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Abstract. This paper describes our approach to enable Gandalf VMM (Virtual
Machine Monitor) to be interruptible. Although Gandalf is shown to be a lightweight
VMM, the detailed performance analysis using PMC (Performance Monitoring
Counters) showed Gandalf executes with interrupts disabled for a rather long
duration of time. By making Gandalf interruptible, we are able to make VMM
based systems more suitable for embedded and ubiquitous systems. We analyzed
the requirements to make Gandalf interruptible, designed and implemented the
mechanisms to realize it. The experimental results shows that making Gandalf
interruptible significantly reduces a duration of execution time with interrupts
disabled while it does not impact the performance.

1 Introduction

As embedded and ubiquitous systems are rapidly moving towards having multi-core
CPUs in order to balance performance and power consumption, there is more need for
virtualized execution environments to be used in those systems. Such virtualized exe-
cution environments are realized upon virtual machine monitors (VMMSs) [4]. VMM
based systems enable the provision of secure and reliableffiggtre execution envi-
ronments.

A major barrier of employing VMMs on embedded and ubiquitous systems is their
limited resources. In order to overcome such a barrier, we have been developing a
lightweight VMM, called Gandalf, that targets those resource constrained systems [7,
8]. It currently operates on IA-32 CPUs, and two independent Linux operating systems
(OSes) concurrently run on it as its guest OSes. The code size and memory footprint
of Gandalf is much smaller than that of full virtualization. The number of the modified
parts and lines is significantly fewer than paravirtualization, so that the cost to bring up
a guest OS on Gandalf is extremely cheap. Guest Linux on Gandalf performs better than
XenLinux. Therefore, Gandalf is arffieient and lightweight VMM that suits resource
constrained embedded and ubiquitous systems.

The detailed performance analysis, which was performed by using CPU’s perfor-
mance monitoring counters (PMC), also revealed Gandalf executes with interrupts dis-
abled for a rather long duration of time [8]. This is because Gandalf handles events that
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are reported as faults, and such handling of faults is usually done with interrupts dis-
abled. There paper describes ofibg to improve Gandalf’s real-time performance. We
analyzed the requirements to make Gandalf interruptible, designed and implemented the
mechanisms to realize it. The experimental results show that making Gandalf interrupt-
ible significantly reduces a duration of execution time with interrupts disabled while it
does not impact the performance.

The rest of this paper is organized as follows. Section 2 describes the overview of
Gandalf VMM. In Section 3 we describe how we made Gandalf interruptible. Section
4 shows the performance of interruptible Gandalf and Section 5 describes the related
work. Finally, Section 6 concludes the paper.

2 Overview of Gandalf

This section describes the overall architecture of Gandalf, a multi-core CPU oriented
lightweight VMM. It targets the IA-32 architecture [6] as a CPU and Linux as a guest
OS. Fig. 1 shows the structure of a Gandalf VMM based system. Gandalf is a Type-
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Fig. 1. Structure of Gandalf based system

I VMM, which executes directly upon a host physical machine and creates multiple
virtual machines for guest OSes. The virtual machines are isolated from each other, so
that a guest OS can execute independently on each virtual machine. Gandalf keeps the
management of physical hardware resources as simple as possible in order to implement
a lightweight VMM for embedded systems. Therefore, Gandalf tries to manage resource
spatially rather than temporarily whenever possible. For example, Gandalf maps one
physical CPU to one virtual CPU while many other VMMs multiplex multiple virtual
CPUs on one physical CPU to be shared among multiple virtual machines. Gandalf’'s
spatial resource management scheme enables a simpler and smaller implementation and
then leads to a lightweight VMM, while the multiplexing model tends to impose higher
overheads for the management of virtual CPUs and virtual machines. In this paper, we
use the term VMM interchangeably to mean Gandalf if not otherwise specified.



The |A-32 architecture provides 4 privilege levels (rings) from 0 to 3. A numerically
less privilege level is more privileged; thus, Ring 0 is the most privileged. Some impor-
tant instructions, which operate on the machine state, are called privileged instructions,
and can be executed only in Ring 0. As the left part of Fig. 2 shows, Linux normally
executes its kernel in Ring 0 and its user processes in Ring 3. Thus, the kernel can
manage CPUs using privileged instructions and can protect itself from user processes.
A VMM needs to be executed in a more privileged (numerically less) level than Linux
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Fig. 2. Privilege level usage

kernels because the VMM has to manage CPUs and Linux kernels. Therefore, as the
right part of Fig. 2 shows, we execute the VMM in Ring 0 and the Linux kernels in
Ring 1, which is one level less privileged than the VMM. Because we moved the Linux
kernels from Ring 0 to 1, their uses of privileged instructions cause general protection
faults. The VMM handles those faults to emulate privileged instructions appropriately.
The privileged instruction emulator of Gandalf handles faulted instructions. The emu-
lator first reads the instruction words at a faulted address and decodes them to find out
which instruction caused the fault. Decoding instructions is complicated especially for
IA-32 because of variable length instruction words. A lightweight emulator requires a
simpler instruction decoder. Thus, the emulator handles only the privileged instructions
that the Linux kernels execute.

Native Linux kernels normally use all the physical memories in the system. How-
ever, when executing multiple Linux kernels on a VMM at the same time, they need to
divide up the physical memory. We allocate the upper area of the physical address space
for the VMM, divide the remaining area, and allocate a divided part for each Linux. The
left most part of Fig. 3 shows the physical memory map. Shadow paging is used to en-
force Linux kernels to use only the allocated physical memories [8]. Shadow paging
lets Linux kernels manage their own page tables (guest page tables) and separates them
from the shadow page table that is referenced by a physical CPU. The VMM manages
the shadow page table in order to keep its consistency with guest page tables and also to
observe improper uses of physical memories. Concerning a virtual address space, there
needs to be an area where a VMM resides. Linux kernels, however, normally use all the
virtual address space, which overlaps the virtual memory area for the VMM. To avoid
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Linux kernels accessing the VMM, we exclude the virtual memory area for the VMM
from the available virtual memory for Linux kernels by modifying the source ¢ode.
We also use the segment mechanism to limit the accessible virtual memory space. For
simplicity, we allocate the upper area of the virtual address space for the VMM.

3 Interruptible Gandalf

We have shown that Gandalf is a lightweight VMM from intensive performance evalu-
ations using CPU'’s performance monitoring counters (PMC) [8]. The evaluations using
PMC also revealed Gandalf executes with interrupts disabled for a rather long dura-
tion of time. This is because Gandalf handles events that are reported as faults, such as
general protection faults and page faults. A guest Linux’s execution of a privileged in-
struction causes a general protection fault, and Gandalf handles the fault to emulate the
instruction. When a page fault occurs, Gandalf handles the fault to maintain the shadow
page table. It is natural for those faults to be handled with interrupts disabled because
the causes of those faults are themselves indivisible.

Embedded systems require quick and timely responses to interrupts. An interrupt
can be an event that processes have been waiting for; thus, in that case, it unblocks
those processes. For example, a timer interrupt unblocks a process that has been sleep-
ing for a certain time. Gandalf enables the quick and timely handling of an interrupt by
a guest OS when it is not running. An interrupt invokes the guest Linux’s correspond-
ing interrupt handler directly without Gandalf’s intervention. This is possible because
Gandalf’s spatial resource management scheme maps one physical CPU to one virtual
CPU and it is guaranteed that all interrupts go to the same guest Linux.

If a lower priority process caused a fault and invoked a VMM before the timer inter-
rupt occurred, however, the delivery and handling of the interrupt is delayed because the
VMM executes with interrupts disabled. Such a delay of handling an interrupt causes
the priority inversion problem. Therefore, it is important for a VMM to be interruptible,
so that it can handle an interrupt that occurs even while the VMM are handling a fault.

1 Only one line of a modification is needed for this change.



We successfully made Gandalf interruptible and reduced a duration where Gandalf
executes with interrupts disabled. The rest of this section describes in detail the design
and implementation of interruptible Gandalf.

3.1 Rationale

We first investigate the mechanisms to make Gandalf interruptible. Supposing Gandalf
is interruptible, Fig. 4 depicts an example execution path that Gandalf responds to an in-
terrupt, which occurred when Gandalf is handling a page fault of a user process. When
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Fig. 4. Example of an execution path to invoke Linux’s interrupt handler in order to respond to
an interrupt that occurred when Gandalf is running

Linux’s user process causes a page fault, Gandalf’s page fault handler is invoked. An
interrupt occurs while the page fault handler is still running. Since the corresponding
interrupt handler is in the Linux kernel and a CPU does not allow a handler in a lower
privilege ring to be invoked, an attempt to invoke the handler in Ring 1, which is for
the Linux kernel, causes a general protection fault. Gandalf's general protection fault
handler finds that the interrupt caused the fault; thus, it manually invokes the Linux’s
corresponding interrupt handler. When Linux finishes the interrupt handling, it exe-
cutes the IRET instruction to return from the handler. Such an execution of IRET again
causes a general protection fault because IRET cannot be used to return to the higher
privilege ring. Gandalf’s general protection fault handler takes this chance to resume
the execution of the page fault handler.

This example suggests that, in order to handle interrupts occurred during Gandalf’s
execution, Gandalf needs to support the nest of traps because the appropriate handling
of general protection faults is required during the original trap handling. Specifically,
interruptible Gandalf needs to be able to invoke Linux’s interrupt handler during Gan-
dalf's execution and to have the handler return to Gandalf to resume its execution. In
this scheme, during the execution of Linux’s kernel or user process, an interrupt still
can directly invoke Linux’s interrupt handler without Gandalf’s intervention. Since the
execution is in the Linux for the most of time, it is advantageous to keep the lightweight
interrupt handling implemented in Gandalf.



3.2 Invoking Linux’s Interrupt Handler

If an interrupt occurs during the execution of Gandalf with interrupts enabled, the in-
vocation of Linux’s interrupt handler causes a general protection fault because of the
IA-32's protection architecture as described above. Gandalf’'s general protection fault
handler is invoked by two reasons, Linux’s execution of privileged instructions and in-
terrupts; thus, it has to be able tdfdrentiate between them and to identify the exact
cause of the fault. The handler can distinguish interrupts from the execution of priv-
ileged instructions by looking at the error code of a fault. A general protection fault
pushed an error code onto the VMM stack, and its valuefiemint for each reason.
If it finds the fault was caused by an interrupt, it reads the ISR (In-Service Register) in
APIC (Advanced Programmable Interrupt Controller) to obtain the interrupt number;
therefore, all information needed to invoke Linux’s interrupt handler can be obtained.
Once Gandalf’s general protection fault handler obtains the necessary information
to invoke Linux’s interrupt handler, Gandalf sets up the stacks of Gandalf and the Linux
kernel to prepare for the invocation. Both of the stacks need to be manipulated because
they carry diferent information. The preparation takes the following three steps. First,
Gandalf saves the current context by copying the current stack frame on the Gandalf
stack to the old context save area, which was allocated in advance at the boot time (Fig.
5 (1) save). It also need to save some additional bytes above the current frame because
they are corrupted by the third step, which will be described below. Only one save area
is needed because the following interrupts are handled directly in Linux and can avoid
general protection faults. Second, Gandalf pushes the interrupted context information
onto the Linux kernel stack and creates the structure as if the interrupt directly invoked
the Linux’s interrupt handler (Fig. 5 (2) copy). The pushed data is used to return to
Gandalf after Linux’s interrupt handler finished handling the interrupt. The next section
describes the returning to Gandalf in detail. Finally, Gandalf sets up the stack frame on
the Gandalf stack so that it can upcall Linux’s handler using the IRET instruction (Fig. 5
(3) copy). IRET restores the data, such as the instruction pointer (EIP), the stack pointer
(ESP), and the text and data segment selectors (CS, DS), which were pushed onto the
Gandalf stack by the third step, and then the execution starts from the address specified
by EIP at the privilege specified by CS. Since the current implementation pushes the
DS and ESP values onto the previous trap stack frame and corrupts 8 bytes, they are
also saved in the first step described above.

3.3 Returning to Gandalf

After Linux’s interrupt handler finished handling an interrupt, Linux executes the IRET
instruction to resume the interrupted execution. When Gandalf invokes Linux’s inter-
rupt handler as described above, the execution of IRET with the stack frame created
by Gandalf causes a general protection fault. The CS in the stack frame to be used by
IRET points to Gandalf’s text segment, of which privilege is higher than Linux’s seg-
ment. Since IRET does not allow the execution to return to the higher privilege, Gandalf
receives a general protection fault handler and finds that Linux’s interrupt handler fin-
ished its execution.
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Fig. 5. Manipulation of Gandalf and the Linux kernel stacks for the preparation to invoke Linux’s
interrupt handler from Gandalf

When Gandalf's general protection fault handler finds that the cause of a fault is
Linux's execution of IRET and also that there is valid information saved in the old
context save area, it determines that is needs to resume the interrupted execution. The
information to be restored was saved at the first step to invoke Linux’s interrupt handler
(Fig. 5 (1) save). Gandalf restores the interrupted context by copying data from the
old context save area back to the Gandalf stack (Fig. 6) and makes the stack the same
as the point when interrupt just occurred. Gandalf then executes IRET to return to the
interrupted point and resume the execution.

3.4 Implementation

We implemented the mechanisms to make Gandalf interruptible described in the previ-
ous sections, and enabled interrupts at the following sections in Gandalf:

— handlesetpte() hypercall,

— flush.shadowpgd() hypercall,

— a part of the page fault handler where the shadow page table is updated,
— INVLPG emulator in the general protection handler.

These sections manipulate shadow page tables and the number of executing instructions
are large; thus, making these sections interruptible are consideredffedté/e in order
to decrease the total number of interrupt masked cycles in Gandalf.
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4 Performance

We experimented with a single guest OS to evaluate the costs to make Gandalf inter-
ruptible and its improvement in the total number of interrupt masked cycles in Gandalf.
We used the Dell Precision 490 equipped with the Intel Xeon 5130 2.0 GHz processor.
We used Linux 2.6.18 with few changes required for the guest OS to run on Gandalf
VMM. We employed PMC (Performance Monitoring Counter) to measure the total
number of interrupt masked cycles. The experiment to measure the interrupt latency
was also performed. We performed the same experiments with the native Linux 2.6.18
and paravirtualized XenLin®on Xen 3.1 [1], and compared their results with those of
Gandalf.

4.1 Evaluation with LMbench Microbenchmark

First, we show the results from the LMbench benchmark programs [11] in Fig. 7. The
LMbench consists of a number of benchmark programs that measure the basic operation
costs of an OS. We chose three programs, pipe latency, process fork-and-exit and pro-
cess fork-and-exec, to make the baseline of the performance. From the results, we can
compare the performance of interruptible Gandalf with the non-interruptible version of
Gandalf, the original Linux, and Xen.

The results show that Linux on Gandalf performs slightly slower than the original
Linux for those benchmark programs, but much faster than Xen. Although Xen applies
paravirtualization to XenLinux for better performance, Gandalf outperforms Xen by its
simple and lightweight design and implementation.

The diferences between the interruptible and non-interruptible versions of Gandalf
are negligible. Interruptible Gandalf slows down only 5% at most for process fork-
and-exit, but it performs almost the same (less than 1%) for the rest of the benchmark
programs.

2 This version of XenLinux is also based on Linux 2.6.18. Therefore, we used the same version
2.6.18 of the original Linux, XenLinux, and Linux on Gandalf for fair comparisons.
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Fig. 7. Basic performance evaluation performed by using the LMbench benchmark programs

4.2 Interrupt Masked Cycles

We further analyze the fierences between the interruptible and non-interruptible ver-
sions of Gandalf by using PMC (Performance Monitoring Counter) provided by the
target CPU. PMC counts the number of occurrences of the selected events. PMC can
also be configured to count an event that occurred only when the execution is in Ring 0.
By this feature, we can see what portion of the number of events occurred in a VMM,
which executes in Ring 0. There are many kinds of events PMC can count, such as L1
and L2 cache misses, TLB misses, and so on. We used PMC to investigate why Gandalf
outperforms Xen and found that the memory footprint is the major source of overheads
in Xen [8].

This paper focuses on the CYCLERT _MASKED event, by which PMC counts
the cycles when interrupts are disabled (masked). We used the three programs that are
not from the LMbench benchmark but function the same as them. Fig. 8 shows the
results of the measurements that were performed on the both versions of Gandalf and
the original Linux. For the both versions of Gandalf, the measurements were performed
to count events occurred in all protection rings and only in Ring 0. The events in Ring
0 means that they occurred during the execution of Gandalf only.

The results show that the interrupt masked cycles are significantly reduced on in-
terruptible Gandalf for the process fork-and-exit and process fork-and-exec programs.
The results from the pipe latency program are almost the same. As described in Sec-
tion 3.4, Gandalf currently enables interrupts only during certain sections, which are
considered large enough, so that the costs of upcalling Linux’s interrupt handler pays.
Those sections are mostly related to the manipulation of shadow page tables. The pro-
cess fork-and-exit and process fork-and-exec programs exercises those sections that are
made interruptible. Therefore, we see the significafiettnce. On the other hand, the
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execution of the pipe latency program does not involve the manipulation of shadow

page tables; thus, we do not see any improvement.

4.3 Interrupt Latency

Finally, we show the measurement results of the interrupt latency on the both versions
of Gandalf, the original Linux, and Xen, in Fig. 1. We measured the latency from the
time the interrupt handler in the Linux kernel starts to handle the interrupt until the
time the process waiting for the interrupt resumes its work, using the RTC (Real-Time

Clock) device.

Table 1. Results of interrupt latency

|Native LinuxGandalfinterruptible Gandalf Xen

TSC countsJ

21868
latency fisec

22908
10.96

11.48

22977
11.52

23902
11.98

Comparing with the native Linux, interruptible Gandalf is 5.1% slower while the
non-interruptible version of Gandalf is 4.8% slower. Th&eatences between the in-
terruptible and non-interruptible versions of Gandalf are very small and negligible. Al-
though Gandalf is slower than the native Linux, it can respond to the interrupt faster

than Xen.

The evaluation results described in Section 4 have shown thafithvé @& making
Gandalf interruptible significantly reduced the sections where interrupts are disabled
while it does not impact the performance. We, however, need to investigate where we
can further reduce the sections where interrupts are still disabled.



5 Related Work

There have been lots offerts to make OS kernels preemptive in order to improve the
real-timeliness of systems. Preemptive kernels can dispatch a higher priority process,
which was made runnable by an event, such as an interrupt or a message, while another
process is executing in the kernel. Non-preemptive kernels allow another process to
be dispatched only at the certain point where the current process finished its execution
in the kernel and is returning to the user level. There are mainly two approaches to
make kernels preemptive. One is to place multiple preemption points where the current
process can be safely preempted. The DEC ULTRIX [2], Sun OS 5.0 [9], and Linux
2.6's CONFIGPREEMPT option took this approach. The other approach is to handle
interrupts in the context of kernel threads and to make such interrupt handling threads
schedulable. Sun Solaris [10] took this approach, and there iff@m ® incorporate

such changes in Linux [13]. This approach, however, requires the significant changes to
the kernel software architecture and thus quite a number of modifications in the kernel
source code. L4 [5] is a microkernel that convert interrupts into IPC messages, and then
threads handle the messages at the user level. L4 microkernel itself is, however, not
preemptive. REAUX [3] comes between the two approaches.

Our work is somewhat similar to the abov@agts to make OS kernels preemptive,
supposing an OS kernel is a VMM and a user process is a guest OS. Our work is, how-
ever, inherently dferent since the major components of a VMM are the handlers of
exceptions and faults, of which causes are themselves indivisible. We incorporated the
first approach, placing preemption points, to make our VMM interruptible. Although
the approach itself is not new, the architecture of the target software system is com-
pletely diferent; thus, this work is a step to make VMMs more suitable for embedded
systems.

6 Conclusion

We described our approach to enable Gandalf VMM to be interruptible. Although Gan-
dalf was shown to be a lightweight VMM, the detailed performance analysis using
PMC showed that Gandalf executes with interrupts disabled for a rather long duration
of time. By making Gandalf interruptible, we are able to make VMM based systems
more suitable for embedded and ubiquitous systems. We analyzed the requirements
to make Gandalf interruptible, designed and implemented the mechanisms to realize
it. The experimental results showed that making Gandalf interruptible significantly re-
duced a duration of execution time with interrupts disabled while it did not impact the
performance. We will further investigate where we can reduce the sections where inter-
rupts are currently disabled.
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