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Fully implicit ADI schemes for solving the nonlinear
Poisson-Boltzmann equation

Abstract
The Poisson-Boltzmann (PB) model is an effective approach
for the electrostatics analysis of solvated biomolecules. The
nonlinearity associated with the PB equation is critical when
the underlying electrostatic potential is strong, but is ex-
tremely difficult to solve numerically. In this paper, we con-
struct two operator splitting alternating direction implicit (ADI)
schemes to efficiently and stably solve the nonlinear PB equa-
tion in a pseudo-transient continuation approach. The oper-
ator splitting framework enables an analytical integration of
the nonlinear term that suppresses the nonlinear instability.
A standard finite difference scheme weighted by piecewise
dielectric constants varying across the molecular surface is
employed to discretize the nonhomogeneous diffusion term of
the nonlinear PB equation, and yields tridiagonal matrices in
the Douglas and Douglas-Rachford type ADI schemes. The
proposed time splitting ADI schemes are different from all ex-
isting pseudo-transient continuation approaches for solving
the classical nonlinear PB equation in the sense that they are
fully implicit. In a numerical benchmark example, the steady
state solutions of the fully-implicit ADI schemes based on dif-
ferent initial values all converge to the time invariant analyti-
cal solution, while those of the explicit Euler and semi-implicit
ADI schemes blow up when the magnitude of the initial solu-
tion is large. For the solvation analysis in applications to real
biomolecules with various sizes, the time stability of the pro-
posed ADI schemes can be maintained even using very large
time increments, demonstrating the efficiency and stability of
the present methods for biomolecular simulation.

Keywords
Nonlinear Poisson-Boltzmann equation • solvation free en-
ergy • molecular surface • electrostatic potential • operator
splitting • alternating direction implicit scheme

MSC: 65N06, 65M06, 92-08, 92C05, 92C40
© Versita sp. z o.o.

Weihua Geng∗, Shan Zhao†

Department of Mathematics, University of Alabama,
Tuscaloosa, AL 35487, USA

Received 2012-09-28Accepted 2013-03-19

1. IntroductionWith the development of theoretical methods and computational techniques in the past few decades, molecular modelinghas become a more and more effective and practical approach to mimic the behavior of molecules with biologicalsignificance. However, the atomic level description of molecular systems involving both a specific molecule and its aquaticand ionic surrounding is prohibitively expensive when it comes to investigating large conformational reorganization ofbiomolecules, such as in protein folding [11]. Alternatively, with the implicit Poisson-Boltzmann (PB) model one may
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explicitly include atomic details of the solute while implicitly treat the solvent by its mean influence and the mobile ionswith a statistical mechanics distribution [2]. Therefore, the PB model substantially reduces the degree of freedom of thesystem.In the PB model, the governing PB equation of electrostatic potential is a nonlinear elliptic equation defined on multipledomains with discontinuous coefficients across the solute-solvent interface or molecular surface [5, 6]. The PB equationadmits analytical solutions only for simple geometries such as spheres [22] or rods [18]. For molecules with complexgeometry, the PB equation can only be solved through numerical approximations. Solving the PB equation numericallyis challenging due to the consideration of non-smooth solution, discontinuous coefficients (dielectric constants and ionicconstants), irregular interface, singular source terms, infinite domain, as well as nonlinearity when ionic effects arestrong.There exist various numerical PB solvers and these solvers can be roughly but not completely classified into twocategories: 1) The mesh-based finite difference/finite element methods [1, 10, 20, 25, 27, 29]; and 2) The boundaryelement method [7, 15–17, 21, 24, 35]. These PB solvers are designed based on different numerical algorithms andare aimed to applications from different perspectives. For example, the PB solvers embedded in molecular modelingpackages such as Delphi [29], CHARMM [20], AMBER [25], and APBS [1] all employ finite difference discretizationsand smoothened molecular surfaces. Although arguably these solvers have reduced accuracy, particularly on or near themolecular surface, the efficient, robust and user-friendly features of these PB solvers brought them popularity among thebio-oriented community. Mesh-based interface methods such as the Immersed Interface Method (IIM) [27] and MatchedInterface and Boundary Poisson-Boltzmann (MIBPB) solver [10] can significantly improve the accuracy by rigorouslytreating the numerical difficulties such as discontinuities and singularities. However, the complexity of the algorithmsto a certain extent reduces the efficiency. The boundary element methods have the potential to circumvent many of thenumerical difficulties, and accelerate the solver with fast algorithms such as the fast multipole method (FMM) [7, 24, 35]and treecode [15]. However, the nonlinearity of the PB equation is cumbersome to address under the boundary elementformulation. A hybrid boundary element approach which solves the nonlinear term by the finite difference is reportedin [8].In a usual approach for solving the nonlinear PB (NPB) equation, a nonlinear algebraic system is typically formed, aftera spatial discretization by means of finite difference or finite element
AU + N(U) = b (1)

where U is the vector of electrostatic potentials, b is the vector of source terms, and A and N are, respectively, discreteoperators for the linear and nonlinear parts of the NPB equation. Various algebraic methods can then be employed tosolve Eq. (1) efficiently. A straightforward way is using the nonlinear relaxation method, in which the nonlinear termwill be evaluated according to the previous approximations. One then needs to solve a linear system in each relaxationstep. The commonly used linear iterative methods, such as Gauss-Seidal or Jacobi, can be employed as the internaliterative solver. The widely used biomolecular simulation packages such as Delphi [29] and CHARMM [20] employ thenonlinear relaxation methods. The nonlinear conjugate gradient method solves Eq. (1) approximately by calculating aminimization problem with a nonlinear integral functional, and is built in the UHBD package [26]. In the inexact Newtonmethod [19], the Jacobian system of Eq. (1) is solved inexactly to find a descent direction first. A line search is thenconducted along the descent direction to ensure global convergence. The performance of the inexact Newton method isgreatly accelerated in the APBS package, where a fast algebraic multigrid solver is combined with the inexact Newtonmethod [18, 19]. A comprehensive assessment of various algebra-based NPB solvers is carried out in [9].The nonlinearity treatments related to the present study are pseudo-transient continuation approaches [31, 32] for solvingthe NPB equation. In such approaches, a time dependent NPB equation is constructed by introducing a pseudo-time.The solution of the original nonlinear boundary value system is essentially recovered by the steady state solution ofthe pseudo-time dependent process. The first pseudo-transient continuation approach for solving the NPB equation isintroduced in [32], in which the pseudo-time convection diffusion process is solved by means of a diffusion module ofan existing finite element software. To guarantee a large time step so that the long time integration can be computedquickly, the implicit Euler scheme is employed together with a linearization technique based on the first order Taylorexpansion. The linearization gives rise to a coefficient matrix of the linear system at each time step by evaluating thenonlinear term at the previous time instant [32]. Since the nonlinear term of the NPB equation is treated explicitly,the overall time integration is semi-implicit. A more efficient semi-implicit approach is introduced in [31], in which
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the time dependent NPB process is decomposed into diffusion, convection, and nonlinear parts. The convection andnonlinear parts are also treated explicitly, while the diffusion term is integrated implicitly by a regularized alternatingdirection implicit (ADI) method [13]. The regularization technique allows an even larger time increment [13]. Moreover,the Thomas algorithm [33] can be employed to solve the tridiagonal finite difference systems efficiently in each ADIstep. Consequently, the semi-implicit approach [31] becomes even faster. However, a very large time increment is stillprohibited in semi-implicit time integrations of pseudo-transient continuation approaches, because the nonlinear termof the NPB equation is typically a hyperbolic sine function which could be exponentially large.The objective of this paper is to introduce fully implicit ADI methods for solving the NPB equation in a pseudo-transientcontinuation process, so that a very large time increment can be employed. The proposed ADI methods are built basedon an operator splitting or time splitting framework, in which the nonlinear subsystem of the NPB equation can beanalytically integrated. Such a time splitting procedure is often found to be a powerful tool in solving various timedependent partial differential equations (PDEs) [3, 4, 36, 39] due to its capability in enlarging the Courant-Friedrich-Lewy (CFL) number. The proposed fully implicit ADI schemes are different from the semi-implicit ADI scheme of [31] interms of two features. First, the time-dependent NPB equation is rewritten into a convection-diffusion process in [31],while it is treated as a nonhomogeneous diffusion process in the present study. In particular, standard finite differencediscretization is conducted for the entire nonhomogeneous diffusion term in the present implicit ADI integration. Theresulting linear algebraic system is still tridiagonal. Second, the nonlinear term is evaluated at the previous time stepin [31], while it is integrated analytically in the present operator splitting ADI schemes. Because of these two distinctfeatures, the proposed ADI schemes become fully implicit.In a related study, we have also developed operator splitting ADI schemes [38] for solving a generalized NPB equation[37]. Even though the schemes presented in [38] are similar to the present ones, the underlying generalized NPBequation [37] differs significantly from the classical NPB equation. The pursuit of the operator splitting ADI schemeson the classical NPB equation distinguishes the present schemes from the previous work on generalized NPB in [38].The most distinguishing feature of the generalized NPB equation [37] is the use of a smoothly defined solute-solventinterface via some characteristic functions in the Eulerian formulation [12, 34]. This smooth definition, on the one hand,makes the stability issue of the nonlinear term more severe, because the nonlinear term now takes nonzero values withinthe so-called ion-exclusion layer [18, 37, 38]. Note that in the classical NPB equation, the nonlinear term is definedoutside the ion-exclusion layer through a Heaviside step function. Within the ion-exclusion layer, the electrostaticpotential could be large by Coulomb’s law, so that an extremely large value results after evaluating the nonlinearterm. Consequently, the explicit Euler scheme is found to be unconditionally unstable in solving the time dependentgeneralized NPB equation [37, 38], whereas the explicit Euler scheme remains to be conditionally stable in the presentstudy for the time dependent classical nonlinear PB equation. On the other hand, the smooth definition of solute-solventinterface induces a smooth dielectric profile; thus the central finite difference can be simply employed for the spatialdiscretization of the generalized NPB equation with good stability. Nevertheless, the dielectric profile is discontinuousin the classical NPB equation and the potential function loses its regularity across the material interface. In the presentstudy, a standard finite difference discretization is adopted for simplicity and the non-smooth feature of the potentialfunction is believed to introduce additional instability in our computation. Sophisticated interface treatments [14, 40]to account for the discontinuous dielectric profile might reduce the instability associated with the spatial discretization.However, such studies are beyond the scope of the present paper.The rest of this paper is organized as follows. In Section 2, we first introduce a pseudo-transient Poisson-Boltzmannmodel. The proposed time splitting ADI schemes will then be formulated for solving the time dependent NPB equation.Numerical validations of the proposed ADI schemes through benchmark examples with analytical solutions and throughvarious benchmark biological systems are provided in Section 3. Finally, this paper ends with a conclusion.
2. Mathematical models and numerical algorithms
2.1. Physical background and mathematical modelsThe Poisson-Boltzmann (PB) equation is the governing equation for electrostatic potential u such that {u : R3 → R}.Consider a solute macromolecule such as a protein immersed in an aqueous solvent environment. The molecular surfaceΓ as defined in [23, 28] divides R3 into the inside closed solute domain Ωm and the outside open solvent domain Ωs suchthat R3 = Ωm ∪ Ωs, Ωm ∩ Ωs = ∅ and Γ = ∂Ωm. Defined on such multiple domains, the nonlinear PB (NPB) equation
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has the form of:
−∇ · (ε(r)∇u(r)) + κ̄2(r) sinh (u(r)) = ρm(r) (2)

where ρm is a singular source
ρm(r) = 4πe2

c
kBT

Nc∑
j=1 qjδ(r− rj ). (3)

The dielectric constant ε is assumed to be piecewise values such that ε(r) = εm for r ∈ Ωm and ε(r) = εs for r ∈ Ωs,
qj in the units of fundamental charge ec is the partial charge on the jth atom of the solute located at rj , and kB is theBoltzmann constant. Here κ̄ is the modified Debye-Huckel parameter, which is defined as

κ̄2(r) = ( 2NAe2
c1000kBT
)
Is, (4)

for r ∈ Ωs where NA is Avogadro’s number and Is is the ionic strength in the unit of mole. Numerically, when T = 298K,we have κ̄2 = 8.486902807 Å−2Is and e2
c

kBT
= 332.06364/0.592183 Å [18]. It is noted the form of the nonlinear PB equation(2) varies on different units. The present form (2) is the dimensionless form as explained in [19]. The dimensionlesselectrostatic potential u can be conveniently converted to the electrostatic potential of units kcal/mol/ec by multiplyingthe constant 0.592183 subject to room temperature (T = 298K ) [18].Physically, the boundary condition for the dimensionless electrostatic potential u is defined at infinity:

lim
|r|→∞

u(r) = 0. (5)
For mesh-based numerical computations, a finite domain Ω is required. The approximated analytical condition (6) canbe employed to assign the boundary condition on ∂Ω

u(r) = e2
c

kBT

Nm∑
i=1

qi
εs|r− ri|

e−κ̄|r−ri|/
√εs . (6)

Equation (6) is actually a linear superposition of Coulomb’s law for a series of Nm partial charges qi at positions ri andcan be used to approximate the potential solved from Eq. (2) when ∂Ω is sufficiently distanced from the macromoleculesubdomain. On the other hand, we have the interface jump condition across Γ,
[u]Γ = 0 and [ε ∂u∂n ]Γ = 0 (7)

where [u]Γ is defined to be the difference between two limiting u values approaching from outside and inside, and n isthe outward normal direction.
2.2. Pseudo-time governing equation and numerical difficultiesTheoretical modeling and computational simulation based on the full nonlinear PB system are highly nontrivial. Thismotivates the development of pseudo-transient continuation approaches for solving the nonlinear PB equation [31, 32,37, 38]. Essentially, a pseudo-transient variation is introduced to convert Eq. (2) from the time-independent form to atime-dependent form

∂u
∂t (r, t) =∇ · (ε(r)∇u(r, t))− κ̄2(r) sinh (u(r, t)) + ρm(r). (8)

Typically, one needs to first specify an initial solution, which could be the electrostatic potential solved from a linearizedPB equation [37] or trivially u = 0. One then numerically integrates Eq. (8) for a sufficiently long time period. Thesolution of the original nonlinear PB equation (2) is essentially recovered by the steady state solution of the pseudo-timedependent process (8).
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However, there exist great difficulties in the numerical integration of the time dependent NPB equation (8). Generallyspeaking, because a long time integration is required for (8), explicit time stepping methods are usually not efficient forpseudo-transient continuation approaches [31, 32, 37, 38]. In the literature, semi-implicit time stepping methods [31, 32]are commonly employed to solve time dependent NPB equation (8) so that a large time step could be used for a stablesimulation. Nevertheless, a fully implicit time integration method has never been constructed for solving the classicalnonlinear PB equation (2). Such a development is mainly hindered by the implicit treatment of the hyperbolic sinenonlinear term.
2.3. Numerical discretizationConsider a uniform mesh partition of the computational domain Ω. Without the loss of generality, we assume the equalgrid spacing h in all x , y and z directions. We denote the time increment to be ∆t. To facilitate the following discussions,we apply the notation uni,j,k = u(xi, yj , zk , tn) to denote the electrostatic potential at node (xi, yj , zk , tn).To gain an in-depth understanding, we first discuss a standard numerical discretization to the time dependent NPBequation (8). In particular, the central finite difference and explicit Euler scheme are used for spatial and temporaldiscretization, respectively. The detailed discretization is given as

un+1
i,j,k =uni,j,k + ∆tQ(xi, yj , zk )− ∆tκ̄2 sinh(uni,j,k ) (9)

+ ∆t
h2
[
ε(xi+ 12 , yj , zk )(uni+1,j,k − uni,j,k ) + ε(xi− 12 , yj , zk )(uni−1,j,k − uni,j,k )+ ε(xi, yj+ 12 , zk )(uni,j+1,k − uni,j,k ) + ε(xi, yj− 12 , zk )(uni,j−1,k − uni,j,k )+ ε(xi, yj , zk+ 12 )(uni,j,k+1 − uni,j,k ) + ε(xi, yj , zk− 12 )(uni,j,k−1 − uni,j,k )]

where Q(xi, yj , zk ) = 4πe2
c

kBT
q(xi, yj , zk ) and q(xi, yj , zk ) is the fractional charge at grid point (xi, yj , zk ), which is obtainedby using the trilinear interpolation to distribute all charges in the source term ρm of Eq. (2).It is noted that the spatial discretization presented in (9) is a standard central difference scheme for the nonhomogeneousLaplacian term∇· (ε(r)∇u). This central scheme is of second order of accuracy when the dielectric profile ε(r) is smooth.Accuracy reduction is inevitable for a discontinuous dielectric profile as in the present study. To restore the secondorder of accuracy, sophisticated interface treatments are required to enforce interface conditions (7) into the spatialdiscretization [14, 40]. Nevertheless, since the main objective of the present study is to develop fully implicit timeintegration schemes, we will continue using the simple finite difference scheme shown in (9). This ensures that ourcurrent development can be conveniently adopted in other finite difference schemes originated from different physicalbackgrounds. In the present study, the value of ε on half grid nodes, such as ε(xi+ 12 , yj , zk ), is determined by itslocation (xi+ 12 , yj , zk ), which is either inside/on or outside the molecular surface Γ. In particular, ε(xi+ 12 , yj , zk ) = εm if(xi+ 12 , yj , zk ) ∈ Ωm, and ε(xi+ 12 , yj , zk ) = εs if (xi+ 12 , yj , zk ) ∈ Ωs.A small ∆t is usually required in the discretization (9) so that the explicit Euler scheme is very inefficient. Essentially,in order to maintain the time stability, the difference between un+1

i,j,k and uni,j,k shall be small. Thus, near the solute-solvent interface Γ where the dimensionless electrostatic potential u could take a large value [37, 38], the nonlinearterm sinh(uni,j,k ) is exponentially large. Consequently, a very small ∆t has to be used in the explicit Euler scheme fora stable simulation. Therefore, for a long time integration to reach the steady state, the explicit Euler scheme mustbe computationally very expensive. This difficulty can be partially relieved when using semi-implicit time integrationschemes [31, 32], but is not completely resolved because the nonlinear term is still treated explicitly in [31, 32], i.e.,evaluated at the present time level t = tn. The fully implicit schemes constructed by simply evaluating the nonlinear termat t = tn+1 will generate a nonlinear algebraic system to be solved at each time step, which is obviously time-consuming,too.
2.4. Operator splitting alternating direction implicit (ADI) schemesTo overcome the aforementioned difficulties, we will develop novel operator splitting alternating direction implicit (ADI)schemes for solving the time dependent NPB equation (8), so that the nonlinear term can be handled fully implicitly.We note that the proposed ADI schemes are similar to those developed in the pseudo-transient continuation solution ofthe generalized NPB equation [38]. Nevertheless, it is the first time in the literature that such schemes are constructedfor solving the classical nonlinear PB equation (2), to the best of our knowledge.
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We assume a uniform mesh with a grid spacing h in all x , y, and z directions, taking Nx , Ny, and Nz as the number ofgrid points in each direction. Let the vector Un = {unijk} for i = 1, . . . , Nx , j = 1, . . . , Ny, and k = 1, . . . , Nz denote allnodal values of u at the time level tn. We will develop two ADI schemes for updating Un at the time level tn to Un+1 atthe time level tn+1 = tn + ∆t. In the time-dependent nonlinear PB equation (8), we will assume time-dependence onlyfor u. We note that all other functions in (8), i.e., ε, κ̄2, and ρm are time independent.
2.4.1. ADI scheme 1In the ADI scheme 1 or ADI1, at each time step from tn to tn+1, the time dependent NPB equation (8) will be solved bya first order time splitting method in two stages [36]

∂w
∂t = −κ̄2 sinh(w), with Wn = Un, t ∈ [tn, tn+1], (10)

∂v
∂t =∇ · (ε∇v ) + ρm, with Vn = Wn+1, t ∈ [tn, tn+1]. (11)

We then have Un+1 = Vn+1.For the first stage, Eq. (10) can be analytically solved,
Wn+1 = ln(cosh( 12 κ̄2∆t) + exp(−Wn) sinh( 12 κ̄2∆t)exp(−Wn) cosh( 12 κ̄2∆t) + sinh( 12 κ̄2∆t)

)
. (12)

In other words, with Wn at tn, Wn+1 can be calculated analytically. Thus the difficulties caused by the nonlinear termsinh(·) in Eq. (2) are circumvented. The right-hand side of (12) is essentially a function of W and ∆t. We thus rewriteEq. (12) as Wn+1 = F (Wn; ∆t) to facilitate the following discussions.A Douglas-Rachford type ADI scheme is then proposed to solve the nonhomogeneous diffusion equation (11). Thediscretization of Eq. (11) using backward-Euler integration in time and central differencing in space results in
vn+1
i,j,k = vni,j,k + ∆t(δ2

x + δ2
y + δ2

z )vn+1
i,j,k + ∆tQ(xi, yj , zk ), (13)

where δ2
x , δ2

y , and δ2
z are the central difference operators in the x , y, and z directions, respectively,

δ2
x vni,j,k = 1

h2
(
ε(xi+ 12 , yj , zk )(vni+1,j,k − vni,j,k ) + ε(xi− 12 , yj , zk )(vni−1,j,k − vni,j,k )),

δ2
yvni,j,k = 1

h2
(
ε(xi, yj+ 12 , zk )(vni,j+1,k − vni,j,k ) + ε(xi, yj− 12 , zk )(vni,j−1,k − vni,j,k )),

δ2
z vni,j,k = 1

h2
(
ε(xi, yj , zk+ 12 )(vni,j,k+1 − vni,j,k ) + ε(xi, yj , zk− 12 )(vni,j,k−1 − vni,j,k )).

The Douglas-Rachford ADI scheme for Eq. (11) is formulated as [33]
(1− ∆tδ2

x )v∗i,j,k = [1 + ∆t(δ2
y + δ2

z )]vni,j,k + ∆tQ(xi, yj , zk ),(1− ∆tδ2
y)v∗∗i,j,k = v∗i,j,k − ∆tδ2

yvni,j,k , (14)(1− ∆tδ2
z )vn+1

i,j,k = v∗∗i,j,k − ∆tδ2
z vni,j,k .

In other words, the three dimensional linear algebraic system in the implicit scheme (13) is decomposed into onedimensional linear algebraic systems in (14). Moreover, each of these linear systems has a tridiagonal structure andthus can be efficiently solved by the Thomas algorithm [5, 33].By eliminating v∗i,j,k and v∗∗i,j,k and solving for vn+1
i,j,k in (14), we obtain

vn+1
i,j,k = vni,j,k + ∆t(δ2

x + δ2
y + δ2

z )vn+1
i,j,k + ∆tQ(xi, yj , zk )

− ∆t2(δ2
x δ2

y + δ2
yδ2

z + δ2
x δ2

z )(vn+1
i,j,k − vni,j,k ) + ∆t3δ2

x δ2
yδ2

z (vn+1
i,j,k − vni,j,k ). (15)

Thus, the Douglas-Rachford scheme (14) is a higher order perturbation of the backward Euler scheme (13). Since boththe backward Euler scheme and the time spitting scheme (10) - (11) are first order in time, the proposed ADI1 schemeis of first order accuracy in time. In the numerical simulations, the same Dirichlet boundary values are assumed for v ,
v∗ and v∗∗ as for u. The entire ADI1 time integration is fully implicit.
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2.4.2. ADI scheme 2In the ADI scheme 2 or ADI2, at each time step from tn to tn+1, the time dependent NPB equation (8) will be solved bya second order time splitting method in three stages [36]
∂w
∂t = −12 κ̄2 sinh(w), with Wn = Un, t ∈ [tn, tn+1], (16)

∂v
∂t =∇ · (ε∇v ) + ρm, with Vn = Wn+1, t ∈ [tn, tn+1], (17)
∂w̃
∂t = −12 κ̄2 sinh(w̃), with W̃n = Vn+1, t ∈ [tn, tn+1]. (18)

We then have Un+1 = W̃n+1. As in the ADI1 scheme, in the first and last stage of the ADI2 scheme, an analyticalintegration can be conducted. Symbolically, we have Wn+1 = F (Wn; ∆t2 ) and W̃n+1 = F (W̃n; ∆t2 ), where F is defined asin Eq. (12).A Douglas type ADI scheme is proposed to solve the nonhomogeneous diffusion equation (17) in the second stage. Thediscretization of (17) using Crank-Nicolson integration in time and central differencing in space results in
[1− ∆t2 (δ2

x + δ2
y + δ2

z )]vn+1
i,j,k = [1 + ∆t2 (δ2

x + δ2
y + δ2

z )]vni,j,k + ∆tQ(xi, yj , zk ). (19)
This can be decomposed into x , y, and z directions to give a Douglas ADI scheme for (17) [33]

(1− ∆t2 δ2
x )v∗i,j,k = [1 + ∆t2 (δ2

x + 2δ2
y + 2δ2

z )]vni,j,k + ∆tQ(xi, yj , zk ),
(1− ∆t2 δ2

y)v∗∗i,j,k = v∗i,j,k −
∆t2 δ2

yvni,j,k , (20)
(1− ∆t2 δ2

z )vn+1
i,j,k = v∗∗i,j,k −

∆t2 δ2
z vni,j,k .

Similarly, the tridiagonal systems in (20) can be efficiently solved by the Thomas algorithm.The elimination of v∗i,j,k and v∗∗i,j,k in (20) leads to
[1− ∆t2 (δ2

x + δ2
y + δ2

z )]vn+1
i,j,k = [1 + ∆t2 (δ2

x + δ2
y + δ2

z )]vni,j,k + ∆tQ(xi, yj , zk )
− ∆t24 (δ2

x δ2
y + δ2

yδ2
z + δ2

x δ2
z )(vn+1

i,j,k − vni,j,k ) + ∆t38 δ2
x δ2

yδ2
z (vn+1

i,j,k − vni,j,k ). (21)
It can be shown that the resulting equation is a higher order perturbation of the Crank-Nicolson scheme (19) in threespace variables. Thus, the temporal order of accuracy of the Douglas scheme (20) is two, which is consistent with thepresent time splitting (16) - (18). Therefore, the proposed fully implicit ADI2 scheme is of second order of accuracy intime. Again, the boundary values of v , v∗ and v∗∗ are the same as those for u. In terms of the computational complexityof one cycle, the ADI2 scheme involves extra flops compared with the ADI1 scheme. Nevertheless, the ADI2 scheme isusually more accurate than the ADI1 scheme.
2.4.3. Semi-implicit ADI1 schemeFor a comparison, we also consider the counterparts of the proposed two ADI schemes with semi-implicit time integra-tion. The semi-implicit ADI1 (semi-ADI1) scheme is constructed based on the backward-Euler integration of the timedependent NPB equation (8), but with the nonlinear term evaluated at tn

un+1
i,j,k = uni,j,k + ∆t(δ2

x + δ2
y + δ2

z )un+1
i,j,k + ∆tQ(xi, yj , zk )− ∆tκ̄2 sinh (uni,j,k ). (22)

By treating the nonlinear term in (22) as an additional source term, the same Douglas-Rachford ADI discretization usedin the ADI1 scheme can be utilized to form the semi-ADI1 scheme
(1− ∆tδ2

x )u∗i,j,k = [1 + ∆t(δ2
y + δ2

z )]uni,j,k + ∆tQ(xi, yj , zk )− ∆tκ̄2 sinh (uni,j,k ),(1− ∆tδ2
y)u∗∗i,j,k = u∗i,j,k − ∆tδ2

yuni,j,k , (23)(1− ∆tδ2
z )un+1

i,j,k = u∗∗i,j,k − ∆tδ2
zuni,j,k .
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2.4.4. Semi-implicit ADI2 schemeSimilarly, the semi-implicit ADI2 (semi-ADI2) scheme is constructed based on the Crank-Nicolson integration of thetime dependent NPB equation (8),
[1− ∆t2 (δ2

x + δ2
y + δ2

z )]un+1
i,j,k = [1 + ∆t2 (δ2

x + δ2
y + δ2

z )]uni,j,k + ∆tQ(xi, yj , zk )− ∆tκ̄2 sinh (uni,j,k ). (24)
By treating the nonlinear term in (24) as a source term, the same Douglas ADI discretization used in the ADI2 schemeleads to the semi-ADI2 scheme

(1− ∆t2 δ2
x )u∗i,j,k = [1 + ∆t2 (δ2

x + 2δ2
y + 2δ2

z )]uni,j,k + ∆tQ(xi, yj , zk )− ∆tκ̄2 sinh (uni,j,k ),
(1− ∆t2 δ2

y)u∗∗i,j,k = u∗i,j,k −
∆t2 δ2

yuni,j,k , (25)
(1− ∆t2 δ2

z )un+1
i,j,k = u∗∗i,j,k −

∆t2 δ2
zuni,j,k .

We note that the present semi-ADI1 and semi-ADI2 schemes are different from the existing semi-implicit approaches[31, 32]. The primary difference is in spatial discretization. The simplest central difference discretization is used in thepresent semi-implicit ADI schemes, while more complex finite difference and finite element formulas are used in [31, 32].However, the explicit treatment of the nonlinear term is the same in the existing and present semi-implicit ADI schemes.We will illustrate how this explicit treatment will affect the stability in the next section.
2.4.5. Convergence criteriaWe propose to approximate the solution to the nonlinear PB equation (2) by using the steady state solution to thetime-dependent nonlinear PB equation (8), which can be achieved in theory when t → ∞. Numerically we will needa stop criterion when t is sufficiently large. Two convergence criteria will be adopted simultaneously in this paper tomaintain the numerical efficiency.
Criterion 1Time integration stops when the change in the solvation energy of two consecutive time steps is less than a giventolerance. This criterion is particularly useful when calibrating the proposed schemes in constructed examples withanalytical solutions.
Criterion 2Time integration stops when t ≥ Tu, where Tu is a user specified time. After many numerical trials, we find Tu = 10 isa reasonable choice for terminating the time integration in the solution of the time-dependent NPB equation (8). Thisusually produces adequately converged solutions for real protein systems.
3. Numerical validationsIn this section, we validate our proposed ADI schemes numerically. We first solve the nonlinear PB equation on a sphereand compare the numerical results with the available analytical solution for tests of stability as well as both spatialand temporal accuracy and convergence. We next apply our new algorithms to compute the solvation energy for a seriesof proteins with various sizes and geometric structures. All simulations are compiled with Intel visual Fortran compilerand run on a Dell 6600 with i7-2760QM 2.4GHz CPU and 16GB memory.
3.1. A spherical cavity with analytical solutionFor the nonlinear PB equation, the analytical solutions are available only for simple and special geometries. We heredesign a case for a spherical cavity based on the reference [30]

u(r) =


1
εR −

1
R + 1

||r|| ||r|| < R,1
ε||r|| ||r|| > R.

(26)
ρm(r) =

 4πδ(r) ||r|| < R,

κ̄2 sinh( 1
ε||r|| ) ||r|| > R, (27)
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Table 1. The critical m values for explicit Euler, semi-ADI1 (s-ADI1), semi-ADI2 (s-ADI2), ADI1, and ADI2 for solving the time-dependent nonlinear
PB equation on a sphere subject to initial solutions with different magnitude H. The scheme is stable if ∆t ≤ h2

m .

h=0.5 h=0.25
H Euler s-ADI1 s-ADI2 ADI1 ADI2 Euler s-ADI1 s-ADI2 ADI1 ADI21 462 1 12 4 11 476 10 15 10 1510 462 23 26 15 11 476 10 15 16 1512 463 144 165 16 11 476 37 39 17 1515 2142 2053 2092 18 11 540 464 497 18 1420 ∼ 106 ∞ ∞ 19 11 ∞ ∞ ∞ 19 15

where ε = εs/εm and R is the radius of the sphere. By defining the source term ρm of Eq. (2) according to Eq. (27),it can be verified that the solution in Eq. (26) satisfies Eq. (2) as well as the interface jump conditions in Eq. (7).Note that there are both singularity and non-smoothness involved in the present analytical solution. The singularityis from the source term as seen in Eq. (27) and the non-smoothness is due to the interface jump conditions in Eq. (7).Both features will significantly reduce the accuracy of the spatial discretization and introduces additional instability intemporal discretization. In our study of the spherical case, the chosen sphere has radius R = 1 Å with one centeredcharge of 1ec . The dielectric constants are set as εs = 80 and εm = 1. The nonlinear constant κ̄ is set as 1.
3.1.1. Convergence and stabilityWe first examine the convergence of the pseudo-transient continuation approach. For this purpose, we solve the timedependent nonlinear PB equation (8) with different initial solutions u(r, 0) until the stopping criteria are satisfied. Wethen compare our steady state solutions with the time independent analytical solution (26) to verify if the convergenceis achieved. Besides the trivial initial solution u(r, 0) = 0, we specifically construct a family of initial solutions

u(r, 0) = H cos(π6 x) cos(π6 y) cos(π6 z) + 1
ε
√
x2 + y2 + z2 , (28)

with different magnitude H for the study of the sensitivities of the schemes subject to the nonlinearity (the sinh(u)term). It can be seen that the initial solution (28) satisfies the boundary conditions for the computational domain(x, y, z) ∈ {[−3, 3] × [−3, 3] × [−3, 3]}. We considered various H values ranging from 1 to 20 for explicit Euler, semi-ADI1, semi-ADI2, ADI1, and ADI2 simulations for a comparison. It is found that under different initial solutions, alltested schemes converge to the analytical solution when t is sufficiently large, except for a few extreme cases where theconvergence is ruined by the instability. This validates the present pseudo-transient continuation approach.We next quantitatively analyze the stability of the explicit Euler, semi-ADI1, semi-ADI2, ADI1, and ADI2 schemes. Be-cause of the singularity and non-smoothness features of the solution, all time integration schemes here are conditionallystable, i.e., there is a maximum stable time increment ∆t = h2
m at different spatial mesh size h. We report the critical mvalues of these schemes in Table 1. From this table, we see that with the increase of H in the initial solutions (28), andthus the increase of the nonlinearity, the critical ∆t values of the explicit Euler scheme and semi-implicit ADI schemesbecome exponentially smaller and approach zero eventually, while those of ADI schemes are essentially unchanged.Therefore, the fully-implicit schemes demonstrated much improved stability compared with the explicit and semi-implicitschemes.

3.1.2. Spatial convergence rateWe then study the spatial convergence rate of ADI schemes with the same example. The simulation results for thespherical case can be found in Table 2. Denoting uh as the numerical solution, we use the following measures toestimate errors in a relative manner:
L∞ = max |u − uh|max |u| , L2 = √∑i,j,k |u − uh|2∑

i,j,k |u|2 . (29)
117

Brought to you by | University of Alabama at Tuscaloosa
Authenticated | 130.160.97.226

Download Date | 4/26/13 3:39 PM



Weihua Geng, Shan Zhao

Table 2. Spatial order of convergence in solving the time dependent nonlinear PB equation on a sphere: ∆t = h2/20.

ADI1 scheme ADI2 scheme
h L∞ rate L2 rate L∞ rate L2 rate1 4.28E-01 1.18 5.41E-01 0.48 5.49E-01 1.46 8.85E-01 1.130.5 1.89E-01 2.83 3.88E-01 1.50 1.99E-01 2.84 4.04E-01 1.550.25 2.66E-02 0.12 1.37E-01 0.80 2.79E-02 0.17 1.38E-01 0.790.125 2.44E-02 -0.07 7.89E-02 0.75 2.47E-02 -0.06 7.99E-02 0.760.0625 2.56E-02 - 4.68E-02 - 2.57E-02 - 4.73E-02 -
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Fig 1. Spatial order of convergence in solving the time dependent nonlinear PB equation on a sphere. Left: ADI1, Right: ADI2; ∆t = h2/20; h=12/N;
the error-grid pairs are connected with dashed lines; the linear least square fittings are plotted with sold lines; L∞ error (blue star) and L2
error (red triangles).

In producing results in Table 2, we vary spatial increment h and set ∆t = h2/20 to fulfill the stability requirement.The convergence rate is nonuniform because the charge singularities (the delta function) and the non-smoothness ofthe solution across the interface Γ are treated in an approximated sense for the present standard finite differencediscretization. However, we could still see in average approximately the first-order convergence in L∞ and L2 norms ofboth ADI1 and ADI2 schemes. This approximately first order convergence rate can also be found in reference [14] whenthe linearized PB equation on a sphere is solved using a similar spatial discretization.To further demonstrate this convergence behavior, we provide detailed error-mesh plots in Fig. 1. In these plots, weperform a least square fitting (the solid lines) of the errors against the number of mesh points N , which is inverselyproportional to h. The slopes r of the solid straight lines are calculated and listed in the legends of both plots. Themagnitude of r reflects the average convergence rate. It can be seen that both ADI1 and ADI2 schemes deliver theapproximately first-order convergence in both L∞ and L2 norms. Visually, the errors of both ADI1 and ADI2 schemesare almost the same when N is large. Nevertheless, there are some minor differences when N is small.
3.1.3. Temporal convergence rateWe finally focus on the temporal order of convergence, which is reported in Table 3. Since the spatial discretizationerror is large due to the singularity and non-smoothness as described previously, a direct comparison between numericalsolutions at different h and the analytical solution will not be able to reveal the temporal order. Instead, we fix h = 0.125and use the electrostatic potentials solved at the finest time increment ∆t =2.5E-05 as a reference solution. Thepotentials computed based on other ∆t values are benchmarked with this reference solution. This enables us to computethe temporal discretization error through essentially the cancellation of the spatial discretization error. We observesecond order temporal convergence from the table for both ADI1 and ADI2 schemes. For a fixed ∆t, the ADI2 is moreaccurate than the ADI1. We note some better-than-expected performance for the ADI1 scheme, i.e., the numerical order
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Table 3. Temporal order of convergence in solving the time dependent nonlinear PB equation on a sphere: h=0.125.

ADI1 scheme ADI2 scheme∆t L∞ rate L2 rate L∞ rate L2 rate8.0E-04 1.79E-04 2.81 4.39E-04 2.62 1.32E+00 18.16 1.02E+00 16.224.0E-04 2.55E-05 2.52 7.14E-05 2.43 4.49E-06 2.29 1.34E-05 2.252.0E-04 4.45E-06 2.33 1.33E-05 2.30 9.19E-07 2.22 2.82E-06 2.191.0E-04 8.83E-07 2.46 2.70E-06 2.44 1.97E-07 2.38 6.17E-07 2.345.0E-05 1.60E-07 - 4.98E-07 - 3.78E-08 - 1.22E-07 -2.5E-05 0.00E+00 - 0.00E+00 - 0.00E+00 - 0.00E+00 -

Table 4. Solvation energies (kcal/mol) for 24 proteins; stopping criterion: Tu = 10; h = 0.5; ∆t = h2/50 for ADI1/ADI2, and ∆t = h2/480 for explicit
Euler.

Index PDB-ID # of atoms LPBE Euler ADI1 ADI21 1ajj 519 -1213.78 -1333.04 -1316.25 -1328.302 1bbl 576 -1163.73 -1286.00 -1269.24 -1280.713 1bor 832 -987.09 -1075.39 -1065.07 -1072.484 1bpi 898 -1465.92 -1585.65 -1565.25 -1578.635 1cbn 648 -409.01 -452.06 -446.20 -450.106 1fca 729 -1234.59 -1323.47 -1314.47 -1320.997 1frd 1478 -2936.78 -3120.12 -3092.71 -3111.728 1fxd 824 -3039.65 -3162.14 -3149.43 -3158.639 1hpt 858 -1029.24 -1134.34 -1116.94 -1128.8210 1mbg 903 -1466.03 -1571.46 -1555.40 -1566.2911 1neq 1187 -2007.86 -2166.15 -2142.26 -2158.5212 1ptq 795 -1005.64 -1130.84 -1114.09 -1125.1413 1r69 997 -1268.61 -1370.37 -1355.16 -1365.3614 1sh1 702 -890.88 -992.49 -982.82 -989.5015 1svr 1435 -2056.34 -2244.25 -2219.44 -2236.2516 1uxc 809 -1319.45 -1432.75 -1419.11 -1427.9817 1vii 596 -1066.64 -1130.47 -1120.59 -1127.3118 2erl 573 -1020.60 -1085.42 -1077.59 -1082.9019 2pde 667 -914.54 -1014.30 -1004.96 -1011.5620 451c 1216 -1256.01 -1359.58 -1346.82 -1354.4821 1a2s 1272 -1995.11 -2115.75 -2099.94 -2111.0622 1a63 2065 -2868.92 -3125.45 -3088.77 -3113.3423 1a7m 2809 -2486.44 -2687.16 -2664.38 -2677.9824 1vjw 828 -1307.41 -1417.15 -1403.47 -1412.87

is higher than the theoretical one. In fact, the same finding has been observed for the ADI1 scheme when it is appliedto solve the generalized PB equation defined on a smooth solute-solvent boundary and a conventional analysis of thetemporal convergence is considered [38].
3.2. Solvation energy of proteinsIn this subsection, we validate the proposed time splitting ADI schemes by solving the nonlinear PB equation for realprotein systems. In particular, we will compute solvation energies on a series of proteins with different size and geometricstructures. For a comparison, we also report the results produced by the explicit Euler method.
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Fig 2. Energy difference (left) and CPU time (right) in solving nonlinear PB equation on 24 proteins

The solvation energy or free energy of solvation is the energy released when the solute in free space is dissolved insolvent. In molecular simulation, it can be computed by evaluating the difference between total free energy of the solutein the vacuum and in the solvent. In the context that only the electrostatic effects are considered, the solvation energycan be defined as ∆G = Gs −G0 = 12
∫

Ω ρm(φ(r)− φ0(r))dr (30)
where φ and φ0 in the units of kcal/mol/ec are electrostatic potentials in the presence of the solvent and the vacuum,respectively. They are obtained by scaling the dimensionless potentials with the constant 0.592183 subject to roomtemperature (T = 298K ) [18]. Based on the trilinear interpolation of the singular charges in ρm, the solvation energycan be calculated as ∆G = 12 ∑

i

∑
j

∑
k

Q(xi, yj , zk )(φ(xi, yj , zk )− φ0(xi, yj , zk )), (31)
We solve the nonlinear PB equation (2) on a set of 24 proteins by using explicit Euler, ADI1 and ADI2 schemes. Forsimulation on proteins, the dielectric constants are set as εs = 80 and εm = 1. The ionic strengths I is set as 0.15M,which makes the nonlinear constant κ̄ = 0.1257.To quantitatively justify the accuracy, efficiency and stability, we compute the solvation energy based on electrostaticpotentials solved from the nonlinear PB equation. The numerical results of the ADI1, ADI2, and Euler methods arelisted in Table 4. The corresponding parameters are listed in the caption of the table and the choice of the ∆t issubject to the stability requirement. From this table, we can see that all three nonlinear methods produce consistentsolvation energies. In particular, the explicit Euler scheme is expected to produce some of the most accurate results,because a much smaller ∆t is applied and the same spatial discretization is used. The second order time discretizationADI2 is supposed to yield more accurate results than the first order ADI1. Indeed, the results in the table adequatelyshowed this, i.e., the results of the ADI2 are closer to those of the Euler scheme. On the other hand, the solution ofthe Linearized PB equation (LPBE) is carried out by using the same finite difference discretization and a biconjugategradient solver. The solvation free energies of LPBE results are also listed in Table 4. It can be seen that there are somelarge differences between linear and nonlinear PB models, reflecting the importance of the nonlinear term in Eq. (2).We also depict the simulation results in Fig. 2. To avoid the scaling problem caused by the large variation of thesolvation energy value, in Fig. 2(a) we plot the differences between nonlinear PB results generated by ADI1, ADI2, andEuler schemes and linearized PB results. This figure shows the differences between linear and nonlinear models. It alsodemonstrates the consistency among three nonlinear PB solvers. We then plot the CPU time used by three algorithmsfor solving the nonlinear PB equation in Fig. 2(b). It is seen that the explicit Euler method costs about 2-3 times moreCPU time than both ADI schemes.Finally, we plot the surface potentials of a protein (1mbg) in Fig. 3. Besides the nonlinear PB results generated by theADI1 scheme, we also compare with the linear PB results obtained by the same finite difference discretization. From
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Fig 3. Surface potential mapping of protein 1mbg. Left: Linearized PB model; Right: Nonlinear PB model.

the figures, we can see the nonlinear PB results are generally in lighter colors, which stand for weaker electrostaticpotentials. This phenomenon can be well explained by the nonlinear screening effect of the electrolytes when we havenonzero ionic strength I = 0.15M .
4. ConclusionThis paper presents the first fully implicit time integration scheme for solving the nonlinear Poisson-Boltzmann (NPB)equation in a pseudo-transient continuation framework. In such a framework, the boundary value solution of the NPBequation is essentially recovered by the steady state solution to the pseudo-time NPB process. The long time integrationin this process necessitates the development of implicit schemes that allow a large time increment ∆t. However, allexisting implicit methods are semi-implicit, because of the difficulty in the implicit treatment of the nonlinear hyperbolicsine term. This bottleneck is overcome in the present paper by using a novel operator splitting procedure. After splitting,the nonlinear instability can be completely avoided through analytical integration, while both Douglas and Douglas-Rachford alternating direction implicit (ADI) schemes are developed for solving the nonhomogeneous diffusion subsystem.A standard finite difference scheme is employed for spatial discretization. Other more accurate finite difference methodscan be applied, as long as the tridiagonal structure is preserved in each coordinate direction. The Thomas algorithm isutilized to solve linear algebraic systems efficiently in the proposed fully implicit ADI schemes.The proposed operator splitting ADI schemes are first validated by solving the NPB equation on spherical cavitieswhere time invariant analytical solutions are available subject to specially designed source terms. By consideringdifferent initial values, it is demonstrated that all steady state solutions of the fully-implicit ADI methods convergeto the analytical solution, while those of the explicit Euler scheme and semi-implicit ADI methods blow up when themagnitude of the initial solution is large. The spatial convergence rate of the proposed ADI schemes is found to benearly first order, because the accuracy of the standard finite difference is reduced by the singularities from the sourceterm and non-smoothness of the solution across the molecular surface. Special cancellation is considered in order toreveal the true temporal order of accuracy. It is interesting to observe that both the proposed ADI schemes then yield asecond order in time. The application of both ADI schemes to calculate solvation free energies for a series of 24 proteinsis considered next. In all of our experiments, it is found that the fully implicit ADI schemes allow much larger ∆t valuesthan that of the explicit Euler scheme, so that the present biomolecular simulation becomes faster. Moreover, since theproposed ADI schemes can withstand a very strong nonlinear effect, the full prediction power of the nonlinear solvationmodel can be numerically accomplished. In particular, we illustrate the theoretical difference between the linearizedPoisson-Boltzmann model and the present NPB model in electrostatic analysis. The development of more robust spatialdiscretization associated with the proposed temporal schemes are under our consideration.
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