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ABSTRACT

In this paper, we present discriminatively weighted Local

Binary Patterns (DWLBP), a new similarity metric to match

Multi-scale LBP (MsLBP) in Hamming space. While MsLBP

is widely used in image processing on account of its ex-

tremely fast bitwise operations on modern CPU, identifying

a good metric that measures the dissimilarity of MsLBP

remains an open problem. The Hamming score is typically

computed at each individual scale and the scores across scales

are summed up. This approach however often results in un-

derestimating salient patterns. In this paper we seek to learn

a vector obtained by optimally weighing the contribution of

each individual scale when performing MsLBP based match-

ing. Inspired by supervised learning, our methodology aims

to learn the multi-scale, weight vector by minimizing the

Hamming scores between positive class samples and jointly

maximizing the scores between positive and negative class

samples. This objective function leads to a convex formula-

tion with equality and inequality constraints, which can then

be solved via the interior-point optimization method. In this

paper we evaluate the efficacy of the DWLBP scheme in de-

tecting prostate cancer from T2w MRI and demonstrate that

the approach statistically significantly outperforms MsLBP.

Index Terms— Prostate Cancer, MRI, Image Processing,

Local Binary Patterns, multi-scale

1. INTRODUCTION

Pixelwise template matching is often utilized to perform an

exhaustive search of an entire image to find pixels similar to a

query pixel. A major challenge to overcome when matching

a pair of pixels lies in the conflict between matching speed

and accuracy. To address the challenge, pixel representation

should be distinctive and compact, and computing its dissim-

ilarity metric should be achievable quickly.

Local Binary Pattern (LBP) [1] has been shown to be pow-

erful to match a local pixel feature to another. The LBP de-
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scriptor of a pixel is a string of binary bits, each of which

is obtained by comparing the gray value of the pixel with a

number of others sampled on a ring centered on the pixel. The

Hamming distance of LBP refers to the number of bits that are

different. This only requires carrying out bitwise XOR oper-

ations, which can be computed extremely quickly on modern

CPUs. Finding a distinctive ring radius is critical to extract

salient LBP descriptions. However, the existing approach

that detects local Laplacian extrema [2, 3] is computationally

costly, hence, largely negating the benefit of LBP. Sampling

multiple radii can statistically guarantee measuring textual

content at the salient scale. By assuming independent sam-

pling, measuring this multi-scale LBP is defined as the sum

of the Hamming scores across individual scales (MsLBP) [1].

Nevertheless, salient patterns are under-emphasized while in-

significant patterns are over-emphasized during the process.

It is necessary to define a weight vector so as to account for

the statistical significance of information at the salient scale

by measuring the dissimilarity between a pair of multi-scale

LBPs. We anticipate that this strategy will significantly im-

prove the matching quality and hence detection accuracy.

Recent work shows that learned binary projections are

a powerful way to index large image collections based on

content [4]. Unsupervised hashing [5, 6] leads to binary

codes that can be as poor as random binarization. With su-

pervised learning imposed, supervised hashing [4] explicitly

learns a mapping that maximizes the distances among dif-

ferent classes. However, due to the non-differentiable sign

function, one has to relax the objective function, resulting in

a suboptimal solution.

In this paper, we present a new method, discriminatively

weighted Local Binary Patterns (DWLBP), to tackle the prob-

lem of combining the multi-scale Hamming scores for match-

ing MsLBP. Inspired by supervised hashing, we seek to learn

a weight vector by minimizing the squares of Hamming dis-

tances between positive class samples and jointly maximizing

the Hamming distances between positive and negative class

samples. Since each element of the vector must be normal-

ized and their sum equals one, we get a final objective func-

tion that is convex and constrained by linear equality and in-
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equality constraints. Literature provides many solutions to

the problem and we use the interior-point method. The main

advantages of DWLBP are two-fold:

1. Compared to MsLBP [1] matching, we impose super-

vised learning so as to optimally weigh the significance of

each scale in combining Hamming scores. This yields a prin-

cipled approach to obtaining an optimal weight vector, one

that is more general than the ad hoc approach employed in [7].

2. The concern of non-differentiability associated with

supervised hashing is addressed by shifting binarization to an

earlier step of LBP extraction, which results in a smooth, dif-

ferentiable and globally convex problem.

In this paper we evaluate the efficacy of the DWLBP

scheme in detecting prostate cancer from T2w MRI. The

cancer groundtruth was first annotated on ex vivo histo-

logical sections obtained from patients undergoing radical

prostatectomy who receive a pre-operative MRI. Deformable

co-registration was then applied to non-linearly align the pre-

operative MRI with the post-operative histologic sections to

map spatial extent of cancer onto corresponding MRI sec-

tions [8]. DWLBP is then rum on the T2w MRI images to

generate a probabilistic heatmap on which higher probability

indicates the presence of suspected cancer.

2. METHODOLOGY

2.1. Framework

As Figure 1 shows, the proposed methodology consists of two

stages. The first stage is a learning procedure. Given images

with labelled positive and negative samples, we extract multi-

scale LBPs for each pixel and compute their Hamming scores

at each scale. Then we learn a weight that best combines the

multi-scale scores in the sense that positives and negatives are

separated as far as possible.

Once the learning is done, salient feature detection can

proceed in such a way: a small number of distinct image pix-

els are selected by the user and the LBPs code pertaining to

the pixels are extracted. A exhaustive search of the entire im-

age area is then performed to match the LBPs of each pixel

with the template LBPs at each scale. Finally, weighted sum

of the Hamming scores of all scales yields a statistical proba-

bility heatmap, where coordinates having higher probabilities

indicate candidate salient features.

2.2. Local Binary Pattern

LBP operates on the intensity values of image pixels and mod-

els a single pixel via its local neighbours. For an arbitrary

pixel with intensity value fc, its Local Binary Pattern (LBP)

number consists of the signs of the gray-level value discrep-

ancies between fc and the gray values of p equally spaced

pixels on a circle of radius:

x =

p−1
∑

i=0

sign(fi − fc)2
i,

where fi, i ∈ {0, 1, ..., p − 1}, is the gray value of ith sam-

pled pixel. The coordinates of fi are given by (−r sin(2π i
p
),
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Fig. 1: Flowchart of DWLBP. With representative positive

and negative class samples, we extract MsLBP codes to dis-

criminatively train an optimal vector that weighs the Ham-

ming score at each scale. Then with an interactively selected

template, exhaustive search over the entire input image is per-

formed to generate a heatmap based on the similarity between

the DWLBP scores between the query and template pixels.

r cos(2π i
p
)), all of which together form a circularly symmet-

ric neighbor set. r is the radius of circle and sign() is:

sign(y) =

{

1 if y ≥ 0;
0 if y < 0.

The binomial factor 2i transforms LBP to a number whose

bits are measured in Hamming distance. By its definition LBP

is invariant to local gray-scale shift. In order to be rotation-

invariant as well, a circular bitwise right shift on the p bits

is performed p times and the minimum resulting number is

retained as the final LBP output.

2.3. Multi-Scale LBP

By combining multiple operators by varying (p, r), a LBP

can capture the property of multi-resolution texture, leading

to multi-scale LBP. The metric for measuring similarity be-

tween a pair of multiscale LBPs is via a simple kernel,

H(x,x′) =

N
∑

n=1

dH(xn,x
′
n), (1)

where N is the number of operations of varying (p, r) and

dH(x,x′) is the Hamming distance: dH =
∑pn−1

i=0
(xi 6= x′

i),
where xi and x′

i are the ith bit of x and x
′, respectively.

2.4. Discriminatively Weighted LBP

The above dissimilarity measurement assigns a uniform

weight to each scale. Here we present a more general scale

selection scheme that learns a weight w ∈ [0, 1] for each

scale. Supposing LBP involves N operations by altering

(p, r), scale selection seeks a vector w ∈ RN×1 such that the

dissimilarity metric turns to a weighted sum

H(x,x′) =

N
∑

n=1

wndH(xn,x
′
n) = w

T
bH , (2)

where bH is a column vector of dH(xn,x
′
n).
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Our goal is to learn an optimal w from a set P of

positive representative samples (extracted from cancer pixels

in our case) and a set N of negative LBP descriptors (non-

cancer pixels in our case), by simultaneously minimizing the

weighted hamming distances between all samples of P and

maximizing that distances of samples between P and N .

Hence we get the following objective function to minimize:

min
w

∑

x∈P,x′∈P

H2(x,x′)− α
∑

x∈P,x′∈N

H2(x,x′),

s.t. 1 ≥ wn ≥ 0, n = 1, ..., N, and

N
∑

n=1

wn = 1, (3)

where α is to balance the intre- and inter-class distances,

1 ≥ wn ≥ 0 constrains that wn is a weight and satisfies
∑N

n=1
wn = 1. Combining Eq. 2 and Eq. 3 yields

∑

x∈P,x′∈P

w
T
bHb

T
Hw − α

∑

x∈P,x′∈PN

w
T
bHb

T
Hw

= w
T
ΣPw − αwT

ΣPNw, (4)

where ΣP =
∑

x∈P,x′∈P bHb
T
H and ΣPN =

∑

x∈P,′∈N

bHb
T
H are the intra-class and inter-class Hamming distance

kernel, respectively. Eq. 3 is now arranged in a matrix form:

min
w

w
T (ΣP − αΣPN )w

s.t. b
T
w = 1, and 0 ≤ w ≤ 1. (5)

where b = [1, ..., 1]T , b ∈ RN×1.

2.5. Optimization

Eq. 5 is a quadratic function with both linear equality and

inequality constraints. By choosing α appropriately, we can

keep the symmetric matrix ΣP − αΣPN positive definite.

Since the two constraints are both convex set, we have a

convex problem in hand. In practice, we solved the convex

optimization problem using the interior-point optimization

method implemented in the MATLAB quadprog function.

Different to learning-based hashing technique [4], our ap-

proach works on direct binary strings and learns a weight

vector rather than a projection matrix. The benefits of our

technique include (1) reduced overhead in computing ΣP and

ΣPN via bitwise comparisons, and (2) our solution is optimal

in the sense that the non-differentiable binary function is not

a concern for our problem.

With appropriate weights, we can apply the weighted

Hamming metric in Equation 2 to index the entire image

surface with a query pixel picked by the user. Details of the

entire procedure are presented in Algorithm 1.

3. EXPERIMENTAL RESULTS

3.1. Dataset

The experimental dataset is a T2w MRI prostate dataset con-

sisting of a total of 80 slices at a size of 512 × 512 pix-

Data: P , N , Input image Ω(f), query LBP vector x0

Result: w, heatmap Θ(f)
training phase:

1. compute ΣP with P set;

2. compute ΣPN with N and P sets;

3. compute w according to Eq. 5;

testing phase:

while scan Ω(f) at each (i, j) position do

1. extract multi-scale LBP xij at (i, j);
2. find dH(xn

ij ,x
n
0
) at each of n scales;

3. compute the weighted sum w
T
bH ;

4. assign the weighted sum to Θ(f) at (i, j);

end

Algorithm 1: Summary of DWLBP

els. They were scanned from 22 patients who had previously

been diagnosed with prostate cancer via core needle biop-

sies. Since all of these patients underwent radical prosta-

tectomy, ex vivo histological sections were available. De-

formable co-registration was applied to non-linearly align the

pre-operative MRI with the post-operative histologic sections

to map spatial extent of cancer onto corresponding MRI sec-

tions [8]. The goal of this experiment was to distinguish be-

tween cancer and benign regions on a per pixel basis.

8 16 32 64

MsLBP 0.617 0.621 0.608 0.646

DWLBP 0.623 0.633 0.622 0.664

Table 1: The area value under ROC curve (AUC) of DWLBP

and MsLBP for different bit lengths. These values are ob-

tained by using α = 0.04 and 3-fold cross-validation over

80 MRI images and 22 patient studies. The average AUC of

DWLBP is larger than that of MsLBP by an average of 1.25%.

3.2. Experimental Design

A randomized K-fold cross validation was performed by di-

viding the 80 image slices into K parts on a per patient basis,

where (K-1)/K of the dataset was used for training and 1/K for

testing. This is repeated until all the samples have been clas-

sified within each dataset. The resulting ROC curves are then

averaged. For balanced classification, on each slice we ran-

domly sampled 40 cancer pixels as positive data and 40 non-

cancer pixels as negative data. The template pixel was ran-

domly picked on the labelled cancer region of each slice for

both the purposes of weight learning and evaluation. The radii

of MsLBP are fixed as r ∈ {4 8 12 14 16 20 24 28 32 36}.

As for the number of sample p (length of bits), we tested

p ∈ {8, 16, 32, 64}. The K-fold is set as 3 or 4, and we tested

several values for α: 0.01, 0.04, 0.08, 0.1, 0.12 and 0.2.

400



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
u

e
 p

o
s
it
iv

e
 r

a
te

 

 

MsLBP−8−bits

DWLBP−8−bits

MsLBP−16−bits

DWLBP−16−bits

MsLBP−32−bits

DWLBP−32−bits

MsLBP−64−bits

DWLBP−64−bits

(a) effect of tuning bit length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
u
e
 p

o
s
it
iv

e
 r

a
te

 

 

MsLBP−alpha−0.01

DWLBP−alpha−0.01

MsLBP−alpha−0.04

DWLBP−alpha−0.04

MsLBP−alpha−0.08

DWLBP−alpha−0.08

MsLBP−alpha−0.1

DWLBP−alpha−0.1

MsLBP−alpha−0.12

DWLBP−alpha−0.12

MsLBP−alpha−0.2

DWLBP−alpha−0.2

(b) effect of tuning α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
u

e
 p

o
s
it
iv

e
 r

a
te

 

 

MsLBP−Kfold−4

DWLBP−Kfold−4

MsLBP−Kfold−3

DWLBP−Kfold−3

(c) effect of tuning K-fold

4 8 12 14 16 20 24 28 32 36
0

0.05

0.1

0.15

0.2

0.25

radius

w
e
ig

h
t

(d) weight distribution

Fig. 2: ROC curves and learned weight distribution. (a) Evaluating the effect of varying bit number among 8, 16, 32, 64 by

fixing α = 0.04 and K = 3. 64-bits shows better performance than others. (b) Evaluating the effect of varying α among

0.01, 0.04, 0.08, 0.1, 0.12 and 0.2 by using K = 4 and 8 bits. We see that performance is robust to α. (c) Evaluating the effect

of varying K between 3 and 4, when using α = 0.04 and 8 bits. (d) Showing the distribution (mean and standard variation) of

the learned weight vector. We see that LBP patterns at r = 8, 12, 14, 16 are less discriminating than others.

Fig. 3: Top row: cancer ground-truth (red) obtained via de-

formable co-registration of cancer maps from ex vivo histol-

ogy onto pre-operative MRI for 3 different patient studies.

Second and third rows: heatmaps showing likelihood of can-

cer occurrence via DWLBP and MsLBP, respectively. The

color bar shows the suspected probability of being cancer.

3.3. Results

We compared DWLBP mainly with the multi-scale LBP

matching approach (termed as MsLBP) that treats each scale

equally. The resulting ROCs are depicted in Fig. 2 (a)-(c)

and the corresponding AUC values are shown in Table 1.

We see that the accuracy of DWLBP is always higher than

that of MsLBP. This is also verified in Fig. 3. The heatmaps

of DWLBP demonstrate statistically better cancer prediction

than MsLBP.

Fig. 2 (a)-(c) also illustrates the affect of tuning param-

eters, including the length of bit at each scale, the weight

threshold α and the number of K-fold for cross-validations.

When using 64 bits, DWLBP has a visibly better ROCs than

MsLBP. Tuning α and K-fold did not appear to have visible

effect on the results.

Fig. 2 (d) demonstrates the distribution (mean and vari-

ance) of the learned weights obtained with over one thou-

sand iterations. It shows that the LBP patterns at r ∈
{8, 12, 14, 16} are less discriminating, which reveals that

small and large scales tend to be more discriminating com-

pared to the medium scales.

4. CONCLUDING REMARKS

This paper presented DWLBP that attempts to tackle the prob-

lem of how to combine the Hamming scores of LBPs at dif-

ferent scales. By learning a discriminative vector that weighs

the matching score at each individual scale, it leads to a met-

ric that better represents cancer region. Applied in prostate

cancer diagnosis, the new DWLBP approach improves the ac-

curacy of cancer prediction as compared to MsLBP. Experi-

ments reveal that LBP patterns at small and large scales are

more important than those at medium scales.
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