

Including heterogeneous web accessibility guidelines in
the development process

Myriam Arrue, Markel Vigo, and Julio Abascal

University of the Basque Country, Informatika Fakultatea, Manuel Lardizabal 1, E-20018,
Donostia, Spain

{myriam, markel, julio}@si.ehu.es

Abstract. The use of web applications has extremely increased in the last few
years. However, some groups of users may experience difficulties when
accessing them. Many different sets of accessibility guidelines have been
developed in order to improve the quality of web interfaces. Some of them are
of general purpose whereas others are specific for user, application or access
device characteristics. The existing amount of heterogeneous accessibility
guidelines makes it difficult to find, select and handle them in the development
process. This paper proposes a flexible framework which facilitates and
promotes the web accessibility awareness during all the development process.
The basis of this framework is the Unified Guidelines Language (UGL), a
uniform guidelines specification language developed as a result of a
comprehensive study of different sets of guidelines. The main components of
the framework are the guidelines management tool and the flexible evaluation
module. Therefore, sharing, extending and searching for adequate accessibility
guidelines as well as evaluating web accessibility according to different sets of
guidelines become simpler tasks.

1 Introduction

In recent years, the usage of web applications has considerably extended since their
usefulness has been proved in a vast variety of contexts meeting diverse needs.
Companies show a growing tendency to introduce web applications in their
management processes [1]. The previous business standalone applications are
evolving into light web applications which have proven to be more manageable and
easier to centralize. The former simple static websites have turned into unmanageable
large sites which can be used for performing diverse activities. Therefore, web
applications have become more complex and nowadays they integrate different
technologies. According to Murugesan and Ginige [2] currently web applications can
be classified in different categories depending on their functionality: informational,
interactive, transactional, workflow oriented, collaborative work environments and
online communities or marketplaces.

Consequently, web applications development has changed from merely being a
hypertext based interface design process to a much more complex task which involves
different activities such as planning, system architecture design, evaluation, quality

2 Myriam Arrue, Markel Vigo, and Julio Abascal

assessment, system performance evaluation, maintenance, updates management, etc.
The development of high quality web applications requires knowledge from a wide
range of disciplines such as information engineering, indexing systems, information
recovery, user interface design, human-computer interaction, graphical design, etc.

Designing an appropriate user interface for these applications is probably one of
the most demanding task since end-users' abilities and specific characteristics are
often unknown. Under some circumstances, web applications should be designed
based on “Universal Access” paradigm. This concept is turning into something
extremely significant for the current Information Society as it ensures access to the
information in the World Wide Web by anyone, anywhere, and at any time [3] and
fosters no discrimination. Consequently, Universal Access should be an essential
quality target [4] in web applications development process.

A number of initiatives have been taken in order to support the Universal Access
paradigm including the promulgation, in some countries, of laws against electronic
exclusion. One of the most proactive initiatives is the Web Accessibility Initiative
(WAI) [http://www.w3.org/WAI/] that was set up by the World Wide Web
Consortium [http://www.w3.org/]. It has published the well-known Web Content
Accessibility Guidelines (WCAG) [5] which is the most universally accepted and
established set of guidelines for developing and evaluating web content accessibility.
It is considered that the fulfilment of these guidelines ensures that the developed web
application is accessible to some extent by all people.

Even though all these efforts are extremely useful for developing accessible web
applications and have extended the awareness of accessibility among web developers
community, they have proven not to be sufficient in order to achieve the Universal
Access. Therefore, some groups of users are still experiencing accessibility problems
when interacting with the majority of existing web applications.

This situation has lead to the development of large amount of web accessibility
guidelines in recent years. These guidelines aim to improve users' experience when
using services in the World Wide Web. Nowadays, in addition to general purpose
guidelines such as WCAG, other sets of guidelines related to specific application type
(e-learning, e-commerce, etc.), specific users' characteristics (elderly, children, deaf,
etc.) and accessing devices (mobile devices, etc.) can be found. Some sets of
guidelines can be built combining the mentioned guidelines, e.g.: guidelines for e-
learning applications for children.

According to Mariage et al. [6], current accessibility sets of guidelines are defined
based on different formats, they may include different contents and are defined in
different level of detail. Guidelines range form specific rules to common sense
statements. Thus, existing accessibility guidelines can be classified in different groups
depending on their level of detail. In this sense, Figure 1 depicts the different types of
existing web accessibility sets of guidelines.

Including heterogeneous web accessibility guidelines in the development process 3

Fig. 1. A taxonomy for web accessibility sets of guidelines

Consequently, web developers should analyse the existing accessibility knowledge
in order to select the most adequate guidelines, techniques and methods for their
developments. In this sense, web developers usually have to deal with diverse
complex tasks [7]:

• Search for the sets of guidelines which are significant for the current
development.

• Select the most adequate sets of guidelines.
• Verify the coherence of the selected sets of guidelines.
• Analyse the applicability of the selected guidelines in the current

development.
• Develop directly applicable design rules from the selected guidelines.
• Plan and perform frequent accessibility evaluations based on the selected

sets of guidelines during the development process.
Due to the diversity of formats and structures used for defining accessibility

guidelines, finding, selecting, applying and evaluating these guidelines are tedious
tasks for practitioners. There are several automatic tools which assist developers
evaluating the accessibility of web pages but most of them are based on general
purpose sets of guidelines. Therefore, they are not flexible enough to evaluate
guidelines for specific application type, user type or access device.

This paper proposes a framework for flexible web accessibility development. It
will assist web developers to evaluate web interfaces according to the selected sets of
guidelines. In addition, it will be useful during all the development process since it
will provide several functionalities for guidelines definition, edition, searching and
sharing. The basis for the development of such a framework is to define a unified
definition language for accessibility guidelines so different formats and contents can
be accommodated. In this sense, a comprehensive analysis of diverse sets of
guidelines has been carried out and the results are outlined in Section 3. The rest of
the paper is structured as follows: Section 2 is dedicated to present the related work
and Section 4 describes the implementation of the evaluation logic and reporting

4 Myriam Arrue, Markel Vigo, and Julio Abascal

process of the developed framework. Finally, the reached conclusions are discussed in
Section 5.

1.2 The role of accessibility evaluation

Evaluating accessibility is an essential stage in the development of accessible web
applications. This process will confirm if the selected guidelines have been fulfilled.
Diverse accessibility evaluations have to be performed in order to detect any possible
barrier and repair it. In this sense, two different scenarios are considered: proactive
and reactive evaluation. The former, concerns to the accessibility aware design and
the later relates to the final application accessibility checking. Both scenarios require
evaluations, including the proactive one as suggested in [8]. Performing
comprehensive evaluations implies combining diverse kind of evaluations:
• Automatic evaluation with tools: this is a preliminary test stage aiming to remove

the first and most "evident" obstacles. "Evident" means those errors automatically
testable with the help of tools. According to Lang [9], this evaluation method
presents diverse advantages in terms of costs and efficiency as the automatic
evaluation tools report detected errors in a short period of time. Ivory provides a
comprehensive description of different automatic evaluation methods and tools in
[10]. The aim of this evaluation is to clear up the content so that forthcoming
evaluations with experts and users take less time in order to focus on other
complex issues. An effective evaluation tool should be able to validate the
fulfilment of most of the guidelines. Yet, nowadays it is a far objective since there
is not enough research done to evaluate some checkpoints such as WCAG 1.0 14.1
checkpoint: "Use the clearest and simplest language appropriate for a site's
content". In addition, most of automatic accessibility evaluation tools only check
the conformance with general purpose guidelines such as WCAG 1.0, Section 508
[11], etc. They are not flexible enough to evaluate other sets of guidelines or new
versions as the evaluated guidelines are built-in within the source code.
Consequently, incorporating new guidelines implies modifying the code of the
tool. In this sense, the separation between guidelines and evaluation engine ensures
the required flexibility.

• Expert driven manual evaluations: as previously mentioned the evaluation of some
guidelines requires human judgement. Web accessibility experts perform
evaluations based on heuristics in order to evaluate this kind of guidelines. Main
tasks have to be defined and walkthroughs with different browsers, assistive
technologies, devices, etc. are carried out. These evaluation methods will allow
detecting accessibility barriers when the web application is used under different
conditions as explained in [12].

• Evaluations with users: this evaluation type is essential since it allows detecting
real accessibility barriers for users with specific characteristics. Selected users
should cover the broader range of disabilities if a comprehensive evaluation is
required. Users are asked for performing tasks coinciding commonly with the main
functionalities of the web application. Evaluations are usually carried out in
controlled environments such as specific laboratories where the experts can
observe the actions of the users and gather information about the interaction

Including heterogeneous web accessibility guidelines in the development process 5

following accepted usability evaluation techniques such as the ones described by
Nielsen and Mack [13] and Rubin [14]. However, results obtained from remote
evaluations carried out in users' common browsing environment can be also useful
as mentioned in [15].
All these evaluations are complementary and necessary. If only automatic

evaluation is carried out the fulfilment of several guidelines will not be checked and
the required minimum accessibility level is seldom reached. On the other hand,
evaluations with users also help finding out usability barriers which accessibility
guidelines and therefore automatic accessibility evaluation tools do not consider. The
final objective of these evaluations is to repair the detected errors. As justified above,
automatic accessibility evaluation is a necessary task indeed.

2 Related work

As previously mentioned, the basis for the development of a framework for flexible
web accessibility evaluation is to separate the definition of guidelines and the
evaluation logic. This objective is achieved by defining a language for guidelines
specification independent of the evaluation engine. Thus, the defined grammar should
be flexible enough to define forthcoming versions of existing guidelines, updates and
new guidelines sets. In this sense, several approaches can be found in the literature.

In 2004, Abascal et al. [16] proposed the novel approach for automatic
accessibility evaluation: separation of guidelines from the evaluation engine. The
usefulness of this approach relies on its flexibility and updating efficiency. Adaptation
to new guideline versions does not imply re-designing the evaluation engine but
guidelines editing. The guidelines specification language is based on XML.

Following this first approaches, in 2005, Vanderdonckt and Bereikdar proposed the
Guidelines Definition Language, GDL [17] and recently Leporini et al. the Guidelines
Abstraction Language, GAL [18]. All these guideline specification languages make
possible adapting quite straightforwardly to new guideline versions or novel
guidelines.

However, these guidelines specification languages are mostly based on general
purpose accessibility sets of guidelines. Consequently some specific purpose
guidelines may not be defined since previous study of specific accessibility sets of
guidelines and their definition in those languages is not provided. In addition, the
developed definition languages are quite complex and appropriate tools for defining,
editing, sharing and searching for accessibility information are needed. A new
framework should be developed in the basis of a comprehensive study of different
sets of guidelines and with the aim of assisting web developers during all the
development process.

As far as evaluation logic is concerned, there is a growing tendency towards using
XML querying languages. These languages are very powerful due to their
expressiveness and flexibility. Takata et al. [19] proposed a pseudo-XQuery language
for accessibility evaluation purposes and XPath/XQuery sentences are defined to
check WCAG guidelines in [20]. We have adopted this technology in our new

6 Myriam Arrue, Markel Vigo, and Julio Abascal

approach since it allows us to design complex queries. As a result, lots of source code
lines are saved.

3 Uniform Accessibility Guidelines Definition

We did not predict in 2004 the new amount of guidelines sets appeared, referring to
specific user groups, environments or accessing devices. Therefore, a study of
existing sets of guidelines has been carried out and a process for guidelines format
standardization has been performed. As a result, it has been defined a new guidelines
definition language: Unified Guidelines Language, UGL. The strength of our
approach relies on the flexibility of the grammar since it has been defined after
studying different sets of guidelines. It is flexible enough to define the guideline sets
analysed in this paper and it also allows validating documents according to other
criteria. The following table, Table 1, shows some sets of guidelines analysed and
their classification regarding the taxonomy presented previously.

Table 1. Information about the analysed sets of web accessibility guidelines.

Name Type Description
WCAG 1.0 [5] General Web Accessibility Web Content Accessibility Guidelines 1.0
Section 508 [11] General Web Accessibility Section 508 of the Rehabilitation Act
IBM [21] General Web Accessibility IBM Accessibility Center: Developer

Guidelines for Web Accessibility
CPB/WGBH [22] Specific Application Type Making Educational Software and Web

Sites Accessible
WDGOP [23] Specific Users'

Characteristics
Research-Derived Web Design Guidelines
for Older People

MWBP [24] Specific Access Device Mobile Web Best Practices

The developed language should be comprehensive enough to specify different
information type: general information about the sets of guidelines, guidelines and
methods or techniques and specific information for evaluation purposes such as
evaluation procedures or test cases. In addition, the objective is to design a language
which could be easily understood by web developers and accessibility experts, so that
they are encouraged to specify new guidelines or new interpretations, incorporate
them into the framework and share them with other users. The following sections
present the fields included in the structure for each type of information.

3.1 General information
This information type refers to general information about the set of guidelines and
methods or techniques which will not be processed by the accessibility evaluation
tool.
• Guideline set information: this type of information is necessary for defining the

general information about the set of guidelines. For instance, the classification of
the set of guidelines according to the previously presented taxonomy.

Including heterogeneous web accessibility guidelines in the development process 7

• General guideline information: the necessary information for specifying each
design guideline is specified, such as title, description and so on.

• Methods or techniques information: this information is necessary for training
purposes so any web designer could find methods, techniques or examples of how
to conform to the accessibility guidelines. This information is useful through all the
web applications development phase.
General information about guidelines and sets of guidelines can be easily obtained

from guidelines documents whereas specification of methods, techniques or examples
requires some interpretation depending on the level of detail of guidelines. For
instance, among the selected sets of guidelines the WDGOP are not defined in low
level of detail. Therefore they require more effort to be interpreted and to define the
methods or techniques.

3.2 Information for evaluation purposes
This information type refers to the necessary evaluation procedures for each
guideline. Incorporating this information into the language schema will ensure that
automatic accessibility evaluations will be possible for guidelines defined in this
format.

However, not all web accessibility guidelines can be automatically evaluated.
Therefore, they can be specified only with general information. For instance, the
following guideline: “Use the clearest and simplest language appropriate for a site’s
content” can not be validated by automatic tools since it requires human judgment.
There is another type of guidelines that can not be automatically evaluated but can be
triggered by tools. For instance, one of these guidelines is: “Organize documents so
they may be read without style sheets. For example, when an HTML document is
rendered without associated style sheets, it must still be possible to read the
document”. An automatic tool can detect that a web page is associated with a style
sheet but up to date it is not possible to automatically validate if the web page is well
organized. Since this type of issues can be triggered by the content, they are known as
semi-automatic test cases. An automatic evaluation tool will produce a warning if a
semi-automatic test case is detected. On the other hand, an error will be produced if
an automatic test case (a test case which can be evaluated automatically) is not
fulfilled.

These automatic and semi-automatic test cases have to be defined in the language
in order to ensure that the automatic evaluation process will be effectively performed.
For this reason, different fields and values for defining test cases have to be
incorporated into the language. The evaluation procedures for the guidelines
contained in the different sets of guidelines have been analysed. This process has
detected all the different semi-automatic and automatic test cases. Some of these test
cases are simply validated analysing one HTML element such as IMG, TABLE,
FRAME etc. whereas other type of test cases require analysing HTML elements and
their attributes such as TYPE attribute of INPUT element, ALT attribute of IMG
element, TITLE attribute of A element, etc. In addition, there are some complex test
cases that require analysing one HTML element, its attributes and other associated
HTML elements, for instance, a INPUT element with a value in its ID attribute
requires the existence of a LABEL element with the same value in its FOR attribute.

8 Myriam Arrue, Markel Vigo, and Julio Abascal

All the different types of automatic and semi-automatic test cases defined in the
analysed sets of guidelines have been compiled and are described in the following
tables, Table 2, Table 3 and Table 4.

Table 2. This table shows the automatic (A) and semi-automatic (SA) test cases requiring only
the analysis of HTML elements.

No. Test Case Name Description Example Type
1 Deprecated The HTML element is

deprecated.
WCAG 1.0 Checkpoint 11.2
FONT

A

2 Compulsory The element is compulsory. WCAG 1.0 Checkpoint 3.2
DOCTYPE

A

3 Text Required A string is required
between the open and close
tags of the element.

Section 508 Checkpoint (a)
<APPLET>Text</APPLET>

A

4 Avoid It is recommended to avoid
using the HTML element.

WDGOP Checkpoint 9.1
MARQUEE

A

5 Warning Produced Using the HTML element
may cause accessibility
problems and have to be
tested manually.

Section 508 Checkpoint (m)
OBJECT

SA

6 Element Needed Another HTML element is
required.

IBM Checkpoint 9
FRAMESET NOFRAMES

A

Table 3. This table shows the automatic (A) and semi-automatic (SA) test cases requiring the
analysis of HTML elements as well as their attributes.

No. Test Case Name Description Example Type
7 Compulsory The attribute is compulsory. WCAG 1.0 Checkpoint 1.1

IMG ALT
A

8 Compulsory Not
Empty

The attribute is compulsory
and it must have some value.

IBM Checkpoint 9
FRAME TITLE

A

9 Recommended This attribute is recommended. CPB/WGBH Checkpoint 1.1
IMG LONGDESC

A

10 Warning Produced Using the attribute may cause
accessibility problems and
have to be tested manually.

IBM Checkpoint 5
TABLE ONCLICK

SA

11 Attribute Needed Another attribute is required. IBM Checkpoint 5
SELECT ONBLUR
ONFOCUS

A

12 Error Produced Use of this attribute must be
avoided.

WDGOP Checkpoint 1.3
INPUT ONDBLCLICK

A

13 Determined Value The value of the attribute has
to be one of some specifically
defined.

WCAG 1.0 Checkpoint 4.3
HTML LANG= en, es, fr…

A

14 Determined Part of
Value

The value of the attribute must
contain a determined value.

WCAG 1.0 Checkpoint 3.4
TABLE WIDTH =%, em

A

15 Avoid Value Avoid a specified value for an
attribute.

WCAG 1.0 Checkpoint 7.4
META
HTTP-EQUIV=refresh

A

16 Value Warning A value of an attribute may
cause accessibility problems

CPB/WGBH Checkpoint 2.2
A HREF=.wav

SA

Including heterogeneous web accessibility guidelines in the development process 9

and have to be tested
manually.

17 Value Requires
Attribute Not
Empty

A specific value of an attribute
requires another attribute
which must have some value.

IBM Checkpoint 1
INPUT TYPE=img ALT

A

Table 4. This table shows the automatic (A) and semi-automatic (SA) test cases requiring the
analysis of associated HTML elements and their attributes.

No. Test Case Name Description Example Type
18 Attribute requires an

Element with
Determined Value

Element which contains an
specific attribute requires the
existence of another element
with determined value.

CPB/WGBH Checkpoint
1.1
IMG LONGDESC
<A…>D

A

19 Nested Element Not
Empty Attribute

An element nested inside
another HTML element
requires an attribute which must
have some value.

IBM Checkpoint 1
<A…>

A

20 Elements Needed for
Specific Attribute

An attribute requires the
existence of a minimum number
of occurrences of elements.

IBM Checkpoint 2
IMG ISMAP
A element occurrences ≥ 2

A

21 Attribute Value
requires Element
with Attribute Value

An attribute value requires the
existence of an element with
determined attribute value.

Section 508 Checkpoint
(n)
INPUT id=value
LABEL for=value

A

3.3 Unified Guidelines Language, UGL
We have considered all test cases' characteristics in order to develop a common
language to frame them. As a result, Unified Guidelines Language (UGL) is the
resultant language which is defined according to a grammar defined in a XML-
Schema. This language provides the necessary mechanisms for defining test cases for
any mark-up language since it allows performing the following operations with the
content within the opening and closing of a determined tag and with attribute values:
− Boolean operations
− Logical operations
− Dictionary queries for comparisons with large sets of words. E.g. checking the

validity of the document language: en-us, en-gb, fr, eu, es…
− Counting

It is necessary to specify the relationships between different elements (labels and
attributes) in the (X)HTML document. In addition, evaluation scope within the
document can be set.
− Analyse HTML elements
− Analyse attributes within HTML elements
− Analyse associated elements of attributes and labels. There are infinite

combinations since our schema is defined recursively. Therefore, it is possible to
specify the following relationship: one label with a determined attribute requires a
determined label with a determined attribute; one attribute requires a label (which
is not its parent) with a determined attribute which at the same time requires
another label and so on. Some relationships are unnecessary and useless but can be

10 Myriam Arrue, Markel Vigo, and Julio Abascal

used in some contexts. However they are useful to demonstrate the flexibility of
the language and future versions of guidelines could take advantage of them.
Both XML-Schema and its graphical representation are rather large and it is out of

the objective of this paper to explain thoroughly all the features of UGL. If further
information is required in this sense, both schema and its picture can be found in our
project's website1.

However, relationships between different guidelines sets and its evaluation
procedures can be modelled in a static diagram so that the readership could get a
general idea. Figure 2 models the XML-Schema of UGL.

Fig. 2. A model of the relationships among entities in XML-Schema of UGL

3.4 Web Interface for guidelines management

Expert users may prefer to directly specify guidelines in UGL and upload them to the
framework but novel users may get confused due to the complexity of the definition
language. Therefore, a web application which guides the user specifying guidelines
has been developed. Since it is accessible from the browser it has some advantages
over other approaches such as the ones proposed by Mariage et al. [25] and Leporini

1 XML-Schema of UGL: http://sipt07.si.ehu.es/evalaccess3/ugl.xsd. Its representation:
http://sipt07.si.ehu.es/evalaccess3/ugl.png

Including heterogeneous web accessibility guidelines in the development process 11

et al. [26]. Both aim at abstracting the interaction with accessibility guidelines with
graphical interfaces. Unfortunately, both are standalone applications which have some
drawbacks compared with a web application.

Managing guidelines with a web application makes possible to have a centralized
repository of guidelines. Hence, all users that sign up in the system are able to access
and make evaluations with them, as well as search for specific guidelines. In addition,
guidelines creators can set permissions to guideline sets such as shared and shared
but not editable. The interaction is via XHTML forms and the browser is the interface
between the user and the system which is accessible for everybody. Consequently, no
plug-ins or software installations are required. As a result, this guidelines
management interface leads to bridge the gap between developers and researchers
since it is useful for knowledge sharing in this area.

The guidelines management interface is integrated in the evaluation framework
proposed in this paper. Users are capable to search for guidelines and creating
personal sets in order to perform automatic evaluations with them. Figure 3 shows a
screenshot of the guidelines management application.

Fig. 3. Interface for guidelines management

Guidelines are stored in a relational data base. As soon as the guideline
creation/edition process is concluded they are transformed into UGL. This
transformation is automatically performed and the resulting UGL document is stored
in a XML native data base afterwards.

12 Myriam Arrue, Markel Vigo, and Julio Abascal

4 Evaluating and reporting

The final objective of the framework is to evaluate web pages against the guideline
sets stored in the guidelines repository. Thus, the management interface integrates
into the whole guidelines evaluation framework and makes possible evaluating
desired guidelines sets according to the requirements for a given development.
However, in order to avoid searching, selecting repeatedly guidelines every time the
user logs in the system, preferences regarding guideline sets will be saved in user's
profile and there will be no need to repeat the process again. Therefore, unless new
guidelines are required or existing ones changed, user's preferences are stored for
forthcoming accesses. In order to explain the definition, evaluation and reporting
stage, the evaluation of two test cases is going to be described step by step in the
following subsections.

4.1 Test cases definition

Test case number 17 states: "a specific value of an attribute requires another attribute
which must have some value". This test case includes examples defined in IBM
Checkpoint 1 and their corresponding specification in UGL.

− Example 1: INPUT type="img" ALT. If value of type attribute in element input

is "img" an alternative description is required. The processing information for this
test case is specified in UGL as follows:

<label>INPUT</label>
<analysis_type>check attribute</analysis_type>
<related_attribute>

<atb>TYPE</atb>
<analysis_type>value</analysis_type>
<analysis_type>check attribute</analysis_type>
<content test = "=">img</content>
<related_attribute>

<atb>ALT</atb>
<analysis_type>compulsory</analysis_type>

</related_attribute>
</related_attribute>

− Example 2: INPUT name="go" ALT. If value of name attribute in element input
is "go" an alternative description is required. The processing information for this
test case is specified in UGL as follows:

<label>INPUT</label>
<analysis_type>check attribute</analysis_type>
<related_attribute>

<atb>NAME</atb>
<analysis_type>value</analysis_type>
<analysis_type>check attribute</analysis_type>
<content test = "=">go</content>

Including heterogeneous web accessibility guidelines in the development process 13

<related_attribute>
<atb>ALT</atb>
<analysis_type>compulsory</analysis_type>

</related_attribute>
</related_attribute>

Test case 19 states that "An element nested inside another HTML element requires
an attribute which must have some value". Its UGL representation:
<label>A</label>
<analysis_type>check element</analysis_type>
<related_element scope="inside">

<label>IMG</label>
<analysis_type>check attribute</analysis_type>
<related_attribute>

<atb>TITLE</atb>
<analysis_type>compulsory</analysis_type>
<analysis_type>value</analysis_type>
<content test="not empty"></content>

</related_attribute>
</related_element>

Fields in bold are the ones editable in each test case. In other words, they are the
unique fields that when changing their value, the previously stated description still
maintains its meaning. They are the fields that would play the role of variables in each
test case as explained in the next section.

4.2 Evaluation

As mentioned in Section 2, existing novel approaches for Web documents evaluation
published by Takata et al. [18] and Luque et al. [19] are the basis for our research.
XQuery is a powerful query language for gathering information from XML
documents quite straightforwardly. In our previous work [15], DOM and SAX
technologies were used to navigate through the XML tree and the implementation
required a big amount of source code compared with XQuery. Therefore, we have
implemented a XQuery sentence for each test case.

Obviously, it is necessary to transform the original HTML document into XML
when it comes to the evaluation of non XHTML files. JTidy2 and Neko3 parsers are
commonly used for this task in Java environments.

All types of test cases defined in Table 2, Table 3 and Table 4 are linked to a
XQuery template. This relationship is implicitly declared in a field of every test case
in the UGL document. The templates contain gaps such as element name, attribute
name, attribute value etc. which are filled out in a mapping process from UGL to
XQuery sentences. These gaps are the previously mentioned editable fields and are
mapped as soon as UGL guidelines have been built. Once XQuery sentences are
ready, evaluation of web pages is performed by applying XQuery sentences to the

2 JTidy HTML parser. Available at http://jtidy.sourceforge.net/
3 CyberNeko HTML Parser 0.9.5. Available at http://people.apache.org/~andyc/neko/doc/html/

14 Myriam Arrue, Markel Vigo, and Julio Abascal

web page in (X)HTML. Figure 4 depicts the template for test case 17 and shows how
values in UGL test cases are mapped there. Figure 5 shows a more complex query.

Fig. 4. XQuery template and sentences derived from test case no. 17 in UGL

Fig. 5. XQuery template and sentence derived from test case no. 19 in UGL

Guidelines in UGL are useful for guidelines definition by experts. In this case, the
expert can directly access and edit the UGL document without using the web
interface. It is faster but it requires knowledge of the UGL language. Guidelines in
UGL are also necessary in order to show their content in the Web interface while
guidelines editing or extending. It takes less effort transforming a mark-up language
such as UGL than XQuery for web publishing. In addition, since the guidelines
management interface allows the user searching for guidelines, we take advantage of
the facilities of the XML data base as data in relational data base data are spread in
different tables and requires complex queries. Therefore, XQuery is used for
evaluation purposes and UGL for guidelines definition, web publishing and guidelines
search.

4.3 Reporting

The developed XQuery sentences also include useful information for detected errors
reporting and reparation purposes such as the line in the (X)HTML document where
the error has occurred and which element and attribute have provoked it. This

Including heterogeneous web accessibility guidelines in the development process 15

information and general information stored in UGL guidelines are put together in
XML reports. This information is highlighted in the following example.

XQuery sentence

let $var:=doc("web_page.xml")//INPUT[@type='img' and not(@alt)]
for $temp in $var
return
<test_case no="17" type="error">
<label>{$temp/@line, $temp/name()}</label>
<attribute>type</attribute>
</test_case>

UGL guideline

<checkpoints id="1">
<priority>1</priority>
<evaluation_type>auto</evaluation_type>
<description>Provide alternative content for visual content</description>
<url>http://www-306.ibm.com/able/guidelines/web/webimages.html</url>

<techniques id="1">
<code>HTML</code>
<description>Provide alternative content to images</description>
<disabilities>blind</disabilities>
<url>http://www-306.ibm.com/able/guidelines/web/webimages.html#techniques</url>

Final report

<checkpoint id="1">
<test_case no="17" type="error">

<description>Provide alternative content for visual content</description>
<url>http://www-306.ibm.com/able/guidelines/web/webimages.html</url>
<techniques id="1">

<description>Provide alternative content to images</description>
<url>http://www-306.ibm.com/able/guidelines/web/webimages.html#techniques</url>
<priority>1</priority>
<label line="35">INPUT</label>
<attribute>alt</attribute>

</tecniques>
</test_case>
</checkpoint>

Nowadays accessibility evaluation tools reports do not have a uniform reporting
format. EARL [27] is a RDF-based language supported by the W3C which aims at
being the standard language for general reporting. Standardization of the reporting

16 Myriam Arrue, Markel Vigo, and Julio Abascal

format in web accessibility evaluation area is really useful since it will make possible
automatically comparing the same evaluation made by different tools, keeping track
of web accessibility evolution, etc. When a stable version of EARL is finally released
the transformation of our evaluation report will be quite straightforward as it is XML-
based.

5 Conclusions

The proposed framework assists web developers in developing accessible web
applications. It is useful and reliable throughout the development process as different
functionalities have been included. In this sense, web developers can edit, update,
search for guidelines, include new accessibility guidelines as well as select guidelines
for performing automatic accessibility evaluations. Consequently, it is flexible enough
to facilitate the development of web applications according to diverse sets of
guidelines.

In addition, all the functionalities included in the framework would allow creating
a comprehensive repository of accessibility guidelines which could be shared among
developers community. A web interface has been also developed for facilitating the
access to the functionalities developed in order to assist developers with diverse level
of experience.

The basis of the proposed framework is the UGL, Unified Guidelines Language.
This guidelines specification language has been developed based on a comprehensive
study of different types of accessibility guidelines. As a result, it integrates the
necessary elements for defining a wide range of test cases. Moreover, the components
integrated in this language will make possible to specify most of future versions of the
existing sets of guidelines.

As far as the evaluation task is concerned, novel approaches based on XML
querying technology such as XPath/XQuery are presented as well as the
transformation mechanism from UGL to XQuery sentences. The use of these
technologies provides a flexible evaluation module which can be easily extended in
order to incorporate new features. The flexible reporting of detected errors has been
also considered and will be easily updated for accommodating future standard
reporting languages such as EARL.

Acknowledgements

Work of Markel Vigo is funded by the Department of Education, Universities and
Research of Basque Government.

Including heterogeneous web accessibility guidelines in the development process 17

References

1. Hoffman, D., Grivel, E., and Battle, L. (2005). Designing software architectures to facilitate
accessible Web applications. IBM Systems Journal. Vol. 44, No. 3, pp. 467-483.

2. Murugesan, S. and Ginige, A. (2005). Web Engineering: Introduction and Perspectives. In
Woojong Suh (Ed.). Web Engineering: Perspectives and Techniques, Idea Group.

3. Stephanidis C. and Savidis A. (2001). Universal Access in the Information Society:
Methods, Tools, and Interaction Technologies. Universal Access in the Information Society.
Vol. 1, no. 1, pp. 40-55.

4. Savidis A. and Stephanidis C. (2004). Unified user interface development: the software
engineering of universally accessible interactions. Universal Access in the Information
Society. Vol. 3, no. 3-4, pp. 165-193.

5. Chisholm, W., Vanderheiden, G., and Jacobs, I. (Eds.). (1999, May 5). Web Content
Accessibility Guidelines 1.0. Available at http://www.w3.org/TR/WAI-WEBCONTENT/

6. Mariage, C., Vanderdonckt, J., and Pribeanu, C. (2005). State of the Art of Web Usability
Guidelines (chapter 41). The Handbook of Human Factors in Web Design. Lawrence
Erlbaum.

7. Abascal, J. and Nicolle, C. (2001) Why Inclusive Design Guidelines? (chapter 1). Inclusive
Design Guidelines for HCI, In Abascal, J. and Nicolle C. (Eds). Taylor & Francis.

8. Luque, V., Delgado, C., Gaedke, M., and Nussbaumer, M. (2005). Web Composition with
WCAG in mind, Proceedings of the 2005 International Cross-Disciplinary Workshop on
Web Accessibility (W4A), pp. 38-45.

9. Lang, T. (2003). Comparing website accessibility evaluation methods and learnings from
usability evaluation methods. Available at
http://www.peakusability.com.au/pdf/website_accessibility.pdf

10.Ivory, M.Y. (2003). Automated Web Site Evaluation: Researchers' and Practitioners'
Perspectives. Kluwer Academic Publishers. Dordrecht, The Netherlands.

11. Center for IT Accommodation (CITA) U.S. Section 508 Guidelines. Available at
www.section508.gov

12. Brajnik, G. (2006). Web Accessibility Testing: When the Method Is the Culprit. Computers
Helping People with Special Needs. In Miesenberger et al. (Eds.). Computers Helping
People with Special Needs. Lecture Notes in Computer Science 4061. Springer-Verlag
Berlin, Heidelberg, pp. 234-241.

13. Nielsen, J. and Mack, R. (1994). Usability Inspection Methods. John Wiley & Sons. New
York.

14. Rubin, J. (1994). Handbook of Usability Testing. John Wiley & Sons. New York.
15. Petrie, H., Hamilton, F., King, N., and Pavan, P. (2006). Remote usability evaluations with

disabled people. Proceedings of the SIGCHI conference on Human Factors in computing
systems (CHI 2006), pp. 1133-1141.

16. Abascal, J., Arrue, M., Fajardo, I., Garay, N., and Tomás, J. (2004). The use of guidelines to
automatically verify Web accessibility. Universal Access in the Information Society.
Springer Berlin, Heidelberg. Vol. 3, No. 1, pp. 71-79.

17. Vanderdonckt, J. and Bereikdar, A. (2005). Automated Web Evaluation by Guideline
Review. Journal of Web Engineering. Rinton Press. Vol. 4, No. 2, pp. 102-117.

18. Leporini, B., Paternò, F., and Scorcia, A. (2006). Flexible tool support for accessibility
evaluation. Interacting with Computers. Elsevier. Vol. 18, No. 5, pp. 869-890.

19.Takata, Y., Nakamura, T., and Seki, H. (2004). Accessibility Verification of WWW
Documents by an Automatic Guideline Verification Tool. Proceedings of the 37th Hawaii
International Conference on System Sciences.

20.Luque, V., Delgado, C., Gaedke, M., and Nussbaumer, M. (2005). Proceedings of the 14th
international conference on World Wide Web, WWW 2005, pp 1146-1147.

18 Myriam Arrue, Markel Vigo, and Julio Abascal

21. IBM Accessibility Center: Developer guidelines for Web Accessibility. Available at
http://www-306.ibm.com/able/guidelines/web/accessweb.html

22. Freed, G., Rothberg, M. and Wlodkowski, T. (2003) Making Educational Software and Web
Sites Accessible. Available at http://ncam.wgbh.org/cdrom/guideline/

23. Kurniawan, S. and Zaphiris, P. (2005) Research-derived web design guidelines for older
people. Proceedings of the ACM SIGACCESS Conference on Computers and Accessibility
(ASSETS 2005), pp. 129-135.

24. Rabin, J. and McCathieNevile, C. (Eds.). (2006, June 27). Mobile Web Best Practtices
(W3C Candidate Recommendation). http://www.w3.org/TR/mobile-bp/

25.Mariage, C. and Vanderdonckt .(2004). Creating Contextualised Usability Guides for Web
Sites Design and Evaluation. In R. Jacob et al. (Eds). Proceedings of the 5th International
Conference on Computer-Aided Design of User Interfaces, CADUI 2004, pp. 147-158.

26. Leporini, B., Paternò, F., and Scorcia, A. (2006). An Environment for Defining and
Handling Guidelines for the Web. In K. Miesenberger et al. (Eds.) Computers Helping
People with Special Needs. Lecture Notes in Computer Science 4061. Springer-Verlag
Berlin, Heidelberg, pp. 176-183.

27. Abou-Zahra, S. and McCathieNevile, C. (Eds.). (2006, September 27). Evaluation and
Report Language (EARL) 1.0 Schema (Working draft). Available at
http://www.w3.org/TR/EARL10/

Questions

Fabio Paterno:
Question: How did you calculate the line number where the error occurred?
Answer: This is done by the parser.

