

Architecture, Design, Implementation

Amnon H. Eden
Center for Inquiry, Amherst, NY, and

Department of Computer Science,
University of Essex, United Kingdom

Rick Kazman
Software Engineering Institute, Pittsburgh, PA

and University of Hawaii, Honolulu, HI

eden@acm.org kazman@sei.cmu.edu

Abstract

The terms architecture, design, and implementation are
typically used informally in partitioning software specifi-
cations into three coarse strata of abstraction. Yet these
strata are not well-defined in either research or practice,
causing miscommunication and needless debate.

To remedy this problem we formalize the Intension and
the Locality criteria, which imply that the distinction be-
tween architecture, design, and implementation is quali-
tative and not merely quantitative. We demonstrate that
architectural styles are intensional and non-local; that
design patterns are intensional and local; and that imple-
mentations are extensional and local.

If people do not believe that mathematics is simple, it is only
because they do not realize how complicated life is.

— J. H. von Neumann

1. Introduction

In their seminal article, Perry and Wolf �[24] developed
“an intuition about software architecture through analo-
gies to existing disciplines.” Building on this, Shaw and
Garlan �[31] suggest that “software architecture involves
the description of elements from which systems are built.”
A considerable body of work, stemming back to DeRemer
and Kron’s module interconnection languages (MIL) �[7],
focuses on the specification, construction, and analysis of
large software systems defined by these terms (e.g., �[26],
�[21], �[15]). For example, architecture description lan-
guages (ADL) combine a formal specification language
with tools supporting the construction and analysis of
software systems from such specifications.

Seeking to separate architectural design from other de-
sign activities, definitions of software architecture stress
the following:

� “Architecture is concerned with the selection of archi-
tectural elements, their interaction, and the constraints
on those elements and their interactions… Design is
concerned with the modularization and detailed inter-
faces of the design elements, their algorithms and pro-

cedures, and the data types needed to support the archi-
tecture and to satisfy the requirements.” �[24]

� Software Architecture is “concerned with issues ... be-
yond the algorithms and data structures of the compu-
tation.” �[16]

� “Architecture … is specifically not about … details of
implementations (e.g., algorithms and data structures.)
… Architectural design involves a richer collection of
abstractions than is typically provided by OOD.” �[23]

� “Architecture ��'HVLJQ"�«�'HVLJQ� LV� DQ� DFWLYLW\��$r-
chitecture, or architectural design, is design at a higher
level of abstraction.” �[18]

� Architecture focuses on the externally visible proper-
ties of software “components.” �[2]

In suggesting typical “architectures” and “architectural
styles”, existing definitions consist of examples and offer
anecdotes rather then provide unambiguous, clear notions.

In practice, the terms “architecture”, “design” and “im-
plementation” appear to connote varying degrees of ab-
straction in the continuum between complete details (“im-
plementation”), few details (“design”), and the highest
form of abstraction (“architecture”). But the amount of
detail alone is insufficient to characterize the differences,
because architecture and design documents often contain
information that is not explicit in the implementation (e.g.,
design constraints, standards, performance goals) and
therefore they cannot result from mere omission of detail.
Thus, we would expect a distinction to be qualitative and
not merely quantitative. A clear distinction has remained
elusive and this lack of distinction is the cause of much
muddy thinking, imprecise communication, and wasted,
overlapping effort.

As a result, architecture is often used as a mere syno-
nym for design. For example, the “Siemens” catalogue �[4]
defines “architectural patterns” that are in par with “de-
sign patterns” defined by the “Gang of Four” �[14].

Confusion also stems from the use of the same specifi-
cation language for both architectural and design specifi-
cations. For example, the Software Engineering Institute
(SEI) classifies UML �[3] as an architectural description
language �[30], and it has become the industry de facto
standard ADL, although UML was specifically designed

to manifest detailed design decisions (and this is its most
common use).

Confusion also exists with respect to the artifacts of
design and implementation. UML class diagrams �[3], for
instance, are a prototypical artifact of the design phase.
Nonetheless, class diagrams may accumulate enough de-
tail to allow code generation of very detailed programs, an
approach that is promoted by CASE tools such as Ra-
tional Rose® �[28] and System Architect® �[25]. Using the
same specification language further blurs the distinction
between artifacts of the design (class diagrams) from the
implementation (source code.)

Intended contribution. Why are we interested in such
distinctions? Naturally, a well-defined language improves
our understanding of the subject matter. With time, terms
that are used interchangeably lose their meaning and end
up as mere platitudes, resulting inevitably in ambiguous
descriptions given by developers, and significant effort is
wasted in discussions of the form “ by design I mean…
and by architecture I mean… ” The formal ontology we
provide can serve as the ultimate reference point for these
discussions.

The contribution of this paper is to provide insight on
the largely informal dialectic by appealing to both intui-
tion and to formal ontology. By putting these terms on a
solid footing not only do we disambiguate the progres-
sively murky discourse in “ architectural specifications”
but provide a foundation for formal reasoning and analy-
sis, as well as a firm foundation for informal “ chalk-talk”
discussions. Finally, tools supporting design and architec-
tural specifications, where intuitive perceptions are insuf-
ficient, will benefit by accurately defining this distinction.

Many of the required definitions were rendered infor-
mal and the proofs were omitted in this version of our
work. The interested reader can find the complete defini-
tions in �[12], and additional details on the design models
formalism can be found in �[9]. Instead, we argue our
points with informal illustrations and discussions.

1.1 The Intension/Locality Thesis

To elucidate the relationship between architecture, de-
sign, and implementation, we distinguish at least two
separate interpretations for abstraction in our context:

Intensional (vs. extensional) specifications are “ ab-
stract” in the sense that they can be formally characterized
by the use of logic variables that range over an unbounded
domain;

Non-local (vs. local) specifications are “ abstract” in
the sense that they pervade all parts of the system (as op-
posed to being limited to some part thereof).

Both of these interpretations contribute to the distinc-
tion among architecture, design, and implementation.
This combination of these interpretations leads us to the
intension/locality thesis:

(i) Architectural specifications are intensional and
non-local;

(ii) Design specifications are intensional but local;
and

(iii) Implementation specifications are both exten-
sional and local.

The intension/locality thesis is summarized, for easier
reference, in Table 1.

Table 1.� The Intension/Locality Thesis
Architecture Intensional Non-local
Design Intensional Local
Implementation Extensional Local

1.2 Structure of This Paper

The intension/locality thesis can be understood cor-
rectly only in the context of the ontology provided below.
In Section �2 we define design models, which are crucial to
the remainder of our discussion. Design models are ab-
stractions which allow a formal “ meaning” assigned to
programs, also called “ denotation” . This formalism allows
us to determine whether a specification is “ satisfied” by a
program.

In Section �3, we formally define the Intension criterion
and the Locality criterion. We distinguish our interpreta-
tion for “ intensionality” from the accepted usage, as we
define it in terms of design models.

Sections �4, �5, and �6, provide case studies in applying
the Intension and Locality criteria using our formal ontol-
ogy. In Section �4 we demonstrate that implementations in
any programming language, including generics and C++
templates are extensional and local. In Section �5 we show
that design patterns, such as the Factory Method, and de-
sign specifications, such as the Enterprise JavaBeans™
and Java™ Swing’s MVC, are intensional and local. In
Section �6 we demonstrate that architectural styles such as
Pipes and Filters and Layered Architecture are intensional
and non-local, and so is the Law of Demeter.

In Section �7, we discuss some of the ramifications of
our criteria. The discussion of UML class diagrams in
Section �7.2 reveals that class diagrams have a separate
place in the hierarchy of abstractions we describe. Section
�8 summarizes the contributions of this paper.

2. Setting the Scene

In this section, we illustrate the formal ontology that
underlies our discussion. This ontology is based on giving
an abstract “ meaning” to programs using design models.

2.1 Design Models

Turing and random-access machines provide robust
computational models that are primarily suitable for rea-
soning about algorithms. Other computational models and
formalisms (e.g., Petri nets, statecharts, and temporal
logic) facilitate reasoning about certain behavioral proper-
ties.

The discussion in architectural and design specifica-
tions, however, involves reasoning on constructs such as
classes, methods, and function calls. Most other formal-
isms incorporate too much implementation detail and do
not allow a discussion in the appropriate level of abstrac-
tion. As we seek to establish the relation between architec-
tural or design specifications and implementations, we
base our discussion on a different formalism, one which
abstracts programs to a more convenient representation.

Eden and Hirshfeld �[11] demonstrate how to model
source code as design models, which are first order, finite

structures in mathematical logic �[1]. Informally, a design
model Md �[11] consists of a set of atoms and a set of rela-
tions among those atoms.

Table 2 depicts a detailed example of a trivial Java™
program and a design model that represents it. As this
example demonstrates, an object-oriented program is ab-
stracted to a collection of classes and methods (also rou-
tines or function members) and their relations. Atoms rep-
resent classes and methods that were defined in the pro-
gram, such as the class Decorator and the method
Decorator.Draw. Relations represent their correlations,
such as

)NHERIT�BorderDecorator�Decorator	Å

 (1)

Note that design models are abstractions which were
made to reflect certain structural aspects of computer pro-
grams that are relevant to the discussion in software de-
sign theory. Obviously, this representation limits the type
of reasoning we may perform to properties that are rele-
vant to the discussion in classes, methods, and their inter-
dependencies, as opposed to the discussion in dynamic
properties such as fairness and complexity.

2.2 Specifications and Instances

In this subsection, we discuss specifications and pro-
grams, and illustrate how the two correlate. We make
some reasonable assumptions on the languages used to
write specifications.

Let us designate +(�� as the set of formal languages
of any order �[1]. Let +(��
 designate the set of all ex-
pressions made in some language in +(��. A specifica-
tion is an element of +(��
.

+(�� includes familiar specification languages such
as ' �[32], as demonstrated in formulas (5.1) and (5.2),
and LePUS �[8], as demonstrated in formula (4). +(��
also includes programming languages such as Eiffel, C++,
and Java™. Naturally, +(�� is not restricted to known
programming or specification languages.

A specification is only useful if we can determine
whether it is “ satisfied” or not. Having chosen design
models as our semantics we wish to ask: Does this pro-
gram satisfy our specification? To answer this question,
consider for example the following trivial design specifi-
cation:

)NHERIT�X�Y	Å

 (2)

Expression (2) contains two free variables: X, Y. We
say that it can be satisfied by any pair of atoms that belong
to the relation)NHERIT. For example, from expression (1)
we conclude that the pair
�BorderDecorator�Decorator§ satisfies expression
(2).

Table 2.� A Java™ program and its denotation
(adapted from �[9].)

abstract class Decorator {
 public void Draw();
}
class BorderDecorator extends Decorator {
 public void Draw() {
 Decorator.Draw();
 }
 private int BorderWidth;
}

The design model of this program consists of the following:
Atoms:

“ class” atoms: [Decorator, BorderDecorator, int,
void]�Å“ Method” atoms: [BorderDecorator.Draw,
Decorator.Draw]

Relations:
!BSTRACT�Decorator	Å

-EMBER�Decorator.Draw, Decorator	Å

-EMBER�BorderDecorator.Draw, BorderDecorator	Å

)NHERIT�BorderDecorator, Decorator	Å

2EFERENCE�BorderDecorator, int	Å

)NVOKE�BorderDecorator.Draw, Decorator.Draw	Å

2ETURN4YPE�Decorator.Draw, void	Å

2ETURN4YPE�BorderDecorator.Draw, void	

Thus, we can say that the pair of atoms
�BorderDecorator�Decorator§ is an instance of (2),
and that the design model depicted in Table 2 instantiates
expression (2). A more formal definition of instance ap-
pears in �[12] and in �[9].

From this example, it should be clear that an instance
is not the same as a “ program” . Depending on the specifi-
cation, a program may contain zero, one, or any number
of instances. The following subsection formalizes the no-
tion of a program.

2.3 Programs and their Denotation

We expect a “ program” to be a specification that is as-
sociated with only one design model. The association be-
tween “ real” programs and design models is provided by
the denotation function. Loosely speaking, a denotation
function D has these properties:

� Its domain, denoted (D , is a subset of +(��
;
� D associates each element K�with exactly one design

model (its denotation) which instantiates K.

Typically, the domain of D contains expressions in
programming languages, such as C++ and Eiffel. More
formally, a program is an element in (D . Every design
model typically denotes infinitely many programs. Figure
1 illustrates the denotation associated between certain
specifications (“ programs”) and design models. Table 2
illustrates the denotation of a simple Java™ program and
Table 3 the denotation of a C++ program.

+(��*

(D

%

Java

C++

Figure 1.� A partially-layered program

Observe that the set of programs (D is only a small

subset of the expressions in +(��
, and that there are
many expressions in +(��
 that are instantiated by more
than one design model

We now have a well-defined notion of programs and
specifications. In combination with the definition of an
“ instance” of a specification, we can conclusively deter-
mine whether a program satisfies a given specification:
Definition I. We say that a program Q satisfies specifica-
tion K iff the design model of Q instantiates K.

This means that, for example, the Java™ program de-
picted in Table 2 satisfies expression (2).

In the following sections, we will set apart architecture,
design, and implementation specifications based on ob-
serving properties of the groups of programs that satisfy
each specification.

3. The Intension/Locality Criteria

We will now define the concepts of intension and lo-
cality, which will be applied, both formally and infor-
mally, to selected specifications in the following sections.

3.1 The Intension Criterion

Perry and Wolf �[24] have established that architectural
specifications must be made in intensional terms. Speak-
ing of the desired properties of an ideal specification lan-
guage for software architecture they write: “ We want a
means of supporting a ‘principle of least constraint’ to be
able to express only those constraints in the architecture
that are necessary at the architectural level of the system
description” . It constrains only what it needs to, in terms
of properties imposed over free variables.

Traditionally, intensional specifications define a con-
cept via a list of constraints. For example, mathematical
concepts are usually defined intensionally. For instance,
“ A prime number is a number that divides only by itself
and by the number 1” . In contrast, the North Atlantic
Treaty defines the set of NATO members extensionally,
namely, by itemizing its members: United States, United
Kingdom, Norway, and so forth.

The notion of intensionality defined below diverges
slightly from the philosophical concept. We say that a
specification is intensional if and only if it has an un-
bounded number of instances:
Definition II. We say that a specification is intensional iff
there are infinitely-many possible instances thereof. Con-
versely, all other expressions are extensional.

It immediately follows (as shown in �[12]) that inten-
sional specifications are also satisfied by infinitely many
design models and by infinitely many programs.

3.2 The Locality Criterion

Monroe et. al �[23] argue that “ Architectural designs are
typically concerned with the entire system.” Similarly, we
observe that an architectural style, which pervades a sys-
tem �[16], manifests a property that is shared across mod-
ules of the system. This intuition motivates the Locality
criterion: What distinguishes architectural from design
specifications is that architectural specifications must be
met by every extension of the program.

As a simple example, consider the rule of a “ universal
base class” . Although the language does not require it,
several C++ class libraries (e.g., NIHCL and Microsoft’s
MFC) are designed by this rule. Formally, this property
can be expressed as follows:

�CÅt#LASS�C	º)NHERIT
�C�Object	Å

 (3)

 (Where)NHERIT
 is the transitive closure of the binary
relation)NHERIT.) The intension/locality thesis argues that
Universal Base Class is architectural because (a) it is in-
tensional and (b) it pervades all parts of the system, i.e.,
every class must be bound to Object.

Subsumption. The formalization of the locality criterion
requires the notion of subsumption. Informally, we say
that structure N subsumes structure M if M is a “ sub-
model” of N , or that N is an “ extension” to M .
Definition III. We say that a specification K is local iff
the following condition holds:

If K is satisfied in some design model M then every
design model that subsumes M also satisfies K.

Essentially, Definition III states that an expression is
local if it can be satisfied in “ some corner” of our program
without this being affected in how the rest of the program
is like.

In the following sections, we apply the Intension and
Locality criteria to selected specifications to illustrate the
difference between programs, design specifications, and
architectural specifications.

4. Implementations

It immediately follows from the Intension criterion (as
shown in �[12]) that intensional specifications are also sat-
isfied by infinitely many design models and by infinitely
many programs. This leads us to prove part �(iii) of the
intension/locality thesis:
The lemma of “extensions”: Programs are extensional
specifications.

Following the ‘principle of least constraint’, we expect
architectural specifications to have an unbounded number

of instances, namely, to be “ intensional” . The same ap-
plies to design patterns. But what about other forms of
specifications? Can programs be intensional?

Prima facie, it appears that some programming specifi-
cations (such as C++ templates and Eiffel generics) might
also be intensional. This is not true in the context of de-
sign models: As demonstrated in Corollary 1, specifica-
tions in any programming language, including generics
and interpreted code are, under the assumptions provided
above, purely extensional:
Corollary 1. C++ templates are extensional.

To illustrate this, consider the design model of a C++
program with templates, such as shown in Table 3.

Table 3.� A C++ program and its denotation
template <class C> class Stack
 {/* ... /*}
int main() {
 Stack<int> si;
 return 0;
}

This program is interpreted by only one design model,
which consists of the following:

Atoms:
“ Class” atoms: [Stack�Åsi]Å"Method" atoms: [main]

Relations:
'ENERIC�Stack	Å

)NSTANTIATE�Stack�Åsi�Åint	Å

2ETURN�main�Åint	

Corollary 1 demonstrates that although generics may
be viewed as intensional with respect to other semantic
frameworks, e.g., because they can be used to define other
concrete constructs, the ontology we have provided as-
signs then with only one “ interpretation” . The reason is
that the formal semantics we chose for the representation
of programs are design models, which are more abstract
than the machine code generated from compilation and
from other formal frameworks.

To recap, the formal framework provided in Section �2
guarantees that expressions in all conventional program-
ming languages are extensional.

5. Design Specifications

By part (ii) of the intension/locality thesis, design
specifications should be local and intensional. Since de-
sign specifications are, in practice, defined informally, we
begin section with exploring the intuition behind our the-
sis. For the purpose of the formal analysis which follows,
however, we make use of formal specifications and apply
them to widely recognized designs.

5.1 Design Patterns

In this subsection, we focus on an example drawn from
the published patterns literature. This allows us to test our
ideas on some of the most widely used design specifica-
tions.

Coplien and Schmidt �[5] argue that “ design patterns
capture the static and dynamic structures of solutions that
occur repeatedly when producing applications in a par-
ticular context” . Stripped from the context of a particular
application, design patterns represent categories of solu-
tions, each pattern has an unbounded number of imple-
mentations (as implied by the very choice of the name
“ pattern”). Thus, they are expected to be intensional.

Design patterns are commonly perceived as “ less ab-
stract” than architectural specifications. For example, they
are commonly referred to as “ microarchitectures” �[29],
that is, as if they were like architectures that only apply to
a limited module. Using our terminology, we thus expect
them to be local.

Consider, for example, the Factory Method design pat-
tern �[14]. Essentially, the pattern’s solution offers three
sets of participants:

1. A set of product classes
2. A set of factory classes
3. A set of factory methods

The collaborations between these participants are con-
strained as follows:

4. All factory methods share the same signature (thereby
allowing for dynamic binding), and each is defined in a
different factory class.

5. Each factory method produces instances of exactly one
products class.

Figure 2 illustrates the general notion of the pattern.
Observe that the set of �FACTORY
I, FACTORY
METHOD
I,
PRODUCT
I§ triplets is unbounded, because the number of
possible FACTORY and PRODUCT classes is not bounded.

���������
	���

��� � �����

�� � 	����
������
���������
 �!�"

���������
	���

��� � ������
$# � 	����
�����
$#�������
 �!�"

���������
	��

��

���������
	��

�#

%'&�(�)*&�+

% &�(�)*&�+

. . .

. . .

. . .

Figure 2. The general structure of the “Factory

Method” pattern

For the discussion in design patterns we use LePUS, a
formal specification language for object-oriented design,
which is defined in detail in �[8]. The five statements in the
above listed definition of the Factory Method are formally
expressed by expressions (4.1) to (4.�5) as follows:

0RODUCTSÅ�Å0��	Å

&ACTORIESÅ�Å0��	Å

&ACTORY-ETHODSÅ�Å0��	Å

#LAN�&ACTORY-ETHODS�&ACTORIES	Å

0RODUCE , �&ACTORY-ETHODS�0RODUCTS	Å

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

Expressions (4.1) through (4.3) declare two sets of
classes and one set of methods. Expression (4.4) indicates
that the pair �&ACTORY-ETHODS�&ACTORIES§ satisfies
the predicate #LAN, meaning that –

� All “ factory methods” share the same signature (i.e.,
they share the same dispatch table);

� The relation -EMBER/F is a bijection (i.e., one-to-one
and onto function) between the sets &ACTORY-ETHODS
and &ACTORIES.

Finally, expression (4.�5) indicates that the ground rela-
tion 0RODUCE is a bijective function between the set
&ACTORY-ETHODS and the set 0RODUCTS.
Corollary 2. “Factory method” is intensional and local.

The composite expression (4.1) to (4.�5) is evidently in-
tensional, since each one of the free variables 0RODUCTS
and &ACTORIES (&ACTORY-ETHODS) can be instantiated
by any number of classes (methods). To show that it is
local, observe that if a design model M satisfies it then it
incorporates an instance of the pattern. It is then easy to
show that any proper “ extension” to M (i.e., any design
model that subsumes it) also contains the same instance of
the Factory Method, namely, the same set of atoms and
relations that satisfied the pattern in M .

The same line of reasoning can be applied to the speci-
fications of most of the design patterns from the Gamma
et. al �[14] catalogue, such as the specifications in �[8].

5.2 Other Design Specifications

The place of other design specifications within the in-
tension/locality classification may be less obvious then
that of design patterns. Thus, we have carried out our
analysis on the formal rendering of two additional design
specifications: MVC (Model-View-Controller) “ usage
pattern” in Java™ Swing class library, and of Enterprise
JavaBeans™.

In lack of space, we cannot quote here the formal
specifications but only the results of our analysis. The
interested reader may find both specifications in �[10], and
the complete proof for this conclusion in �[12]. We can
report that our analysis confirms that, as predicted by the
intension/locality thesis, both specifications fall under the
“ design” category, namely, they are intensional and local.

6. Architectural Specifications

In this section, we demonstrate that, as predicted by the
intension/locality thesis, two classic architectural styles
are both intensional and non-local. We also demonstrate
that the Law of Demeter is architectural.

6.1 Layered Architecture

Garlan and Shaw �[16] describe the layered architec-
ture such that “ An element of layer K may depend only on
elements of layersÅ ��bK.” We may formalize this de-
scription in ' as follows:

�EÅ��K�\�^t,AYER�E	�KÅ

(5.1)

(i.e., each element is defined in exactly one layer), and
�X�YÅtÅ

$EPENDS�X�Y	º,AYER�X	p,AYER�Y	Å

(5.2)

(i.e., the definition of each element may “ depend” only
on the definition of elements of same layer or of lower
layers.)
Corollary 3. “Layered architecture” is intensional and
non-local.

It is obvious that an unbounded number of programs
can satisfy the conjunction of formulas (5.1) and (5.2),
hence it is intensional. To prove that it is non-local we
show that, given any design model that satisfies this style,
the same design model can be extended with a new ele-
ment in the lower “ layer” such that this element depends
on a higher layer, thereby violating the specification.

We conclude that we may selectively apply a non-local
specification only to certain parts of a program. But what
does it mean? Does it compromise our results?

Discussion. Is it possible for a non-local specification,
such as layered architecture, to be applied only by one
part of a program? Obviously. That simply means that
parts of this program satisfy the non-local rule, while
other parts violate it. In fact, this property is exactly what
makes the layered architecture non-local: We say that it is
non-local because it may be violated anywhere. Figure 3
and the discussion which follows it illustrate this argument
using the Layered Architecture style. Does it mean that
non-locality is meaningless? Not at all. Non-locality is a
property of a specification, i.e., of an expression; and by
our thesis, architectural specifications are always non-
local. However, an architect may choose to apply a speci-
fication only to some parts of the system, and violate it in
others.

To summarize, it is not meaningless or contradictory to
state that architectural specifications can be applied selec-
tively such that they are violated by some parts of a spe-
cific program. In such a case, we say that the style no
longer characterizes this program (as a whole.) Formally:
Corollary 4. If a specification K is (deliberately) violated
in module M of program Q, then either one of the follow-
ing is true:

� K is not satisfied by Q, or
� M is not considered part of Q (i.e., it belongs to a sepa-

rate program.)

In the example of Layered Architecture (Figure 3), a
module that does “ layer bridging” (i.e., violates the layer-
ing principle) should not be considered as part of the lay-
ered program; instead, we perceive it a separate program.

While this conclusion may seem counter-intuitive at
first, it is actually a powerful view on exceptions to archi-
tectural constraints. A module that does layer bridging
requires different reasoning and management than the rest
of the layered system. It not only should, but also must, be
treated as an exception, or else the power of the layering
is compromised. Exceptions to an architectural style
should have attention called to them and be made the fo-
cus of intense analysis. Our reasoning provides a sound
basis for saying when a portion of a program is an excep-
tion to an architectural style.

6.2 Pipes and Filters

According to Garlan and Shaw �[16], “ In a pipes and
filter style each component has a set of inputs and a set of
outputs. A component reads streams of data on its inputs
and produces streams of data on its outputs.” Dean and
Cordy �[6] present a visual formalism defined as a context-
free grammar, and formulate the pipes and filter style as
depicted in Figure 4. Their specification is explained in
Figure 5 in more intuitive terms.

Program -/.

A
Layered

B
Layered

C
Not layered

Figure 3.� A partially-layered program. Only some

parts of program P 0 satisfy Layered Architecture, but
P 0 as a “program” does not satisfy the architectural

style.

More generally, a “ program” in STSA (*) is repre-
sented as a typed, directed multigraph. An architectural
style is defined as a context-free language. Thus, an ex-
pression in STSA defines a collection of graphs in a visual
notation, such as Figure 4. According to �[6], a “ program”
satisfies the pipes and filters architecture if it “ parses”
Figure 4. Figure 5 illustrates the kind of programs that
parse the grammar defined in Figure 4.

P&F+ + ::= + +

+ + P&F +

Figure 4.� Pipes and Filters (adapted from �[6]): Cir-

cles represent tasks, arrows represent streams. The
plus sign is the BNF symbol for “one or more.”

4 1

. . .

.

. . .4 2 4 3�4�1

3 1�5 1

3 1�5 671

3 2 5 1

3 2 5 6 2

3 3�5 1

3 3�5 683
Figure 5.� The general structure of programs that

parse Figure 4.

Before we can reason about Figure 4, we must estab-
lish which design models satisfy an STSA diagram. For
the purpose of our discussion in this section, it suffices to
restrict ourselves to multigraphs that contain “ tasks” and
“ streams” . More specifically, let ' designate a multigraph
whose nodes are “ tasks” and whose arcs are “ streams” . In
the denotation we choose, tasks and streams are mapped
into atoms. The relations we have in our respective design
model consist of

� the unary relations 4ASK�X	 and 3TREAM�X	, and
� the binary relation #ONNECT�X�Y	

which indicate that the directed arc representing stream
X terminates at the node representing task Y (or that the
directed arc representing stream Y begins at the node rep-
resenting task X.)

It is easy to see that the general form of programs that
parses Figure 4 is that of a directed multi-path, as depicted
in Figure 5, and that the design models of these programs
have the general form illustrated in formula (6).

* In absence of an explicit name, we use the initials of the

title of �[6] with reference to the formalism.

#ONNECT�4 9 �3 9;: 9 	�b#ONNECT�4 9 �3 9;: <=9 	�ÅbÅ

ÅÅÅ#ONNECT�3 9;: 9 �4 > 	�b#ONNECT�3 9;: <=9 �4 > 	�Å
bÅ

#ONNECT�4 ? �3 ?�: 9 	�Åb#ONNECT�4 ? �3 ?�: <@? 	�ÅbÅ

ÅÅÅ#ONNECT�3 ?�: 9 �4 ?�A79 	�b#ONNECT�3 ?�: <@? �4 ?�A79 	Å

(6)

Corollary 5. “Pipes and Filters” is intensional and non-
local.

It is obvious that an unbounded number of programs
satisfy formula (6); therefore, it is intensional. To show
that (6) is non-local, observe that, for any design model
that satisfies (6) we can add a new task 4 ?�A8> that is not
connected to any other task by a pipe. Such addition vio-
lates the style’s specification (in particular, there would be
no Connect relation involving 4 ?�A8>). Since this is a viola-
tion wherever it occurs, the Pipes and Filters style must be
non-local.

6.3 Law of Demeter

We have now shown that two classic architectural
styles meet our criteria for being “ architectural” as ex-
pected. But our criteria also turn up some less expected
results: The Law of Demeter �[20] was created as a design
heuristic. It was introduced to simplify modifications to a
program and to reduce its complexity. The informal de-
scription of the law for functions is given in Table 4.

We may formulate the language of Table 4 as follows:
�ÅF 9 �F > �C 9 �C > ÅtÅÅÅ
Å -EMBER�F 9 �C 9 	����
Å -EMBER�F > �C > 	�Å

Å)NVOKE�F 9 �F > 	�º��

� � -EMBER�C > �C 9 	��!RG/F�F 9 �C > 	���C 9 �C > Å

(7)

Evidently, formula (7) has infinitely many instances,

hence it is intensional. It is also non-local. To prove this,
observe that any program that satisfies (7) can be ex-
panded with source code that violates the Law, such as
demonstrated by the C++ source code in Table 5.

Table 4.� Law of Demeter for functions
For all classes #, and for all methods - attached to #,

all objects to which - sends a message must be instances
of classes associated with the following classes:

The argument classes of - (including #).
The instance variable classes of #.
(Objects created by -, or by functions or�methods that

- calls, and objects in global variables, are considered
arguments of -.)

Table 5.� An add-on to a C++ program which violates
the Law of Demeter

struct NewName1 {
 void foo();
};
struct NewName2 {
 NewName1 y;
};
class NewName3 {
 NewName2 x;
 void bar() {
 x.y.foo();
 }
};

In conclusion, the Law of Demeter, created as a design
rule, can be better characterized as an architectural rule.
The Law is not be limited to one part of the system but
must be satisfied throughout. In practice, this means that
any system using the Law of Demeter must create appro-
priate architectural practices to enforce it via coding stan-
dards, design walkthroughs, tool support, etc.

This example demonstrates the benefit of making our
distinctions explicit and the power of rendering them pre-
cise, without which we would be unable to classify the
Law of Demeter conclusively.

7. Analysis

Clearly, results obtained from the case studies in Sec-
tions �5 and �6 are not coincidental. The same line of rea-
soning used for the Factory Method can be used for many
other (if not all) of the design patterns in �[14], as well as
for the architectural styles by Garlan and Shaw �[16]. Ex-
amples drawn from other formal languages proposed for
the specification of design patterns, such as Constraint
Diagrams �[19], DisCo �[22], and Contracts �[17], bring
forth sample specifications, are clearly intensional as well.
This motivates the following hypothesis:
The hypothesis of intensional specifications. All “design
patterns” and “architectural styles” are intensional.

A direct proof of this requires a formalization of “ all”
design patterns and architectural styles. The first problem
with this is that no given catalogue purports to contain
“ all” patterns and styles, nor do we expect such a cata-
logue to be possible (except perhaps in the analytic sense.)
Another problem arises from the mostly informal defini-
tions given to patterns and styles. Limited attempts have
been made to prove this hypothesis (e.g., �[13] �[9]), but the
proofs provided cannot cover all known patterns and
styles. That is why the “ hypothesis of intensional specifi-
cations” remains a hypothesis.

7.1 Specific “ Designs” and “ Architectures”

With the increase in popularity of the terms and their
proliferation in the literature, they often appear in a con-
crete context, such as “ the design of this program...” This
usage implies that these terms can also be used with refer-
ence to extensional specifications, but only when referring
to a concrete program. We suggest that “ the design of
program X” refers to the instance implemented in a pro-
gram of a general design rule (e.g., design pattern). Since
instances are extensions, this resolves the apparent diffi-
culty in the intension/locality thesis.

7.2 UML Class Diagrams

Since UML is used widely as a design and architectural
notation, it is of particular interest to understand the place
of UML diagrams in the classification we introduced: Are
they local? Intensional?

Despite the widespread attempts towards rendering the
notation with well-defined semantics (e.g., the research
group known as pUML �[27]), most types of UML dia-
grams have no well-defined semantics. Thus, our discus-
sion here is largely informal, assuming that any formal
interpretation for class diagrams will be consistent with
the informal semantics.

In terms of design models, we can assume that any
such interpretation will associate class icons with atoms of
type CLASS, operations with atoms of type METHOD, as
well as provide us with a specification of a set of associ-
ated relations. It is easy to see why the specification given
by a class diagram is local; but is it intensional?

To answer this question, note that a UML class dia-
gram is commonly viewed as an under-specification,
namely, an incomplete specification; the actual implemen-
tation of the diagram may have any number of additional
elements that are not mentioned in the diagram. Under this
assumption, UML class diagrams are intensional, since
there exists an unbounded number of elements that can be
added to any implementation.

Unlike the formulas used in our examples, however,
the abstraction that class diagrams provide is of the most
rudimentary type, that is, by omitting information but
without using free variables. A UML diagram provides no
information on the elements that are not explicitly de-
scribed. Thus, class diagrams are intensional only in a
trivial sense, in the same way that the code excerpts in
Table 2 and Table 3, if taken not as complete programs
but just as excerpts thereof, are intensional. Clearly, this
sense is unlike the way architectural and design specifica-
tions are intensional. The following definition facilitates
this distinction:

Definition IV. An intensional specification K�is quasi-
extensional iff the set of design models that satisfy K, has
a single lower bound with respect to the partial-ordering
relation “ subsumption” .

It is trivial to show that subsumption induces partial
ordering on a set of design models. Definition IV, how-
ever, assigns specific importance to sets of design models
that contain design model such that all other members
subsume it.
Corollary 6. UML class diagrams are quasi-extensional.

Figure 6 illustrates the proof to this corollary. It is triv-
ial to show also that none of the intensional specifications
we quoted above is quasi-extensional.

Decorator.Draw();

Decorator

Draw()

BorderDecorator

Draw()

– BorderWidth : int

The minimal design model that satisfies this diagram ap-
pears in Table 2. Since every program that implements this
diagram satisfies it, there are infinitely-many other design
models that also satisfy it.

Figure 6.� 7KH�GHVLJQ�PRGHOV�WKDW�VDWLVI\�D�UML class
diagram

8. Conclusions

We have provided a sound formal basis for the distinc-
tion between the terms architecture, design, and imple-
mentation, called the intension/locality thesis, and estab-
lished it upon best practices. What are the consequences
of precisely knowing the differences between the terms
architecture, design and implementation? Among others,
these distinctions facilitate –

� determining what constitutes a uniform program, e.g., a
collection of modules that satisfy the same architectural
specifications;

� determining what information goes into architecture
documents and what goes into design documents;

� determining what to examine and what to not examine
in an architectural evaluation or a design walkthrough;

� understanding the distinction between local and non-
local rules, i.e., between the design rules that need be
enforced throughout a project versus those that are of a
more limited domain.

For example, in the industrial practice of software ar-
chitecture, many statements that are said to be “ architec-
tural” are in fact local, e.g., both tasks ! and " execute
on the same node, or task ! controls ". Instead, a truly
architectural statement would be, for instance, for each
tasks !�" which satisfy some property K, ! and " will
execute on the same node and #ONTROL�!�"	. More
generally, for each specification we should be able to de-
termine whether it is a design statement, describing a
purely local phenomenon (and hence of secondary interest
in documentation, discussion, or analysis), or whether it is
an instance of an underlying, more general rule. (*)

Acknowledgements
Many thanks to Jens Jahnke and Alejandro Allievi for

their comments. We thank Mary J. Anna for her inspira-
tion. This research was supported in part by the Natural
Sciences and Engineering Research Council, Canada and
by the U.S. Department of Defense.

References
[1] J. Barwise, ed., (1977). Handbook of Mathematical

Logic. Amsterdam: North-Holland Publishing Co.
[2] L. Bass, P. Clements, R. Kazman (1998). Software

Architecture in Practice. Reading, MA: Addison
Wesley Longman, Inc.

[3] G. Booch, I. Jacobson, J. Rumbaugh (1999). The
Unified Modeling Language Reference Manual.
Reading, MA: Addison-Wesley.

[4] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, M. Stal (1996). Pattern-Oriented Soft-
ware Architecture – A System of Patterns. New
York, NY: Wiley and Sons.

[5] J. Coplien, D. Schmidt, eds. (1995). Pattern Lan-
guages of Program Design. Reading, MA: Addison-
Wesley.

[6] T. R. Dean, J. R. Cordy. "A Syntactic Theory of
Software Architecture." IEEE Trans. on Software
Engineering 21 (4), Apr. 1995, pp. 302—313.

[7] F. DeRemer, H. H. Kron. "Programming-in-the-
large versus programming-in-the-small." IEEE
Trans. in Software Engineering 2 (2), June 1976,
pp. 80—86.

[8] A. H. Eden. “ Formal Specification of Object-
Oriented Design.” International Conference on
Multidisciplinary Design in Engineering CSME-
MDE 2001, Nov. 21—22, 2001, Montreal, Canada.

* This final example was suggested by an anonymous

ICSE reviewer.

[9] A. H. Eden. "A Theory of Object-Oriented Design."
Information Systems Frontiers 4 (4), Nov.— Dec.
2002. Kluwer Academic Publishers.

[10] A. H. Eden. "LePUS: A Visual Formalism for Ob-
ject-Oriented Architectures." The 6th World Con-
ference on Integrated Design and Process Technol-
ogy, Pasadena, CA, June 26— 30, 2002.

[11] A. H. Eden, Y. Hirshfeld. "Principles in Formal
Specification of Object Oriented Architectures."
CASCON 2001, Nov. 5— 8, 2001, Toronto, Canada.

[12] A. H. Eden, R. Kazman (2003). “ On the Definitions
of Architecture, Design, and Implementation” .
Technical report CSM-377, January 2003, Depart-
ment of Computer Science, University of Essex,
United Kingdom.

[13] P. van Emde Boas (1997). "Resistance Is Futile;
Formal Linguistic Observations on Design Pat-
terns." Research Report no. CT-19997-03, The In-
stitute for Logic, Language, and Computation,
Universiteit van Amsterdam.

[14] E. Gamma, R. Helm, R. Johnson, J. Vlissides
(1994). Design Patterns: Elements of Reusable Ob-
ject Oriented Software. Addison-Wesley.

[15] D. Garlan, R. Monroe, D. Wile (1997). "ACME: An
Architectural Description Interchange Language."
Proceedings of CASCON’97. Toronto, Ontario.

[16] D. Garlan, M. Shaw (1993). "An Introduction to
Software Architecture." In V. Ambriola, G. Tortora,
eds., Advances in Software Engineering and
Knowledge Engineering, Vol. 2, pp. 1— 39. New
Jersey: World Scientific Publishing Company.

[17] R. Helm, I. M. Holland, D. Gangopadhyay. "Con-
tracts: Specifying Behavioral Compositions in Ob-
ject-Oriented Systems." Proceedings OPP-
SLA/ECOOP, Oct. 21— 25, 1990, Ottawa, Canada.

[18] R. Kazman. "A New Approach to Designing and
Analyzing Object-Oriented Software Architecture."
Guest talk, Conference On Object-Oriented Pro-
gramming Systems, Languages And Applications –
OOPSLA, Nov. 1— 5, 1999, Denver, CO.

[19] A. Lauder, S. Kent. "Precise Visual Specification of
Design Patterns." Proceedings of the 12th ECOOP,
Brussels, Belgium, July 1998. LNCS 1445. Berlin:
Springer-Verlag.

[20] K. Lieberherr, I. Holland, A. Riel (1988). "Object-
oriented programming: an objective sense of style."
Conference proceedings OOPLA’88, San Diego,
CA, pp. 323— 334.

[21] D. C. Luckham et. al. "Specification and Analysis of
System Architecture Using Rapide." IEEE Trans. on
Software Engineering 21 (4), Apr. 1995, pp. 336—
355.

[22] T. Mikkonen (1998). "Formalizing Design Pat-
terns." Proceedings of the International Conference

on Software Engineering, April 19— 25, 1998, pp.
115— 124. Kyoto, Japan.

[23] R. T. Monroe, A. Kompanek, R. Melton, D. Garlan.
“ Architectural Styles, Design Patterns, and Ob-
jects.” IEEE Software 14(1), Jan. 1997, pp. 43— 52.

[24] D. E. Perry, A. L. Wolf (1992). “ Foundation for the
Study of Software Architecture.” ACM SIGSOFT
Software Engineering Notes 17 (4), pp. 40— 52.

[25] Popkin Software (2000). System Architect 2001.
New York, NY: McGraw-Hill.

[26] R. Prieto-Diaz, J. Neighbors. "Module Interconnec-
tion Languages." Journal of Systems and Software 6
(4), 1986, pp. 307— 334.

[27] The Unambiguous UML Consortium page:
www.cs.york.ac.uk/puml/

[28] T. Quatrani (1999). Visual Modelling with Rational
Rose 2000 and UML, Revised. Reading, MA: Addi-
son Wesley Longman, Inc.

[29] D. C. Schmidt, M. Stal, H. Rohnert, F. Buschmann
(2000). Pattern-Oriented Software Architecture,
Vol. 2: Patterns for Concurrent and Networked Ob-
jects. New York, NY: John Wiley & Sons, Ltd.

[30] SEI (2002). Carnegie Mellon’s Software Engineer-
ing Institute. http://www.sei.cmu.edu.

[31] M. Shaw, D. Garlan (1996). Software Architecture:
Perspectives on an Emerging Discipline. Upper
Saddle River, NJ: Prentice Hall.

[32] J. M. Spivey (1989). The Z Notation: A Reference
Manual. New Jersey: Prentice Hall.

