µ−1(ξ)/G is hyperkähler manifold, with dimension

dimµ−1(ζ)/G = dimM − 4 dimG.
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