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ABSTRACT 

 

Understanding the canopy cover of an urban environment leads to better estimates of carbon 

storage and more informed management decisions by urban foresters.  The most commonly used 

method for assessing urban forest cover type extent is ground surveys, which can be both time-

consuming and expensive.  The analysis of aerial photos is an alternative method that is faster, 

cheaper, and can cover a larger number of sites, but may be less accurate.  The objectives of this 

paper were (1) to compare three methods of cover type assessment for Los Angeles, CA: hand-

delineation of aerial photos in ArcMap, supervised classification of aerial photos in ERDAS 

Imagine, and ground-collected data using the Urban Forest Effects (UFORE) model protocol; (2) 

to determine how well remote sensing methods estimate carbon storage as predicted by the 

UFORE model; and (3) to explore the influence of tree diameter and tree density on carbon 

storage estimates.  Four major cover types (bare ground, fine vegetation, coarse vegetation, and 

impervious surfaces) were determined from 348 plots (0.039 ha each) randomly stratified 

according to land-use.  Hand-delineation was better than supervised classification at predicting 

ground-based measurements of cover type and UFORE model-predicted carbon storage.  Most 

error in supervised classification resulted from shadow, which was interpreted as unknown cover 

type.  Neither tree diameter or tree density per plot significantly affected the relationship 

between carbon storage and canopy cover.  The efficiency of remote sensing rather than in situ 

data collection allows urban forest managers the ability to quickly assess a city and plan 

accordingly while also preserving their often-limited budget. 
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1. Introduction 

 

 The release of carbon dioxide into the atmosphere from both natural ecosystems and 

urban centers has become a major concern in today’s society.  The emission of this gas and other 

pollutants are thought to significantly contribute to the increasing temperatures of the earth’s 

atmosphere, ultimately leading to changes in climate conditions and water levels throughout the 

world (Nowak, 1993;  Pachauri and Reisinger, 2007).  Longer commutes and expanding urban 

centers contribute to the release of carbon into the atmosphere, while areas once considered rich 

in their ability to store carbon are dwindling due to the growing demand for forest products. 

Pools of carbon in urban centers are numerous.  Trees, shrubs, non-woody plants, and 

soils fall under the category of natural pools.  Other pools are anthropogenic in nature and 

include buildings and other structures, books, furniture, waste, and even humans and animals.  

Within urban areas, soils store the most carbon followed by buildings and vegetation (Churkina 

et al., 2010).  These calculations depend on total area in each category as well as estimated 

carbon density associated with the type of pool.  

Trees, much more than non-woody vegetation, can act as a sink for carbon dioxide by 

sequestering carbon during photosynthesis and storing it as biomass.  Their potential for carbon 

storage changes as they age, and eventually die and decay (Nowak and Crane, 2002).  

Understanding the coverage and size of the urban forest can lead to better decisions with regards 

to urban planning and management.  City planners can utilize information regarding urban 

forests to develop strategies to mitigate heavy pollution levels in certain areas.  Potential 

strategies involve both increasing canopy cover as well as strategically placing trees near 

buildings to reduce energy costs involved with heating and cooling the facilities (Nowak et al., 
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1996).  Additionally, specific tree species can be chosen to achieve specific goals.  For example, 

trees with greater leaf area and more complicated structure remove a greater amount of 

particulate matter from the air (Tiwary et al., 2009). 

One way to assess carbon sink potential of urban forest systems involves the use of 

ground crews to collect vegetation data from a variety of sites throughout a city, and input this 

ground-based data into models to estimate carbon sequestration and storage   One such model is 

called the Urban Forest Effects model (UFORE), developed in the late 1990s by David J. Nowak 

and Daniel E. Crane (Nowak et al., 2003).  This model utilizes ground data to calculate carbon 

storage, carbon flux, air pollutants such as ozone and particulate matter captured by the urban 

forest, as well as biogenic volatile organic compounds (BVOC) released by these trees.  UFORE 

in situ data determines the amount of coarse vegetation cover, a factor that is directly related to 

carbon storage potential (USDA Forest Service, 2009b). 

Other ways of assessing carbon storage potential include evaluating land cover type via 

remote sensing and aerial images.  ArcGIS, specifically ArcMap, can be used to manually 

delineate an aerial photo into cover type classifications (ESRI, 2010).  ERDAS Imagine software 

allows for a more automated classification of cover type by allowing the user to create signature 

files which ‘train’ the algorithm to classify an image according to cover type (ERDAS Inc., 

2011).   

Los Angeles, California, the study site for this project, has been and is currently facing 

problems with air quality, water shortages, urban heat island effect, and runoff from storm water 

(Wu et al., 2008).  This city began as a struggling agricultural area in the late 1700s.  When 

California joined the Union in 1850, Los Angeles had a population of 1,600 people; however, in 

only 80 years, this number would jump to 2.3 million making it the 4th most populated city in the 
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Union (Fogelson, 1993).  As of 2006 almost 4 million people live in this metropolis (US Census 

Bureau, 2009).  This number will most likely continue to increase as the population of the world 

continues to migrate to larger cities.  In turn, these already large cities expand and become 

encompassed by urban sprawl.  Los Angeles is a perfect example of this. Unlike other sprawling 

cities such as Las Vegas, Nashville, or Portland, however, the sprawl of Los Angeles is bound by 

an ocean on one side and a mountain range on the other (El Nasser and Overberg, 2001).  

Because of these characteristics, the green cover in Los Angeles will only change from within.  

Taking stock of what is growing within the city and planning from there will be an important 

process for this metropolis.  

The primary objective of this study was to evaluate the accuracy of several methods of 

cover type classification in order to better estimate carbon storage potential in the urban forest of 

Los Angeles, California.  Specifically, I aimed to (1) determine how well remote sensing 

methods of estimating cover type and percent cover (hand delineation and supervised 

classification) compare with in situ measurements; (2) determine how well remote sensing 

methods estimate carbon storage as predicted by the UFORE model; and (3) whether variables 

such as tree diameter or tree density affect the accuracy of carbon storage estimates at the plot 

level.  If a relationship is found between the percent cover using either method of analyzing 

remotely sensed data and the carbon storage calculated from ground-acquired data, a more 

efficient way of determining the size of a city’s carbon storage potential may be implemented 

across larger scales.   
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2. Methods 

 

Study area 

The city of Los Angeles has a land area of about 121,500 hectares.   The majority of this 

city is non-coastal, however a small part of the city touches the ocean on the west and a small 

sliver of land connects the larger part of this metropolis to the water on the south (Fig. 1).  The 

average yearly temperature for this city ranges from about 7°C to 24°C, while yearly 

precipitation is highly variable, ranging from 13.9 cm to 96.5 cm, with an average of 38.4 cm 

(NOAA, 2011).  

 

UFORE model analysis 

UFORE data collection protocol for assessing carbon storage of urban trees involves 

thorough ground surveys which measure the following data from trees within each plot:  species, 

stem diameter at breast height (dbh), tree and crown height, crown height and width, and canopy 

condition (light exposure, percent missing, degree of dieback) (Nowak et al., 2003).  An average 

of 200-fixed radius plots, each with an area of 0.039 ha, are assessed per city.  According to the 

literature, 200 plots will typically result in 10% standard error for the total number of trees, and a 

larger number of plots will increase the accuracy of the study (Phillips, 2006). For this study, 348 

plots were assessed, totaling 13.71 ha or about 0.011% of the total land area of Los Angeles.  

Using GIS software, plots were chosen via a stratified random sample, where strata were land-

use categories (Table 1) per UFORE model protocol (Nowak et al. 2003).  UFORE protocol 

gives greater preference to sites assumed to have more trees. For example, residential (R) is more 

heavily weighted compared with utility (U) or agricultural (A) areas and therefore has a higher 
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number of plots.  This is done in order to get a more accurate interpretation of the tree cover of 

the city.  Depending on the potential natural vegetation of the city (i.e. whether it was formerly a 

forested, a grassland, or a desert area), land use with the most potential for tree cover may differ.  

Los Angeles is considered a desert area, and therefore much of the tree cover is found in 

residential areas that are intensively cared for instead of vacant or natural areas, which in 

formerly forested areas would contain a higher proportion of tree cover (Nowak et al., 2003). 

 Plot-level tree data were analyzed using the Urban Forest Effects (UFORE) model 

(USDA Forest Service, 2009b) to calculate biomass and carbon content of the urban forest.  

Various factors were used to determine dry-weight biomass, including average moisture content 

for the different species of trees.  When the species was not known, the trees were categorized 

into dbh classes.  Different adjustment factors were used to keep the general dbh classes to 

within 2% of the original estimates calculated using individual species equations (Nowak and 

Crane, 2002).  Urban tree growth, its effects on carbon sequestration, and carbon released during 

decomposition after tree death were also modeled. (Nowak and Crane, 2002).  Because this study 

does not look at the changes each tree undergoes over time, only calculations regarding current 

carbon storage were utilized. 

 

GIS and Remote Sensing Analysis 

 The 348 plots used in the UFORE model were assessed using ArcGIS.  This assessment 

involved hand delineation in ArcMap 10.0 (ESRI, 2010) of the cover types present within each 

plot, followed by a determination of the area in hectares per plot of each cover type.  The cover 

types delineated were as follows:  bare ground, fine vegetation (grass and low-lying shrubs), 

coarse vegetation (trees and larger shrubs), impervious surfaces (cement and buildings), pool 
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water, and natural water.  National Agricultural Imagery Program (NAIP) images with a 1-meter 

spatial resolution and a 4-band (RGB and near-infrared) spectral resolution used for this 

delineation were downloaded from CA.gov’s Cal-Atlas Geospatial Clearinghouse (California 

GIS Council, 2010).  The digital orthophoto quarter quad tiles (DOQQs) acquired in 2009 were 

projected in UTM zone 11.  Forty-seven DOQQs covering about 4,662 hectares each were 

needed to cover the entire study site.  Because of the grainy nature of the orthophotos 

downloaded from Cal-Atlas (Fig. 2c), Google MapsTM (Google Maps, 2009) high-resolution 

images of the study site were used as a reference to better determine the different cover types.  

An 11.2 m radius buffer was placed around each plot center, which was recorded with a hand-

held GPS device during UFORE field data collection.  The area under each buffer was hand-

delineated according to cover type in ArcMap (Fig. 2c).  Once delineated, the new buffer shape 

file was imported as a feature class into a newly created geodatabase in ArcCatalog.  Once in the 

geodatabase, a new field was added to the attribute table and the area of each new polygon 

representing cover type in the plot was calculated. 

 A subset of five DOQQs of the forty-seven were classified via supervised classification 

in ERDAS (ERDAS Inc., 2011).  The NIR property of the images was used to enhance the color 

of the vegetation, which showed in varying colors of pinks and reds (Fig. 2a).  The five DOQQs 

chosen for supervised classification contained 63 of the total 348 plots and represented 9 of the 

12land uses (Table 1).  A different training area was used for each DOQQ during classification 

to improve accuracy of the program since the images appeared to have been acquired on 

different days or at the least during different times of the day.  In addition to the cover types 

listed above, the amount of shadow was also determined for these images (Fig. 2b).  Because the 

program cannot determine which cover type the shadow might be, this reduced the overall area 
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of many of the plots.  Additionally, light and dark categories of the major cover types, i.e. light 

impervious (whites, bright blues, etc) vs. dark impervious (varying shades of grays, darker reds, 

etc.) were separated for the supervised classification in order to achieve more accurate readings. 

Once classified, the image was brought into ArcMap, cover types divided into light and dark 

were merged once again, and the area per plot of each cover type was determined (Fig. 2d).  

 The UFORE cover type data estimated the coarse vegetation cover type out of 100% 

cover, while estimates of fine vegetation, bare ground, and impervious surfaces were also each 

determined out of 100% cover type.  Because aerial photos make it impossible to see below the 

tree canopy, ArcMap and ERDAS calculations were based on all cover types together equaling 

100%.  The implications of this are small for coarse vegetation, however this might result in a 

smaller percentage of the other three cover types represented in the non-ground-based 

assessment methods.  

 

Statistical analysis 

 Comparisons of the percent cover in each plot for the cover types bare ground, fine 

vegetation, coarse vegetation, and impervious surfaces were determined between the in situ, 

hand-delineation, and supervised classification assessments.  One-to-one lines were used to 

determine how well the data matched between plots.  Simple linear regression to determine R-

squared and p-values estimated relationships between the three assessment techniques.   

A comparison of mean percent cover for each cover type associated with each land use 

was graphed.  The four major cover types of bare ground, fine vegetation, coarse vegetation, and 

impervious surfaces were shown for each of the assessment methods.  Additionally, the hand-

delineation assessment took into account the presence of pool water and natural water, while the 
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supervised classification included natural water and shadows The effect of shadow on plots 

assessed via supervised classification was explored in an effort to determine which land use 

suffered more ‘loss’ of cover type due to this potential source of error. 

UFORE model results indicated the amount of carbon being stored in the system by 

coarse vegetation (kg plot-1).  These data were plotted against the hectares per plot of coarse 

vegetation measured using the three different methods.  Data were log-transformed to correct for 

heteroskedasticity.  R-squared and p-values were recorded for comparison using simple linear 

regression. 

Further analysis was done to determine if factors such as mean dbh or number of trees 

within a plot affected the relationship between UFORE-derived carbon storage and hand 

delineation-derived coarse vegetation coverage.  Values of plot-level mean dbh were divided into 

three classes: less than or equal to 20 cm, between 20 cm and 40 cm, and greater than or equal to 

40 cm, which contained 64 plots, 75 plots, and 60 plots, respectively.  Values of tree density per 

plot were also divided into 3 categories:  2 or fewer trees, 3 or 4 trees, and 5 or more trees, which 

contained 67 plots, 40 plots, and 33 plots, respectively.  Visual assessment was used to reveal 

any relationships.  An analysis of covariance was applied to the dbh assessment to determine 

which dbh category was more strongly correlated with carbon storage as predicted by canopy 

cover.  All statistical analyses were performed using R statistical software (R Development Core 

Team, 2010). 
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3. Results 

 

Cover type assessment 

 Mean percent cover for each cover type by land use was determined using the in situ, 

hand-delineated, and supervised classification data (Fig. 3).  The remotely sensed methods of 

data collection (supervised classification and hand-delineation) utilized more cover type classes 

than did the in situ assessment.  All methods accounted for impervious surfaces, fine vegetation, 

bare ground, and coarse vegetation.  Hand delineation in ArcMap accounted for two additional 

cover types: natural water and pool water (Fig. 3b), while supervised classification using 

ERDAS accounted for the additional cover types: natural water and shadow (Fig. 3c).  After 

analysis, pool water and natural water were considered negligible because they made up such a 

small area of the total plots within the study site, <0.1% and 0.1%, respectively.  However, it 

should be noted that the natural water cover type was substantial (25% of the total land cover) in 

the Wetland land use class. 

The mean cover type for each plot according to land use revealed a general trend for 

where each cover type is dominant.  Cover type trends from in situ data and hand-delineation, 

both of which were used to assess all 348 plots, were more closely aligned with each other (Figs. 

3a-b) than with trends found using supervised classification, which was used to evaluate a subset 

of 63 plots (Fig. 3c).  Bare ground had a larger presence in the in situ data than in the other two 

collection methods.  Coarse vegetation was greatest for all three assessment methods in the No 

Intended Use land use class.  The five land uses with the greatest coarse vegetation percent cover 

were the same for both in situ and hand-delineated data: No intended use, Wetland, Agricultural, 

Parks, and Residential.   The top five land use classes in impervious surfaces were also the same 
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for the in situ and hand-delineated data: Commercial, Institutional, Transportation, Multi-family, 

and Residential.  

Linear regressions of percent cover assessed by UFORE in situ methods vs. percent cover 

assessed by hand-delineation in ArcMap showed significant relationships for each of the four 

cover types (Fig. 4).  The strongest associations between the two assessment methods, as shown 

by higher R2 values and regression lines closer to 1:1 lines, were for coarse vegetation cover 

(Fig. 4c) and impervious surface cover (Fig. 4d).  

In situ percent cover was compared with percent cover assessed using a supervised 

classification (Fig. 5).  All cover types show significant yet weak correlations between the two 

assessment methods.  Bare ground (Fig. 5a) appears to be the most accurately represented cover 

type with a higher R-squared value and a regression line that follows most closely with the 1:1 

line.  Coarse vegetation and impervious surfaces appear to be under-represented in the 

supervised classification (Figs. c and d) since many of the points fall above the 1:1 line.  Errors 

in supervised classification of fine vegetation may be present since many plots found to have no 

fine vegetation according to in situ data were classified as having up to 75% cover in the 

supervised classification (Fig. 5b).   

A comparison of cover types assessed by hand-delineation and supervised classification 

showed significant relationships for each of the four cover types (p <0.0001) (Fig. 6).  The 

strongest association between the two assessment methods, as shown by higher R2 values and 

regression lines closer to the 1:1 lines, were impervious surface cover (Fig. 6d) and fine 

vegetation cover (Fig. 6b).  Supervised classification appears to be under-estimating percent 

cover in comparison to hand-delineation for both coarse vegetation and impervious surfaces as 

shown by almost all of the plot points falling below the 1:1 line.  Supervised classification may 
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also be overestimating bare ground and fine vegetation cover as shown by the large number of 

plot points on the zero line for hand-delineation percent cover, but between zero and forty % 

cover for supervised classification (Fig. 6a-b).  

 

 

Coarse vegetation cover vs. carbon storage 

Carbon storage in kilograms per plot, calculated from coarse vegetation using the 

UFORE model had a significant relationship (p-value <0.0001) with the hectares per plot of 

coarse vegetation canopy cover assessed by UFORE ground crews (Fig. 7a).  The relationship, 

according to visual assessment, is strongest when both axes are log-transformed to reduce 

heteroskedasticity.  The relationship was weaker when coarse vegetation was assessed using 

hand-delineation (R2 value of 0.23 vs. 0.69 for UFORE) although the relationship was still 

highly significant (p-value < 0.0001, Fig. 7b).  There was a slight trend, but no significant 

relationship (α = 0.05) between coarse vegetation measured using supervised classification and 

carbon storage per plot (p-value = 0.062, Fig. 7c). 

 

Influence of tree diameter and tree density on carbon storage estimates  

The correlation between carbon storage and hand-delineated coarse woody cover area 

was explored with low, medium and high mean dbh classes as well as low, medium and high 

trees per plot classes (Fig. 8).  An analysis of covariance was used to determine whether either 

dbh or tree count per plot played a significant role in affecting the relationship between carbon 

storage and canopy cover.  The results of this analysis indicate that neither factor is significant. 
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4. Discussion 

 

Cover type assessment using remotely sensed data 

I set out to evaluate the accuracy of several cover type classification methods in an urban 

forest using remotely sensed aerial images and in situ data.   

In our study we used two different methods of processing aerial images to determine 

cover type.  One method involved the use of hand-delineation of cover-type for each plot using 

ArcMap 10.0.  This method was somewhat labor intensive, but also relatively user friendly.  My 

data classifications corresponded well with ground collected UFORE data especially for coarse 

vegetation and impervious surfaces (Fig. 4 and Fig. 6b).  This method of cover type assessment 

is dependent upon the user’s skill at determining what cover type is shown on the aerial image.  

Also important is the quality of the aerial image being processed (Swain, 2007).  Better spatial 

resolution (1-meter vs. 30-meter) will result in a more easily readable image.  By using the 

downloaded DOQQs in conjunction with Google Maps TM, I was able to increase readability of 

the study site image while hand-delineating.  The supervised classification, however, was still 

run on the lower-resolution DOQQ images.  This may account for the increased accuracy of 

hand-delineation over supervised classification. 

There are other ways of processing aerial images via ArcMap that are worth exploring in 

further study.  One method involves designing an algorithm that can use something such as color 

on a near-infrared aerial image to identify cover type.  Wu, et al. (2008) used a computer 

program developed in ArcGIS environment to assess the city of Los Angeles, CA, for potential 

tree planting sites.  This program first classified land cover type and then proceeded to virtually 

plant trees starting with largest projected canopy trees and filling in with medium and then small 
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throughout the city in an effort to determine how many potential trees could be planted in this 

urban center.  After testing for accuracy by ‘ground-truthing’ a number of sites, it was 

determined that most errors came from the original land cover-type assessment, i.e. bare ground 

was mistaken for an impervious surface (Wu et al., 2008).  Because of this common error, it is 

necessary to check the accuracy of images that are classified before land mapping of an area can 

be considered complete (Karaburun et al., 2010).  This is true whether the classification is done 

in ArcMap, ERDAS or some other classification program.  For this study, the in situ data 

considered to be the most accurate was used  

Another tool in ArcGIS software is Feature Analyst, an objects-oriented extension that 

can be used to classify features such as cover type on a landscape (ESRI, 2010).  Unlike pixel-

based classification methods, which use spectral qualities such as color, object-oriented 

classifications examine spatial relationships as well.  Swain (2007) found that object-oriented 

classifications were more accurate than both hand delineation and pixel-based classification 

methods, because the pixels are classified in context with the rest of the image rather than 

individually.  Unfortunately the learning curve to using Feature Analyst is steep requiring more 

time initially (Swain, 2007). 

The other method for assessing cover type that was evaluated in this study used a 

supervised classification in ERDAS Imagine 2010 to delineate multi-spectral images of the study 

site.  A major source of error in this method was the shadow present in the aerial images. 

Shadow was negligible or not present in land use areas like cemeteries and golf courses, but was 

almost 25% of the cover in residential areas and almost 50% of the cover in transportation areas 

(Fig. 3c), resulting in a large portion of unknown cover type for these sites.  These ‘shadow’ 

areas may explain the tendency of the supervised classification to underestimate coarse 
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vegetation and impervious surfaces while overestimating fine vegetation and bare ground when 

compared with hand-delineation (Fig. 6).   

Residential areas, found to contain a high proportion of canopy cover, however not the 

highest amount as was assumed prior to in situ sampling, were also found to contain a lot of 

shadow.  This may explain the lack of significance between supervised classification canopy 

cover and UFORE carbon storage (Fig. 7c).  Determining the cover type below the shadow by 

hand delineation would most likely improve this correlation. 

A supervised classification such as the one we used in this study involves creating and 

using a training area to identify cover type from an aerial image.  Each pixel is classified 

according to the spectral reflectance it is ‘taught’ indicates a certain cover type.  Myeong, et al. 

(2006) used a classification type method to assess canopy cover from Landsat Thematic Mapper 

(TM) imagery of Syracuse, New York, and found that errors in this method can come from cloud 

cover above as well as shadows cast from buildings and trees increasing the area of unknown 

cover types.  This study, however, showed there to be only a 0.2% difference in carbon storage 

estimates using aerial images compared with field collected data (Myeong et al., 2006).  My 

study showed a much greater difference between these two methods of assessment and their 

predicted percent cover. 

Another consideration when using spectral reflectance for cover type assessment is edge 

effect, which can often confuse pixels between adjoining cover types resulting in erroneous 

classifications (Wu et al., 2008).  Because the urban surface is so varied, this error could be 

substantial. 
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Remote sensing vs. ground-based assessment of cover type 

 The UFORE model, developed in the late 1990s, has gone through several adaptations all 

of which, however, still rely on ground-collected (in situ) data.  Street Tree Resource Analysis 

Tool for Urban Forest Managers (STRATUM) not only assesses the urban landscape for 

structure and function, but also determines the monetary benefit the tree canopy provides for a 

city, i.e. energy saved on heating and cooling ((US Forest Service: Pacific SW Research Station, 

2009); (Maco and McPherson, 2003).  The most recent derivations of UFORE and STRATUM 

are i-Tree Eco and i-Tree Streets, respectively, both of which were developed by the US Forest 

Service and now offer publically accessible applications downloaded free from itreetools.org in 

which ground-collected data can be entered and site assessments derived (USDA Forest Service, 

2009a).   

Ground surveys can be time consuming and require a large number of relatively skilled 

field crews, making them also somewhat expensive.  Using community volunteers to collect 

ground data would help defray some of the cost.   In a recent study volunteers used digital 

cameras to collect images that were later run through the PhotoModelerTM software package to 

correctly locate the sites on a Google MapsTM (Google Maps, 2009) framework called the Urban 

Forest Inventory Web Application (UFIA).  This study determined that although it is much 

cheaper to use volunteers, it is necessary to have several volunteers visit and assess each site in 

order to cross-check the accuracy of the data (Abd-Elrahman et al., 2010). 

Ground surveys can have other limitations. It was found in a study by Millward and Sabir 

(2010) in Toronto, Canada, that STRATUM might overestimate tree value when the health of a 
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tree is in decline.  This study also stressed the importance of leaf area even more than canopy 

size when it comes to ecological benefits (Millward and Sabir, 2010). 

Because of the need for faster site assessment, the use of remote sensing and aerial 

images to assess cover type is growing, even though ground-based evaluation of plots is still 

considered the most accurate method of assessment (Myeong et al., 2006). Using Google 

MapsTM images along with other aerial photos available free through GIS data repository 

websites is an economical approach to quantifying cover type in an urban area.  This method of 

assessment requires fewer personnel, is less time intensive than performing ground surveys, and 

can cover a larger area in a shorter amount of time (Abd-Elrahman et al., 2010).  

 

Estimating carbon storage 

The second objective was to determine how well remote-sensing methods estimated 

carbon storage as predicted by the UFORE model.  UFORE in situ data and hand delineation in 

ArcMap were significantly correlated to UFORE predicted carbon storage, while the supervised 

classification using ERDAS was not.  The correlation between the in situ assessment and 

UFORE predicted carbon storage is not surprising since the data used to calculate carbon storage 

comes directly from the ground surveys done during in situ assessment.  

Unlike the UFORE model, however, remote sensing and satellite images do not take into 

account specific tree details such as species.  Nowak and Crane (2002) determined that carbon 

storage can be predicted for trees whose species is unknown using a general species formula 

which would bring the total carbon storage for the urban forest being assessed to within 2% of 

the total predicted using species specific calculations (Nowak and Crane, 2002).  Therefore a 
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small part of the error in our study between the assessment methods may be due to unknown tree 

species. 

Canopy condition, including dieback and decay, is another variable that is difficult to 

determine using aerial assessments.  To try to overcome this problem, Franklin and Hiernaux 

(1991) used the Li-Strahler reflectance model to determine crown size and density of unknown 

trees with only minimal error (a factor of 1.5) (Franklin and Hiernaux, 1991).  Ground surveys 

allow for the proper assessment of tree health, the location of dead, decomposing trees which are 

releasing carbon back into the atmosphere and their removal and replacement (Nowak and 

Crane, 2002).  Additionally, invasive species can be better accounted for during ground surveys 

as can the location of endangered or rare plant communities (Abd-Elrahman et al., 2010).   

The ever-changing urban center may be another reason for the discrepancies between the 

aerial assessments and UFORE predicted carbon storage (Myeong et al., 2006).  The UFORE 

ground data was collected in 2007 and 2008.  The images used in ERDAS classifications were 

from 2009, while the images used in ArcMap classifications were also from that year, but with 

the help of GoogleMaps ™ whose images were from an unknown year.  It is unknown in which 

season any of the images were taken, however this may not matter as much in a city like Los 

Angeles compared to a more seasonal city like Buffalo, NY.  The urban landscape in any city, 

however, can change significantly within a year and year to year.  

 

Influence of tree diameter and density 

The third objective was to determine whether variables such as tree diameter or tree 

density correlated more closely with carbon storage estimates at the plot level.  The literature has 

shown that more carbon is stored in trees with a larger dbh (McPherson et al., 1997).  The data 
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from my study lends further support to this theory given the significant DBH class term (Fig. 8) 

indicating that more carbon is indeed stored in plots with larger trees.  Also significant is the tree 

count term indicating that more carbon is stored in plots with more trees.  Both variables appear 

to be important but neither significantly affect the relationship between carbon storage and 

canopy cover.  Further support for the maintenance of older, larger trees, however, can be found 

in the literature which estimates that up to 40% of young, newly-planted trees die within their 

first 10 years.  This highlights both the ecological and economical benefits of older, well-

established trees (Millward and Sabir, 2010). 

 

5.  Conclusion 

 

The primary objective of this study was to evaluate the accuracy of several methods of 

cover type classification in order to better estimate carbon storage potential in the urban forest.  

In situ data,considered to be the most accurate,were compared with remotely sensed data hand-

delineated in ArcMap and delineated via supervised classification in ERDAS.  I found that hand-

delineation in ArcMap was overall more accurate than the supervised classification in ERDAS.  

Error associated with the supervised classification was due mostly to shadows reducing the 

amount of classifiable cover type within each plot.  This study also confirmed the importance of 

both tree dbh and tree density, but found neither to significantly affect the relationship of carbon 

storage and canopy cover.  

Remotely sensed data can be a useful tool for the urban forest manager.  Although not as 

accurate as in situ-collected data, this method is more economical and will still give a relatively 

good representation of canopy cover.  Using ground crews to assess a small portion of plots 
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within each land use type is a way to ground-truth the remotely sensed data. The benefits of 

larger, more well established trees can be stressed to promote the maintenance of trees already 

present and careful planning when new plantings are performed. 
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Tables: 
 
 

Table 1.  Land use descriptions used for random stratification of plots in study site.  

Land Use Code Description Number 
of Plots 

Residential R 1-4 families, free-standing 163 
Commercial C commercial areas includes parking lots 49 
No Intended Use V land with no clear, intended use 50 
Transportation T limited access roadways, airports, railroads, green 

spaces 23 

Institutional I schools, hospitals, colleges, government buildings, 
religious buildings 21 

Multi-family M 4+ families, attached 19 
Parks P parks 8 
Golf Course G golf courses 7 
Wetland W wetlands, streams, rivers, lakes 3 
Cemetery C cemeteries 2 
Agricultural A pastures, nurseries, vineyards 2 
Utility U power facilities, sewage treatment centers, 

reservoirs, storm water retention areas, flood control 
channels 

2 
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Figures: 
	  
	   	  

	   	  
	   	  
	   	  

	   	  
	   	  

	   	  

	  
Figure 1. The study site is located in the city of Los Angeles, California.  Plots (labeled as sample points) fall 

throughout the city proper.  Also indicated is the county of Los Angeles.  Note that the scale bar corresponds with the 
larger image and not the inset. 
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a.          b. 

	  	  	  	  	  	   	  	  
	  
	  

c.          d. 

	   	  	  	  	  	  	   	  
	  

Figure 2.  (a.) A near-infrared image of the study site, zoomed out.  Note the vegetation shown in varying 
reddish hues, while impervious surfaces are varied in color.  The large dark area on the lower right is a 
reserviour.  (b.) A zoomed in view showing one plot (plot 128, land use is residential) after supervised 

classification and color adjuestment.  Note that the black color indicates shadow.  (c.) Plot 137 in the multi 
family land use has been hand-delineated.  Two cover types are shown for this plot:  coarse veg (green) and 

impervious surface (grey).  (d.) The same plot, 137, after supervised classification with hand-delineation layer 
(shown in red) over top.  More cover types are represented:  coarse veg. (dark green), fine veg. (light green), bare 

ground (brown), impervious (grey).  Shadow (totalling 18% cover) shown in black represents the unknown. 
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Figure 3.  Mean percent cover of each cover type within each land use type.  Percent cover was measured using 
in situ data in Fig. 3a, hand-delineated data in Fig. 3b, and supervised classification in Fig. 3c.  Cover types are 
defined as coarse vegetation, bare ground, fine vegetation, impervious surfaces, pool water, natural water, and 

shadow.  Not all assessment methods delineated the same cover types.  The plots assessed via supervised 
classification (Fig. 3c) contained no plots within the land use categories of utility, agricultural or wetland. 
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Figure 4.  A comparison of percent cover for the 4 major cover types: (4a.) bare ground, (4b.) fine vegetation, (4c.) 
coarse vegetation, and (4d.) impervious surfaces for 348 plots as determined using hand-delineation in ArcMap and 

ground data collected for the UFORE model.  The solid line represents the 1:1 ratio, while the doted line is the 
regression line.  Regression equations are as follows:  

(4a.) In situ = 17.10 + 0.71*hand-delin;  RMSE: 31.9;  F-stat: 91.61;  DF: 347 
(4b.) In situ = 9.94 + 0.53*hand-delin;  RMSE: 19.26;  F-stat: 110.1;  DF: 347 

(4c.) In situ = 11.63 + 0.76* hand-delin;  RMSE: 22.56;  F-stat: 131.1;  DF: 347 
(4d.) In situ = 16.55 + 0.82*hand-delin;  RMSE: 20.44;  F-stat: 739.4;  DF: 347 
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Figure 5.  A comparison of percent cover for the 4 major cover types: (5a.) bare ground, (5b.) fine vegetation, (5c.) 
coarse vegetation, and (5d.) impervious surfaces in 63 plots as determined by in situ collected data and supervised 

classification in ERDAS.  The solid line represents the 1:1 ratio, while the doted line is the regression line.  
Regression equations are as follows: 

 (5a.) In situ = 10.02 + 1.26 *sup. class;  RMSE: 26.88;  F-stat: 24.86;  DF: 61 
(5b.) In situ = 8.75 + 0.38*sup. class;  RMSE: 22.88;  F-stat: 8.52;  DF: 61 

 (5c.) In situ = 18.88 + 0.56*sup. class;  RMSE: 23.53;  F-stat: 11.28;  DF: 61  
(5d.) In situ =  38.43 + 0.56*sup. class;  RMSE: 28.17;  F-stat: 24.78;  DF:  61 
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Figure 6.  A comparison of percent cover for the 4 major cover types: (6a.) bare ground, (6b.) fine vegetation, (6c.) 

coarse vegetation, and (6d.) impervious surfaces in 63 plots as determined by hand-delineation in ArcMap and 
supervised classification in ERDAS.  The solid line represents the 1:1 ratio, while the doted line is the regression 

line.  Regression equations are as follows: 
 (6a.) Sup. Class = 6.14 + 0.55 *hand-delin;  RMSE: 10.09;  F-stat: 50.58;  DF: 61 
(6b.) Sup. Class = 8.83 + 0.81*hand-delin;  RMSE: 13.04;  F-stat: 120.3;  DF: 61 
 (6c.) Sup. Class = 4.67 + 0.47*hand-delin;  RMSE: 12.92;  F-stat: 59.19;  DF: 61  
(6d.) Sup. Class =  -0.10 + 0.70*hand-delin;  RMSE: 20.82;  F-stat: 82.6;  DF:  61 
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Figure 7.  Carbon Storage (in kg) for each of the plots as compared to hectares of coarse vegetation determined using  
(7a) in situ ground collected data (for UFORE model), (7b) hand-delineation in ArcMap, and (7c) supervised 

classification in ERDAS. Regression equations:  
(7a.) Log (Carbon stored) = 5.06 +1.17*Log (In situ);  RMSE: .43;  F-stat:  437.4;  DF: 198  

(7b.) Log (Carbon stored) = 3.97 + 0.76*Log (Hand-delin);  RMSE: .67;  F-stat: 59.03;  DF: 198 
 (7c.) Log (Carbon stored) = 3.33 + 0.35*Log (Sup. class);  RMSE: .71;  F-stat: 3.52;  DF: 35 
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Figure 8.  An analysis of covariance of the dbh categories (A.) and tree count classes per plot (B.) and their 
relationship to carbon storage and canopy cover predicted by hand-delineation was performed (Fig. 8).  Regression 

equations for each dbh category (Fig. 8A) are as follows followed by the ANOVA statistics for this data: 
(a.) Tree diameter 20cm or less:  Log (Carbon stored) = 2.89 + 0.27*Log (Hand-delin);   

 (b.) Tree diameter between 20cm and 40cm:  Log (Carbon stored) = 3.94 + 0.68*Log (Hand-delin);   
 (c.) Tree diameter over 40cm:  Log (Carbon stored) = 3.81 + 0.46* Log (Hand-delin). 

  
 Df Sum Sq Mean Sq F-stat p-value 
dbh class 2 42.04 21.02 67.61 < 0.0001 *** 
canopy cover 1 13.73 13.73 44.17 < 0.0001 *** 
dbh class : canopy cover 2 0.38 0.19 0.61 0.54 
Residuals 194 60.31 0.31 -- -- 

 
Regression equations for each tree count class (Fig. 8B) are as follows followed by the ANOVA statistics for this data: 

(a.) Tree count 2 or less: Log (Carbon stored) = 4.00 + 0.82*Log (Hand-delin); 
(b.) Tree count between 2 and 5: Log (Carbon stored) = 3.48 + 0.53*Log (Hand-delin); 

(c.) Tree count 5 or more: Log (Carbon stored) = 3.80 + 0.50*Log (Hand-delin); 

 Df Sum Sq Mean Sq F-stat p-value 
tree count 2 8.16 4.08 9.36 0.00013 *** 
canopy cover 1 22.77 22.77 52.27 < 0.0001 *** 
dbh class : tree count 2 1.03 0.52 1.18 0.31 
Residuals 194 84.51 0.44 -- -- 
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