Quantifying pollution inflow and outflow over East Asia through coupling regional and global models

Meiyun Lin¹ (mlin26@wisc.edu)

Tracey Holloway¹, Greg R. Carmichael², Arlene M. Fiore³

¹Center for Sustainability and the Global Environment (SAGE), Univ. of Wisconsin-Madison

²Center for Global and Regional Environmental Research, Univ. of Iowa

³NOAA Geophysical Fluid Dynamics Laboratory (GFDL)

HTAP Incentives for Considering Regional Processes

- Regional to urban scale processes affect <u>pollutant inflow</u> to receptor regions
 - Urban chemistry
 - Mountain entrainment
 - PBL top entrainment and mixing
- Synoptic to turbulent scale processes affect <u>pollutant outflow</u> from emissions source regions
 - Mid-latitude frontal activities and deep convection
 - Boundary layer mixing and venting
 - Mountain-valley wind systems
- Aid in global model evaluation and development

Coupling regional and global models

- Past work for HTAP/2001 with CMAQ & MOZART-GFDL
 - -Sulfur & reactive nitrogen Lin et al. (2008a), AE Lin et al. (2008b), AE
 - Ozone & its precursors Holloway et al. (2007), AE Lin et al. (2009), ACP
- Current work for HTAP/2001 with WRF-Chem & MOZART-GFDL
- Future work for 2005/2006 with WRF-Chem & MOZART-NCAR

Outstanding Questions:

How do regional processes affect imported pollutants; how do predicted S/R relationships vary within a region?

How sensitive are the predictions of pollution export to resolution-dependent processes?

What fine-scale transport & chemistry processes are responsible for the discrepancies between regional and global models?

European Inflow

Vertical profile of EU inflow

-- along 45N during a cold front sweeping over EA --

- Pollutants are transported in the BL and lower FT more efficiently in WRF-Chem
- Orographic forcing might play an important role

Summary on Pollution Import

- Impacts of HTAP on surface ozone vary greatly within a receptor region depending on local topography and atmospheric constituents
- Entrainment of upper BT & lower FT air
 - → high HTAP signal at the mountain top
- Mixing with strong NO_x emissions at megacities
 - > weakened enhancement on surface ozone

Episodic frontal outflow -- Comparison with TRACE-P

Vertical profiles of PAN

Summary on pollution export

Monthly mean conc. along 137.5E

- WRF-Chem successfully simulates the timing, location, and magnitude of frontal outflow; MOZART places outflow too low, too weak
- Treatment of convective transport and resolution of orographic features may be responsible for MOZART biases
- Our results suggest that MOZART (and perhaps other HTAP global models) might underestimate Asian outflow to free troposphere

Conclusions

- Regional models highlight the importance of finescale processes in determining HTAP import and export
- The regional WRF-Chem model suggests less impacts of HTAP on surface ozone, in particular at megacities
- The regional WRF-Chem model also suggests greater pollution export than the global MOZART model, in particular during convective transport

Meiyun Lin (*mlin26@wisc.edu*)

