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The problem of collective action to produce a group collective good is analyzed as the

game of Individual vs. Collective and then

a8 an n-person game to show that, under the

constraints of Mancur Olson’s analysis, it is an n-prisoners’ dilemma in the cases of latent
and intermediate groups. The usual analysis according to which noncooperation is con-

sidered the rational strategy for classical

2-prisoners’ dilemma is logically similar to

Olson’s analysis, which suggests that rational members of a latent group should not

contribute toward the purchase of the group

collective good. However, in the game analysis

it is clear that the latent and intermediate groups are not logically different, but rather are
distinguishable only statistically. Some prisoners’ dilemma experimental results are used to
suggest how the difference might arise and how the vast prisoners’ dilemma literature can be

related to the problem of collective action.

The game of collective action is then analyzed not from the view of strategies but of
outcomes. There is presented a theorem which states that z.) outcome in which all player-

members of a group pay and all benefit is

a Condorcet choice from the set of realizable

outcomes for the game. Hence the cooperative outcome in such a game would prevail in

election against all other outcomes.

N The Logic of Collective Action, Mancur

Olson (1968) has proposed a mathema-
tical explanation for the notable failure of
the memberships of large interest groups to
work together to provide themselves with
their mutually desired collective goods. He
concludes that the success of a group in
providing itself with a collective good de-
pends on the logical structure of the group.

In a small group in which a member gets such a
large fraction of the total benefit that he would
be better off if he paid the entire cost himself,
rather than go without the good, there is some
presumption that the collective good will be pro-
vided. In a group in which no member got such a
large benefit from the collective good that he had
an interest in providing it even if he had to pay
all the cost, but in which the individual was still
80 important in terms of the whole group that his
contribution or lack of contribution to the group
objective hud a noticeable effect on the costs or
benefits of others in the group, the result is in-
determinate. By contrast, in a large group in
which no single individual’s contribution makes
a perceptible difference to the group as a whole
... it i8 certain that a collective good will not
be provided unless there is coercion or some out-
side inducements. . . ., (p. 44)

' I am pleased to thank Hayward R. Alker, Jr.,
Joan Rothehild, and Jean-Roger Vergnaud for the
help and advice they gave in the preparation of
this paper.

Behavioral Science, Volume 16, 1971

Lsue §

[ U

These three sorts of group can be distin-
guished as the privileged group (i.e., the
group in which at least one member could
justify his full payment for the provision of
the good on the basis of his sufficiently great
return), the intermediate group, and the
latent group.

Common sense and experience seem to
confirm Olson’s conclusions, although they
seem to suggest a logic counter to our ex-
pectations. They suggest that “rational, self-
interested individuals will not act to achieve
their common or group interests” (Olson,
1968, p. 2). To clarify the logic of collective
action, therefore, Olson gives a mathema-
tical demonstration, which can be easily
summarized.

The advantage (A;) which accrues to an
individual member (7) of a group as the result
of his contribution to the purchase of the
group collective good is given by:

di=Vi=C,

where V; is the value to ¢ of his share of the
total collective good provided to the group
at cost C to 1. Clearly, if A is to be positive,
then V; must be greater than C. But this
implies that ¢ will contribute toward the

472

COLLECTIVE ACTION AS AN AGREEABLE 7-I’RISONERS’ DILEMMA 473

purchase of the group collective good on his
own rational incentive only if his share of
that part of the good purchased at his cost
is worth more to him than it cost him (Olson,
1968, pp. 22-25), Hence, the collective good
will be provided in a privileged group, where
this condition is met, but not in a latent
group, where it is not met.

COLLECTIVE ACTION AND PRISONERS’
DILEMMA

As with the prisoners’ dilemma, we have
for the latent group a result that tells us
that individual effort to achieve individual
interests will preclude their achievement, be-
cause if the collective good is not provided,
the individual member fails to receive a
benefit that would have exceeded his cost in
helping purchase that good for the whole
group. It would be useful to perform a game
rheory analysis of collective action to demon-
state that the logic underlying it is the same
a3 that of the prisoners’ dilemma. First,
however, since Olson’s analysis was accom-
plished from the perspective of an individual
in the group, let us consider a particular in-
stance of collective action in the game of
Individual vs, Collective.

Individual vs. collective

Letus construct u game matrix in which the
row entries will be the payoffs for Individual,
and the column entries will be the per capita
payoffs for Collective, where Collective will
be the group less Individual. The payoffs will
be calculated by the prescription for rational
behavior: that is, the payoffs will be benefits
less costs. The group will comprise ten mem-
bers whose common interest is the provision
of a collective good of value twice its cost.
There are two possible results of having one
member of the group decline to pay his
share: either the total benefit will be propor-
tionately reduced, or the costs to the mem-
bers of the group will be proportionately in-
creased. Let us assume the former, but either
choice would yield the same analysis. For
the sake of simplicity, assume-also that there
are no initial costs in providing the collec-
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MATRIX 1
INpwIDUAL vs. CoLLECTIVE
Collective
Pay Not Pay
P Pay 1 -0, 8, 0.2
Individual Not Pay 18, 0.8 o0

tive good and no differential costs as pay-
ments and resultant benefits rise, that is,
assume exactly two units of the collective
good will be provided for each unit paid by
any member of the group.’

If all members of the group pay 1 unit (for
o total cost of 10 units), the benefit to each
member will be 2 units (for a collective good
of 20). The individual payoffs will be benefit
less cost, or 1 unit. In the matrix, the first
row gives the payoffs to Individual if he
contributes his share; the first column gives
the per capita payoffs to the remaining mem-
bers of the group, i.e., to Collective, if they
pay. The second row gives the payoffs to
Individual if he does not pay, and the second
column gives those for Collective if it does
not pay. The various payoffs nre readily cal-
culated, e.g., if Individual does not pay but
Collective does, the total cost will be 9
units, the total benefit will be 18 units, and
and the per capita benefit will be 1.8 units
(for Individual eannot be excluded from the
provision of the collective good); conse-
quently, Individual’s payoff for this condi-
tion will be his benefit less his cost for a
pleasant 1.8 units. From the payoffs for the
game in Matrix 1, one can see that it is
evidently in Individual’s advantage to choose
the strategy of not paying toward the pur-
chuse of the collective good.

Sinee it is individuals who decide on ac-
tions, and since each member of the group sees
the game matrix from the vantage point of
Individual, we can assume that Collective’s

? Within a broad range, this assumption entails
only that the payolfs in the upper right and lower
left cells in Matrix 1 will contain payolls only
slightly higher or lower than might have been the
case for a real world problem. Consequently, the
logical dynamics of the game are unaffected by the
assumption,
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strategy will finally be whatever Individual’s
strategy is, irrespective of what Collective’s
payoffs suggest. The dynamic under which
Individual performs is clearly the same as
that for the prisoners’ dilemma: his strategy
of not paying dominates his strategy of pay-
ing. For no matter what Collective does,
Individual's payoff is greater if he does
not pay. This can be seen more clearly per-
haps in Matrix 1a, which displays only the
payoffs to Individual for each of his choices.
As in prisoners’ dilemma, not paying is in-
variably more lucrative than paying.

The payoffs to the two players in a game
of prisoners’ dilemma are shown in Matrix
2, and Row’s payoffs only are shown in
Matrix 2a. In this classic game, the delight
of game theoreticians, Row and Column will
both profit (1 unit ench) if both cooperate,
and both will lose (1 unit each ) if both defect.
But as is clear in Matrix 2a, Row is wise to
defect no matter what Column does. The
Matrices 1a and 2u are strategically equiva-
lent; the preference orderings of the payoffs
to Individual and to Row are identical as
shown by the arrows in Fig. 1.

n-prisoners’ dilemma

For theytheorist of n-person games, a
more cogent analysis of the problem of col-
lective action defined by the game of in-
dividual vs. Collective would require a 10-

MATRIX 1a
INDIVIDUAL'S Pavorrs

~.=&<E==_ m.“m Pay “.u IN.,_
MATRIX 2
PrisoNERS’ DILEMMA
Column

Cooperate Defect
Counperate 1,1 -2,2

Row Defeot 2, -2

-1, =1

MATRIX 2a
Row’s Pavorrs

Cooperate 2 -2

Row Defect 1 -1
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F1a. 1. Preference Ordering for Row and In-
dividual.

dimensional matrix pitting the payoffs of
each indiyidual against all others. The pay-
offs can easily be calculated. The cell de-
fined by all players paying would be (1,1,1,
1,1,1,1,1,1,1), and that defined by all
players not paying would be ©, ---, 0).
Every other cell would have payoffs whose
sum would be equal to the number (m) of
players puying in that cell; each player would
receive a payoff of 2m/10 — 1 if he paid, or
2m/10 if he did not pay. Anyone able to
visualize n 10-dimensional matrix ean readily
see that each player’s dominant strategy is
not to pay, because it yields the best payoff
for whatever the other players do. The rest of
us can easily enough calculate that whereus
the payoff to player i is 2m/10 — 1 with m
players including himself puying, the pay-
off to ¢ with m — 1 players not including
himself paying would be the preferred
2(m — 1)/10 (in the latter case #'s payoff is
0.8 unity greater than in the former). Hence,
for ench player i, the strategy of not paying
dominates the strategy of paying. But play-
ing dominant strategies yields all players
the poor payoff (0, ---, 0), and this solu-
tion is the only equilibrium for the gume.
The game now defined is simply the 10-
prisoners’ dilemma, to which any solution
algorithm generalized from the 2-prisoners’
dilemma can be applied. To generalize the
game further, # prisoners can be substituted
for 10, and u ratio r of benefits to costs
(with cost being 1 unit to each player) for
the ratio of 2 assumed in Individual vs. Col-
lective. The result is analogous, with the
choice of not paying always yielding a payoff
(n — r)/n units higher than the choice of
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paying (the bonus increnses s n increnses);
and if all pay, all receive payoffs of (» — 1).
Olson’s privileged group would be the case
in which r is greater than n in some player’s
perception (if costs are o matter of binary
choice between paying a fixed sum for all
players who pay, or paying nothing).

In this game there is only one (strongly
stable) equilibrium (at the payoff of zero
to every player, i.e., all players not paying);
but this equilibrium solution is not Pareto-
optimal. Moving from the equilibrium to
the payoff of r to every player (i, all
players paying) would improve the payoff
to every player. Among the 78 strategically
nonequivalent 2 X 2 games in the scheme of
Rapoport and Guyer (1966), prisoners’ di-
lemma is unique in its class, It is the only
game defined by the condition that it has a
single strongly stable equilibrium which, how-
ever, is Pareto-nonoptimal. Hence, the gen-
eralized game of collective action defined
above is logically similar to prisoners’ di-
lemma. (It should be clear that the reason
for the equivalence of prisoners’ dilemma and
the game of collective action for a large, i.e.,
latent, group is precisely the condition that
in such a group a player’s contribution to the
purchase of the collective good is of only
marginal utility to himself. Hence, his pay-
voff i3 increased by almost the amount he
does not pay when he does not pay.)

Empirical consequences

The significance of this result is that any
analysis which preseribes a solution for pris-
oners’ dilemma must preseribe a similar solu-
tion for the game of collective action. That
means that the vast body of experimental
and theoretical work on prisoners’ dilemma
is relevant to the study of collective action in
general (and conversely that the growing
body of work on collective nction can be
applied to the study of the prisoners’ di-
lemma). In particular, any analysis of
prisoners’ dilemma which yielded the con-
clusion that the mutual loss payoff was not
rational would, by implication, contravene
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Olson’s (1968, p. 44) claim that, for logical
reasons, in a latent group “‘it is certain that o
collective good will no! be provided unless
there is coercion or some outside induce-
ments.” Considering the fact that there are
arguments that the rational solution to
prisoners’ dilemma is the payoff which results
from mutual cooperation, before turning to
the rationale of group success, we should
perhaps reconsider why it might be that,
empirically, latent groups do generally seem
to fail. Let us view the 10-prisoners’ dilemma
defined above in the light of some 2-prisoners’
dilemma experimental results,

Some experimental data suggest thut
about one-half of bona fide players coopernte
with and one-half exploit a noncontingent,
100 percent cooperative adversary-partner in
2-prisoners’ dilemma (Rapoport, 1968). In
the 10-prisoners’ dilemma deseribed above,
let us assume that this result would mean
that 5 of the players would not pay even if
the other 5 did pay. In this circumstance, the
benefit to each player would be 1 unit, and
the cost to each of the 5 payers would be 1
unit: hence, the payoff to the payers would
be zero. Consequently, even an analysis
which preseribed cooperation, or paying, as
the rational strategy under the assumption of
all players rational would allow nonpayment
a3 u rational strategy to players in o real
world game in which habitual nonpayers
drained off any positive payoff to the payers.
Assuming the validity of the generalization
from the prisoners’ dilemma experimental
data, in real world games in which the law of
large numbers applies and in which the per-
ceived benefits of the collective good are not
more than twice the costs, one can expect no
provision of the collective good for reasons
different from Olson’s logic. In the inter-
mediate group (where the statistics of large
numbers do not apply), even with benefits
considerably less than twice the costs, there is
some statistical chance that a collective good
will be provided. In either case, the propects
for success decline as the ratio (or perceived
ratio) of benefits to costs decreases, and ns
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the differential perception of that ratio in-
creases while the uverage perceived ratio re-
mains constant.

As Olson (1968, p. 24) notes, the issue is
not so much what an adversary-member’s
payoff will be, but rather whether anyone
will choose to play the game at all. In the 10-
prisoners’ dilemma analysis here, by a dif-
ferent logic, it follows that one of the basic
tenets of game theory is in one sense not use-
ful in real world application. Ordinarily, in
game theoretical analyses the actual values
of payoffs are not important; the only con-
sideration is the rank ordering of payoffs.
But clearly, the normal inducement to play a
real world game is the expectation of positive
payoffs. Hence, a rational player in the game
of collective nction does not refuse to pay
merely because his strategy of not paying is
dominant and yields a higher payoff; rather
he refuses to pay because enough others in
the group do not pay that he would suffer o
net cost if he did. Consequently, it would be
irrational for him to play the game, and not
playing means not paying. (However, this
reasoning cannot be considered to give a
proof that collective action will fail. That
remains an empirical matter.)

THE CONDORCET CHOICE SOLUTION OF
THE GAME OF COLLECTIVE ACTION
The usual analysis of prisoners’ dilemma

preseribes a strategy: the dominating strat-

egy which in the 10-person game of collective
action discussed above would be not to pay.

Because the general employment of that

strategy produces un undesirable outcome,

and because many (roughly half) of the sub-
jects in some 2-prisoners’ dilemma experi-
ments have not employed that strategy, it
would be useful to analyze the outcomes (as -
opposed to the strategies) of the larger game

of collective action. The matrix for the 10-

person binary choice game has 2! or 1024

cells, each of which is a uniquely defined po-

tential outcome of the game. Instead of
considering the strategies of the players, let
us view the game as though the 10 players
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were collectively choosing among the 1024
outcomes. With a simple notation these 1024
outcomes can be represented as 20 classes of
outcomes. We can readily ascertain which
among these classeés are realizable outcomes,
and can determine whether any among the
realizable outcomes is a Condorcet choice.
It will be a simple matter to demonstrate
that in any game of collective action with n
players and a ratio r, r > 1, of benefits to
payments there is 1 Condorcet choice among
the realizable outcomes, and it is the out-
come ammsam by all players paying and all
receiving payoffs of r — 1 units.

2n classes of outcomes

In the 10-person game of collective action,
the possible outcomes in the view of an
Individual in the game are as in Matrix 3.
The entries in the top row are Individual’s
payoffs when all ten players pay, nine players
including Individual pay, etc. Those in the
bottom row are Individual’s payoffs when he
does not pay, ranging from the case in which
all nine other players pay to the case in which
no one pays. The upper left payoff results
from only one outcome of the game: all pay.
The upper row payoff of 0, however, results
from 126 different outcomes of the game: all
the possible combinations in which Indi-
vidual and four other players pay while five
players do not pay.

It will be useful to represent these classes
of outcomes more generally. Let N, represent
any outcome in which exuctly k players, in-
cluding Individual, do not pay. And let P,
represent afy outcome in which exactly k
pluyers, including Individual, pay. Matrix 3
can be rewritten as Matrix 3a. It is now a
simple matter to rank order the outcomes ac-

MATRIX 3
Pay 1.0 0.8 0.6 0.4 0.2 0 -0.2 —0.4 —0.8 -~0.8
Nov 1.8 1.6 1.4 1.2 1.0 0.8 0.6 04 02 ©
Pay :

MATRIX 3a
Pay Pw Py Po P1 Py Py Po Py Py Py

NotPay N1 N: N3 N¢ No No N1 Nu Nv Nu

COLLECTIVE ACTION AS AN AGREEABLE 7-IRISONERS’ DILEMMA 417
TABLE 1 TABLE 2
Payoff Class Number of Qutcomes N
vt
Nt 1 N
N [] N
Ni 3 Pu, Ns
N4 84 Py
Pu. Ns 1,126 Py
Py, N 9,126 P:
P, Nt 36,84 Pu
Py, N 84,38 Py, Nu
Pu, Ny 126,9
Ps, Nu 126,1 .
- o agreeable outcome. If one of these outcomes
4 . - . .
Ps 8 is a Condorcet choice for the set, it is the
n. w prominently rational outcome of the game.
1
Total 1024

cording to Individual’s preference; the posi-
tion of an outcome P or N is determined by
the payoff to Individual nssocinted with it.
Table 1 presents Individual's preference
ordering and gives the total number of out-
comes in the full 10-dimensional game matrix
associnted with each payoff class.

Clewrly, Individual can guarantee himself
his minimax payoff (N1 at the lower right in
Matrix 3a). Those outcomes Py, Ps, P, und
P, which fall below the minimax line in Tuble
1, therefore, are outcomes which he can uni-
laterally prevent by not paying. Similarly,
however, every other player in the game cun
prevent his own Py, Ps, P:, and P, out-

+comes, so that the complementary outcomes
Ne, N1, Ni, and N, of opposing players will
be prevented (for instance, an N, can occur
only if some player is willing to pay when no
one else does, thus putting himself into a Py
outcome ). Hence, none of these outcomes is
realizable, i.e., they would require that some
player willingly recline below his minimax, as
few of us are wont to do.” The only outcomes
which can obtain in u play of the game are
those of Table 2. It is from this set of realiz-
able outcomes that the players must seek an

3 The use of this term conforms with Howard
(1967, p. 24), in whose metagama theory an out-
come is metarational for all players if every
player’s payoff in that outcome is at least equal
to his minimax payoff. Hence, the only realizable
outcomes are those which are metarational for all
players.
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Condorcet choice

We can define strong and weak Condorcet
choices.! Let C be the collective (i.e., the
group) of » members choosing among out-
comes in the matrix of an n-person collective
action game, and let j and k be outcomes from
the set M of realizable outcomes in the game
matrix (in the 10-prisoners’ dilemma matrix
there are 1024 cells, of which 639 are realiz-
able outcomes). Let c;x be the number of
those in C who prefer outcome j to outcome
k, and let &. be the number of those in C who
are indifferent to whether outcome j or
o\zgoam k obtains. Clearly, cix + ¢ +
Cjk = N. .

Definition: j is a strong Condorcet. choice
if it is preferred by a majority in C to every
k (3 7) in M. Reduced to symbolic brevity,
this condition is

cik > n/2 forall k # j.

Definition: j is a weak Condorcet choice if
it is not a strong Condorcet choice but if, for
each k # j, more of those in C prefer j to &
than k to j. This condition is simply

ek > oy forall k = j.

It should be clear that there can be at most
one Condoreet choice.

¢Named for the eighteenth century French
economist and intellectual in general, the Marquis
de Condorcet, who studied the problem of electoral
majorities, believed in man's capacity for un-
limited progress, and chose to poison himself
rather than meet the guillotine during the Terror.
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From the definition of the game of col-
lective action for n players the following
theorem for the existence of a Condorcet
choice among the set of realizable outcomes
can be derived.

Theorem: For an n-person game of col-
lective action, P, is a Condorcet choice from
the set of realizable outcomes for the game;
it is a strong Condorcet choice except in a
game in which n is even and r = 2, in which
case P, is a weak Condorcet choice from the
set of realizable outcomes.

The proof of this theorem, which is not
difficult but is tedious, is left to the appendix.
However, it will be instructive to see that it
holds for the case of 10-prisoners’ dilemma.
We need only to compare the outcome Py to
each of the other realizable outcomes listed
in Table 2 to show that Py is preferred to
each of these others. Given an outcome of the
class Ny, nine players will prefer Pyy. Simi-
larly, given an outcome of the class N,, N,
or N;, eight, seven, or six players, respec-
tively, will prefer Py . And nine, eight, seven,
or six players will prefer Py to any outcome
of the class Py, Ps, P;, or P, respectively.
Finally, given an outcome of the class Ny, the
five players whose outcomes are of the class
Py will prefer outcome Py ; and the five
players whose outcomes are of the class N,
will be indifferent to the choice between N;
and Py, . Consequently, a clear majority of
the players will prefer Py to any outcome
except Ny, in which case all of those with a
preference will prefer Py . It follows that
Py, is a weak Condorcet choice. It is weak
because the game has an even number of
players and a ratio of benefits to contribu-
tions of 2.

Degeneracy—back to the prisoners’ dilemma

At the limits of the preceding analysis
there occur several classes of degenerate

3 It was noted above that prisoners’ dilemma is
the only one of the Rapoport-Guyer games with
a strongly stable equilibrium that is not Pareto-
optimal. This statement can be made stronger.
Every outcome in the 2-prisoners’ dilemma is
Pareto-optimal except the outcome of mutual loss.

games of collective action. These result when
r=1lorn =2

In the degenerate case of r = 1, the realiz-
able outcomes are P, and N, , and all players
are indifferent as to which of these obtains.
For all cases of r < 1, the only realizable
outcome is N, . The game will not be played.

In the degenerate case of n = 2 there are
five possibilities: r < 1, r = 1,1 < r < 2,
r = 2, r > 2. The first two of these are
degenerate in r. In the case of r = 2, all out-
comes are realizable and the outcome of
both pay is a weak Condorcet choice. If
r > 2, eagh player’s return from his own
contribution is greater than his contribu-
tion, so presumably both will pay and reap
appropriate benefits (recall that in general
r > n implies that the group is a privileged
group in Olson’s terms). The interesting
cases remain. They are those for 1 < r < 2,
They are represented in Matrix 4.

The payoffs in the games of Matrix 4 are
related according to the preference ordering
(ifl<r<2):

/2> r—=1)>0> (r/2 - 1).

This condition meets the definition of the
symmetric 2-prisoners’ dilemma game. For
example, Rapoport and Chammah (1965,
pp. 33-34) define the symmetric prisoners’
dilemma by the condition that the payoffs
(as given in Matrix 5) satisfy the relation:

T>R>P>S,

in which the letters didactically stand for
Temptation (to defect), Reward (for co-
operating ), Punishment (for defecting), and
Sucker’s payoff (for cooperating). Note that
the preference ordering for row is as in Figure

In a game of collective action this stronger state-
ment also usually holds. However, if » divides n,
then any outcome defined by Ny for n/r of the
players is not Pareto-optimal. (This is because
n — n/r of the players would benefit in a shift
from this outcome to P., and the other n/r
players would be indifferent to the shift.) All other
outcomes in any game of collective action are
Pareto-optimal except the single dismal solution
Na.
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MATRIX 4

r—1,r—-1 (r/2 ~ 1), r/2
r/2, (r/2 = 1) 0,0

MATRIX 5

R, R . 87T
T8 PP

1. From the preference ordering and Matrix
4, it can be seen that only the outcomes
(r— 1,r — 1) and (0, 0) are realizable, and
that of these (r — 1, — 1) is a strong Con-

dorcet choice.
CONCLUSION %

It has been shown that the problem of col-
lective action can be represented as a game
with a strategic structure similar to that of
prisoners’ dilemma. The logic which pre-
scribes that a member of a group should not
contribute toward the purchase of his group
collective interest is the same as that which
prescribes that a player in a game of prison-
ers’ dilemma should defect (i.e., should not
cooperate). However, from the set of all
realizable outcomes in a game of collective
action in which the ratio of benefits to con-
tributions exceeds 1, the outcome in which
all contribute is a Condorcet choice. The
existence of u Condoreet choice, which is by
definition unique, implies thut a real world
group could decide in favor of the Condorcet
choice over every other realizable outcome.
Consequently, it is rational in a world in
which distrust seems endemic to use sanc-
tions to enforce all members of un interest
group to contribute toward the purchase of
the group interest (Olson, 1968, p. 51). Ina
world not quite Hobbesian a threat of all
against all might, ironically, help overcome
distrust.

However, the threat of all against all is
not a logical necessity; rather, it is only a
potentially useful device, given human
psychology. For, there is debate in the litera-
ture on the prisoners’ dilemma as to whether
the cooperative or the noncooperative out-
come is rational or logically determinate.
Therefore, it can hardly be granted that, as

m
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Olson contends, in the absence of sanctions
in a latent group “it is certain that a collec-
tive good will not be provided,” whereas in
an intermediate group the result is merely
indeterminate. The clarity of the analogy
between the logic of collective action and the
strategic structure of the prisoners’ dilemma
game makes it seem likely (as suggested
above) that the differences in the statistics
of success for the intermediate and latent
groups is a function of statistics on, for ex-
ample, the social distribution of distrust; but
in any case it is not a derivation from the
logic inherent in the group interactions.

APPENDIX: PROOF OF THEOREM

‘Assume a group of m player-members in a
game of collective action as defined with a
ratio r of benefits to payments. When an
outcome of class P, obtains for & players, its
complementary outcome of class Nn_x ob-
tains for the other players. Let (Py, Nms)
represent the & outcome set for the game: it
is the set of all outcomes which are of class
P, for k players and of class N for (m — k)
players. (The total number of outcomes
represented by this set is m!/k!(m — k)!.
For instance, when k = m, all players are in
the single outcome of class P, .) Finally, let
cms Tepresent the number of players who pre-
fer outcome P, to un outcome of the set k.

In order to demonstrate that P, is a
Condorcet choice among the set of realizable
outcomes of the m-person game of collective
action, we need only show that, for each
k<m,

(In) Cmk > m/2, or
(1b) Cmk > Cim , OT
(1e) theoutcomesinset k are not realizable.

Let us note two general conditions before
proving the theorem. The condition which
renders an outcome not realizable is that in
that outcome some player receives a payoff
less than his minimuax, i.e., less than zero.
If p. represents the payoff to a player in an
outcome of class Py, and n,_i the payoff to a
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playerin the complementary outcome of class
Nt , then

@ pt = kr/m — 1, and
3) Nt = kr/m.
By definition it follows that:

Condition 1. The outcomes of the k out-
come set are not realizable if p, < 0.

The payoff at Ppis (r — 1). At Py, k < m,
the payoff is p» < (r — 1). It follows that:

Condition 2. The k players in an outcome
of class P, k < m, prefer outcome P,, to
P,.

Proof of the theorem

To prove the theorem, we must show that
requirement (1) is met for three possible
valuesof k: (I} k > m/2; (II) k < m/2; and
(II1) k = m/2.

Region (I)

k>m/2

By Condition 2, P,, is preferred to P, by k
players, so that cm > m/2. Requirement
(1a) is met.

Region (IT)

) k< m/2

There are three regions in the value of the
payoff to the players not paying: (a) kr/m <
(r = 1); (b) kr/n = (r — 1); and (c)
kr/m > (r — 1). We must show that re-
quirement (1) is met in each of these regions,

kr/m < (r — 1) (a)

In this region, it is clear from (2) and (3)
that all players prefer P, to the set (P,
Nu-). Hence, requirement (1a) is met.

kr/im = (r — 1) (b)
It follows that

kr = mr — m, or

5) (m — k)r = m.
But from (4), we have
6) m > 2k
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From (3) and (6) we have
@k — k)r < m, or
(7) kr/m < 1,

But the payoff to those who pay is, accord-
ing to (2),

P = kr/m — 1.
From (7) it follows that

P <1-—=1or

e < 0.

From Condition 1 it follows that the out-
comes of the & outcome set are not realizable,
Hence, requirement (1¢) is met.

Yr/m > (r = 1). (c)

By un argument almost. identieal to that
for the condition of (b) above, we have

kr>mr —m, or
(m — k)r < m.
From (6) it follows that
kr < m, or
kr/m < 1,

This is the same as (7); from the argument
above it follows that requirement (lc) is
met,

Region (III)

k= m/2
It follows from (2) and (3) that
) pe=7r/2 =1 and
9) N = 1/2,

As in (II), there are three possibilities: (a)
r/2<r = 1;(b) /2 =r — 1;and (¢)
/2> -1

/2 < r—1. (a)
In this region, it is clear from (8) and (9)
that all players prefer outcome P.. to the

set (Pu, N,.). Hence, requirement (la)
is met.
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(10) r/2 =7 -1, (b)

From Condition 2 it follows that m/2
players prefer P, to the set (P, Nu);
and from (9) it follows that the other m/2
players are indifferent in.the choice between
P, and this set. Hence, cmt = m/2, cam = 0,
s0 that cm > cim. Requirement (1b) is
met.

r/2>r -1, (c)

F follows that
r/2 < 1.
Hence, from (8) we have
p<1l-—1 or
P <O0.

From Condition 1 it follows that the out-
comes of the k outcome set are not realiz-
uble. Hence, requirement (le¢) is met.
Requirement (1) is met for all values of
r and m, so that there exists a Condorcet
choice among the set of realizable outcomes
in a game of collective action. Moreover, in

almost every case, either (a) or (c) of re-
quirement (1) is met; for all these cases, P,,
is therefore a strong Condorcet choice. The
only exception to this is case (IIIb), in
which requirement (1b) is met; in this case,
m is divisible by 2, and from (10) it can be
seen that r = 2. Consequently, P, is a
weak Condorcet choice among the realiz-
able outcomes in a game of collective ac-
tion in which there is an even number of
players and r = 2. The theorem is proved.
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There’s always something
one’s ignorant of

About anyone, however well
one knows them; :

And that may be something of
the greatest importance.
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