
 1

CHAPTER 6 
THE CELESTIAL SPHERE 

 
 
6.1.   Introduction 
 
If you look up in the sky, it appears as if you are at the centre of a vast crystal sphere with 
the stars fixed on its surface.  This sphere is the celestial sphere.  It has no particular 
radius; we record positions of the stars merely by specifying angles.  We see only half of 
the sphere; the remaining half is hidden below the horizon.  In this section we describe 
the several coordinate systems that are used to describe the positions of stars and other 
bodies on the celestial sphere, and how to convert between one system and another.  In 
particular, we describe altazimuth, equatorial and ecliptic coordinates and the relations 
between them.  The relation between ecliptic and equatorial coordinates varies with time 
owing to the precession of the equinoxes and nutation, which are also described in this 
chapter. 
 
 
6.2.  Altazimuth Coordinates. 
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In figure VI.1 we see the celestial sphere with the observer O at its centre.  The point 
immediately overhead, Z, is the zenith.  The point directly underneath, Z′, is the nadir.  
The points marked N, E, S are the north, east and south points of the horizon. The west 
point of the horizon is behind the plane of the paper (or of your computer screen) and is 
not drawn.  The great circle NESW is, of course, the horizon. 
 
Any great circle passing through Z and Z′ is called a vertical circle.   The vertical circle 
passing through S and N, the south and north points of the horizon, is the meridian.  The 
vertical circle passing through the east and west points of the horizon (which I have not 
drawn) is the prime vertical.  X is the position of a star on the celestial sphere, and I have 
drawn the vertical circle ZXMZ′ passing through the star.  The angle MX is the altitude 
of the star (also referred to in some contexts as its “elevation”).   The complement of its 
altitude, the angle z, is the zenith distance (also called, not unreasonably, the “zenith 
angle”). 
 
A small circle of constant altitude – i.e. a small circle parallel to the horizon – has the 
curious name of an almucantar, and I have drawn the almucantar through the star X.  An 
almucantar can also be called a parallel of altitude. 
 
The angle NM that I have denoted by Az on figure VI.1 is called the azimuth (or 
“bearing”) of the star.  As drawn on the figure, it is measured eastwards from the north 
point of the horizon.  This is perhaps the most common convention for observers in the 
northern hemisphere.  However, for stars that are west of the meridian, it may often be 
convenient to express azimuth as measured westwards from the north point.  I don’t 
know what the custom is of astronomers who live in the southern hemisphere, but it 
would not surprise me if often they express azimuth as measured from the south point of 
their horizon.  In any case, it is important not to assume that there is some universal 
convention that will be understood by everybody, and it is essential when quoting the 
azimuth of a star to add a phrase such as “measured from the north point eastwards”.  If 
you merely write “an azimuth of 32 degrees”, it is almost certain that you will be either 
misunderstood or not understood at all. 
 
In the altazimuth system of coordinates, the position of a star is uniquely specified by its 
azimuth and either its altitude or its zenith distance.   
 
Of course the altitude and azimuth of a star are changing continuously all the time, and 
they are also different for all observers at different geographical locations. 
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6.3.   Equatorial Coordinates. 
 
If you live in the northern hemisphere and if you face north, you will observe that the 
entire celestial sphere is rotating slowly counterclockwise about a point in the sky close 
to the star Polaris (α Ursae Minoris).   The point P about which the sky appears to rotate 
is the North Celestial Pole.  If you live in the southern hemisphere and if you face south 
you will see the entire sky rotating clockwise about a point Q, the South Celestial Pole.  
There is no bright star near the south celestial pole; the star σ Octantis is close to the 
south celestial pole, but it is only just visible to the unaided eye provided you are dark 
adapted and if you have a clear sky free of light pollution.  The great circle that is 90o 
from either pole is the celestial equator, and it is the projection of Earth’s equator on to 
the celestial sphere. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In figure VI.2 I have drawn the celestial sphere from the opposite side from the drawing 
of figure VI.1, so that, this time, you can see the west point of the horizon, but not the 
east point.  The celestial equator is the great circle ABW C. 
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You might possibly have noticed that, in section 2, I had not properly defined the north 
point of the horizon other than by saying that it was the point marked N in figure VI.1.  
We see now that the north and south points of the horizon are the points where the 
vertical circle that passes through the celestial poles (i.e. the meridian) meets the horizon. 
 
The altitude φ of the north celestial pole is equal to the geographical north latitude of the 
observer.  Thus for an observer at Earth’s north pole, the north celestial pole is at the 
zenith, and for an observer at Earth’s equator, the north celestial pole is on the horizon.   
  
You will see that a star such as X transits across the meridian twice.  Lower meridian 
transit occurs at the point T′, when the star is north of the observer and is directly below 
the north celestial pole.  For the star X of figure VI.2, lower meridian transit is also below 
the horizon, and it cannot be seen.  The star reaches its highest point in the sky (i.e. it 
culminates) at upper meridian transit. 
 
The first quantitative astronomical observation I ever did was to see how long the 
celestial sphere takes to rotate through 360o.  This is best done by timing the interval 
between two consecutive upper meridian transits of a star. It will be found that this 
interval is 23h 56m 04s.099 of mean solar time, although of course it requires more than a 
casual observation to determine the interval to that precision. The rotation of the celestial 
sphere is, of course, a reflection of the rotation of Earth on its axis.  In other words, this 
interval is the sidereal (i.e. relative to the stars) rotation period of Earth.   
 
We are now in a position to describe the position of a star on the celestial sphere in 
equatorial coordinates.  The angle δ in figure VI.2 is called the declination of the star.  It 
is usually expressed in degrees, arcminutes and arcseconds, from 0o to +90o for stars on 
or north of the equator, and from 0o to −90o for stars on or south of the equator.  When 
quoting the declination of a star, the sign of the declination must always be given.   
 
When the star X in figure VI.2 is at lower meridian transit, it is below the horizon and is 
not visible.  However, if the declination of a star is greater than 90o − φ, the star will not 
reach the horizon and it will never set.  Such stars are called circumpolar stars. 
 
The second coordinate is the angle H in figure VI.2.  It is measured westward from the 
meridian.  It will immediately be noticed that, while the declination of a star does not 
change through the night, its hour angle continuously increases, and also the hour angle 
of a star at any given time depends on the geographical longitude of the observer.  While 
hour angle could be expressed in either radians or degrees, it is customary to express the 
hour angle in hours, minutes and seconds of time.  Thus hour angle goes from 0h to 24h.  
When a star has an hour angle of, for example, 3h, it means that it is three sidereal hours 
since it transited (upper transit) the meridian.  Conversion factors are  
 
 1h = 15o 1m = 15′ 1s = 15″ 1o = 4m  1′ = 4s. 
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(The reader may have noticed that I have just used the term “sidereal hours”.  For the 
moment, just read this as “hours” – but a little later on we shall say what we mean by 
“sidereal” hours, and you may then want to come back and re-read this.) 
 
While it is useful to know the hour angle of a star at a particular time for a particular 
observer, we still need a coordinate that is fixed on the celestial sphere.  To do this, we 
refer to a point on the celestial equator, which I shall define more precisely later on, 
denoted on figure VI.2 by the symbol . This is the astrological symbol for the sign 
Aries, and it was originally in the constellation Aries, although at the present time it is in 
the constellation Pisces.  In spite of its present location, it is still called the First Point of 
Aries.  The angle measured eastward from   to the point B is called the right ascension 
of the star X, and is denoted by the symbol α. This does not change (at least not very 
much – but we shall deal with small refinements later) during the night or from night to 
night.  Thus we can describe the position of a star on the celestial sphere by the two 
coordinates δ, its declination, and α, its right ascension, and since its right ascension does 
not change (at least not very much), we can list the right ascensions as well as the 
declinations of the stars in our catalogues.  The right ascension of the First Point of Aries 
is, of course, 0h. 
 
I have hinted in the last paragraph that the right ascension of a star, although it doesn’t 
change “very much” during a night, does change quite perceptibly over a year.  We shall 
have to return to this point later.  I have not as yet precisely defined where the point  is 
or how it is defined, but we shall later learn that it is not quite fixed on the equator, but it 
moves slightly in a manner that I shall have to describe in due course.  Thus the entire 
system of equatorial coordinates, and the right ascensions and declinations of the stars, 
depends on where this mysterious First Point of Aries is.  For that reason, it is always 
necessary to state the epoch to which right ascensions and declinations are referred.  For 
much of the twentieth century, equatorial coordinates were referred to the epoch 1950.0 
(strictly it was B1950.0, but I shall have to postpone explaining the meaning of the prefix 
B).  At present catalogues and atlases refer right ascensions and declinations to the epoch 
J2000.0, where again I shall have to defer an explanation of the prefix J.  While there is 
evidently some further explanation yet to come, suffice it to say at this point that, when 
giving the right ascension and declination of any object, it is essential that the epoch also 
be given.  The First Point of Aries moves very, very slowly westward relative to the stars, 
so that the right ascensions of all the stars are increasing at a rate of about  0s.008 per day. 
This does not amount to much for day-to-day purposes, but it does emphasize why it is 
always necessary to state the epoch to which right ascensions and declinations of stars are 
quoted.  It also means that, if you were able to observe two consecutive upper transits of 

 across the meridian, the interval would be 0s.008 shorter than the sidereal rotation 
period of Earth.  It would be, in fact, 23h 56m 04s.091.  This interval between two 
consecutive upper meridian transits of the First Point of Aries, is called a sidereal day.  
(It might be thought that, since the word “sidereal” implies “relative to the stars”, this is 
not a particularly good term.  I would have sympathy with this view, and would prefer to 
call the interval an “equinoctial day”.  However, the term sidereal day is so firmly 
entrenched that I shall use that term in these notes.)  A sidereal day is divided into 24 
sidereal hours, which are shorter than mean solar hours by a factor of 0.99726957.  We 
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shall discuss the motion of  in more detail in a later section.  At this stage no great harm 
is done by considering  in the first approximation to be fixed relative to the stars. 
 
Now some more words.  Small circles parallel to the celestial equator (such as the small 
circle T′XT in figure VI.2) are parallels of declination.   Great circles that pass through 
the north and south celestial poles (for example the great circle PXBQ of figure VI.2) and 
which are fixed on and rotate with the celestial sphere are called by a variety of names.  
Some call them declination circles, because you measure declination up and down these 
circles.  Others call them hour circles, because the hour angle or right ascension is 
constant along them.  For those who find it confusing that a given circle can be called 
either a declination circle or an hour circle, you can get around this difficulty by calling 
them colures.  The colure that passes through the First Point of Aries and the 
diametrically opposite point on the celestial sphere, and which therefore has right 
ascensions 0h and 12h, is the equinoctial colure.  The colure that is 90o from this (or, 
rather, 12 hours from this) and which has right ascensions 6h and 18h, is the solstitial 
colure. 
 
The time that has elapsed, in sidereal hours, since the First Point of Aries transited (upper 
transit) the meridian, that is to say the hour angle of the first point of Aries, or the angle 
from A to  in figure VI.2, is called the Local Sidereal Time.  It is evident from figure 
VI.2 that the Local Sidereal Time is also equal to B + AB.  But B is the right 
ascension of the star X and AB is its hour angle.  Therefore the local sidereal time (the 
hour angle of the First Point of Aries) is equal to the right ascension of any star plus its 
hour angle. 
 
The sidereal time at the longitude of Greenwich (0o longitude) is tabulated daily in the 
Astronomical Almanac and the local sidereal time at your location is equal to the local 
sidereal time at Greenwich minus your geographical longitude.  Most observatories have 
two clocks running in the dome at all times.  One gives Universal Time, while the other, 
which runs a little faster, gives the local sidereal time.  But you always have a sidereal 
clock available, for a glance at figure VI.2 will tell you that the local sidereal time is 
equal to the right ascension of stars at upper meridian transit.   
 
  
6.4.   Conversion between Equatorial and Altazimuth Coordinates. 
 
Whereabouts in the sky will a given star be at a certain time?  This as a typical problem 
involving conversion between equatorial and altazimuth coordinates.  We have to solve a 
spherical triangle.  That is no problem – we already know how to do that.  The problem 
is:  which triangle?  
 
The first problem, however, arises from the phrase “at a certain time”.  In particular, if we 
want to know where a star is, for example, at 2000 November 24, at 10:00 p.m. Pacific 
Standard Time as seen from Victoria, whose longitude is 123o 25′.0 W, we need to know 
the local sidereal time at that instant.  
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The calculation might go something like this. 
 
From the Astronomical Almanac we find that the local sidereal times at Greenwich at 0h 
UT on November 25 and 26, 2002,  are   
 
November 25:     04h  16m  59s 

November 26:     04    20    56 
 
We want the local sidereal time at November 24d  22h  00m  PST   
        =  November 25d  06h  00m   UT  
 
By interpolation we find that the local sidereal time at Greenwich at that instant is 
10h  17m  58s.    
 
 The longitude of Victoria is 08h  13m  40s, and therefore the local sidereal time at 
Victoria is 02h  04m  18s. 
 
We have overcome the first obstacle, and we now know the local sidereal time (LST). 
 
We’ll ask ourselves now what are the altitude and azimuth of a star whose right ascension 
and declination are α and δ.  We also need the latitude of the observer (= altitude of the 
north celestial pole), which I’ll call φ.  The hour angle H of the star is LST  − α. 
 
The triangle that we have to solve is the triangle PZX.  Here P, Z and X are, respectively, 
the north celestial pole, the zenith and the star.  That is, we solve the triangle formed by 
the star and the poles of the two coordinate systems of interest.  I draw the celestial 
sphere in figure VI.3 as seen from the west.  I have marked in the hour angle H, the co-
declination 90o − δ, the altitude φ of the pole, the zenith distance z and the azimuth A 
measured from the north point westwards. 
 
In triangle PZX, we know φ, δ and H, so we immediately find the zenith distance z by 
application of the cosine formula (equation 3.5.2) and the azimuth A from the cotangent 
formula (equation 3.5.5). 
 
Problem.  Show that the hour angle H of a star of declination δ when it sets for an 
observer at latitude φ is given by .tantancos φδ−=H   This will enable you now to find 
the Local Sidereal Time of starset, since LST = hour angle plus right ascension, and then 
you can convert to your zone solar time.  
 
Show also that the azimuth A of starset, westward from the north point, is given by 

.tansintan HA φ−=  
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6.5   Ecliptic Coordinates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In figures VI.2 and 3 we were concerned mainly with the daily rotation of the celestial 
sphere.  In figure VI.4 we shall be concerned mainly with the annual motion of the Sun 
relative to the stars on the celestial sphere.  In contrast to figures VI.2 and 3, I have drawn 
the celestial equator, not the observer’s horizon, horizontally, and the north celestial pole, 
not the observer’s zenith, is at the top of the diagram.  It is found that, for an observer on 
Earth, the Sun moves eastward relative to the stars during the course of the year, its right 
ascension continuously increasing;  this apparent motion of the Sun relative to the stars 
is, of course, a consequence of the Earth revolving around the Sun. 
 
Relative to the stars, it is found that, during the course of a year, the Sun moves eastward 
along a great circle that is inclined to the equator at an angle of about 23o.4.  This great 
circle is called the ecliptic, and it is the projection of the plane of Earth’s orbit on the 
celestial sphere.  The angle between the ecliptic and the equator is called the Obliquity of 
the Ecliptic.  The ecliptic crosses the equator at two points.  The Sun reaches one of these 
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points on about March 22 each year on its way north at which time the Sun’s declination 
changes from negative to positive.  This point, the ascending node of the Sun’s path on 
the equator, is the First Point of Aries, which we introduced in section 6.3.  As mentioned 
there, and for reasons that will be explained in section 6.7, it is actually in the 
constellation Pisces rather than Aries.  Nevertheless it is still known as the First Point of 
Aries and is denoted by the astrological symbol  for Aries.  It is the point from which 
right ascensions are measured.  The instant of time when the Sun crosses the equator 
from north to south at the First Point of Aries is the March Equinox.  Days and nights are 
of equal length all over the world on that date (“equinox”  =  “equal night”), and that date 
marks the first day of Spring in the northern hemisphere.  For that reason it is also called 
the “vernal equinox”  (Latin verna = “spring”) – but that is hardly fair to southern 
hemisphere astronomers, for it marks the beginning of the southern autumn. 
 
About three months later, on or near June 21, the Sun reaches the point S1 at the June 
Solstice (called by those who live in the Northern hemisphere, the summer solstice).  The 
declination of the Sun is then at its highest point, +23.4 degrees.  At that instant the rate 
of change of the Sun’s declination is zero, which explains the origin of the word 
“solstice”, which implies that the Sun is momentarily standing still.  The Sun is then in 
the constellation Gemini.  After a further three months, the Sun has descended back to the 
equator on its way south, at the September equinox (the “autumnal equinox” for 
northerners) on or near September 23, when the Sun is in the constellation Virgo.  And 
after a further three months the Sun reaches its most southerly declination at the 
December solstice (“winter solstice” to northerners) on or near December 21, when the 
Sun is in the constellation Sagittarius. 
 
Also drawn in figure IV.4 is the North Pole of the Ecliptic, K, which is in Draco.  The 
South Pole of the Ecliptic is in Dorado. 
 
The ecliptic and its pole K form the basis of the ecliptic coordinate system, illustrated in 
figure VI.5.  The ecliptic longitude λ and the ecliptic latitude β of a star X are shown in 
figure VI.5, which should be self explanatory.  In order to convert between equatorial and 
ecliptic coordinates, the triangle to solve is triangle PKX.  The arc KX is 90o − β and the 
angle PKX is 90o − λ.  What are the arc PK, the arc PX and the angle KPX? 
 
[Answers:  PK = η         PX  =   90o − δ          KPX = 90o + α] 
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6.6   The Mean Sun 
 
The bright yellow (or white) ball of fire that appears in the sky and which you could see 
with your eyes if ever you were foolish enough to look directly at it is the Apparent Sun.  
It is moving eastward along the ecliptic, and its right ascension is increasing all the time.  
Consequently consecutive upper transits across the meridian take about four minutes 
longer than consecutive transits of a star or of the First Point of Aries.  The hour angle of 
the Apparent Sun might have been called the local apparent solar time, except that we 
like to start our days at midnight rather than at midday.  Therefore the Local Apparent 
Solar Time is the hour angle of the Apparent Sun plus twelve hours.  It is “local”, because 
the hour angle of the apparent Sun depends continuously on the longitude of the observer.   
It is the time indicated by a sundial.  In order to convert it to a standard zone time, we 
must know, among other things, our longitude.   
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The Apparent Sun has some drawbacks as an accurate timekeeper, particularly because 
its right ascension does not increase at a uniform rate throughout the year.  The motion 
of the Apparent Sun, is, of course, just a reflection of Earth’s annual orbital motion 
around the Sun.  The Earth moves rather faster at perihelion (on or near January 4) than at 
aphelion (on or near July 4); consequently the Apparent Sun moves faster along the 
ecliptic in January than in July.  Even if this were not so, however, and the Sun were to 
move at a uniform rate along the ecliptic, its right ascension would not increase at a 
uniform rate.  This is because right ascension is measured along the celestial equator 
rather than along the ecliptic.  If the Sun were moving uniformly along the ecliptic, its 
right ascension would be increasing faster at the solstices (where its motion is 
momentarily parallel to the equator) than at the equinoxes, (where is motion is inclined at 
23o.4 to the ecliptic).  So there are these two reasons why the right ascension of the 
apparent Sun does not increase uniformly throughout the year. 
 
To get over these two difficulties we have to invent two imaginary suns.  One of them 
accompanies the apparent (i.e. the real!) Sun in its journey around the ecliptic.  The two 
start together at perihelion.  This Dynamic Sun moves at a constant rate, so that the 
Apparent Sun (which moves faster in January when Earth is at perihelion) moves ahead 
of the imaginary sun.  By the time Earth reaches aphelion in July, however, the Apparent 
Sun is slowing down, and the Dynamic Sun manages to catch up with the Apparent Sun. 
After that, the Dynamic Sun surges ahead, leaving the Apparent Sun behind.  But the 
Apparent Sun starts to gain speed again, and catches up again with the Dynamic Sun at 
perihelion in January.  The Apparent Sun and the Dynamic Sun coincide twice per year, 
at perihelion and at aphelion. 
 
Now we imagine a second imaginary sun – a rather important one, known as the Mean 
Sun.  The Mean Sun moves at a constant rate along the equator, its right ascension 
moving uniformly all through the year.  It coincides with the Dynamic Sun at .  At this 
time, the right ascension of the Dynamic Sun is increasing rather slowly, because it is 
moving along the ecliptic, at an angle to the equator.  Its right ascension increases most 
rapidly at the solstices, and by the time of the first solstice it has caught up with the Mean 
Sun.  After that, it moves ahead of the Mean Sun for a while, but it soon slows down as 
its motion begins to make an ever steeper angle to the equator, and Dynamic Sun and the 
Mean Sun coincide again at the second equinox.  Indeed these two suns coincide four 
times a year – at each of the equinoxes and solstices. 
 
Local Mean Solar Time is the hour angle of the Mean Sun plus twelve hours, and the 
difference Local Apparent Solar Time minus Local Mean Solar Time is called the 
Equation of Time.   The equation of time is the sum of two periodic functions.  One is the 
equation of the centre, which is the difference in right ascensions of the Apparent Sun 
and the Dynamic Sun, and it has a period of one year. The second is the reduction to the 
equator, which has a period of half a year.  The value of the equation of time varies 
through the year, and it can amount to a little more than 16 minutes in early November. 
Local Mean Solar Time, while uniform (or as uniform as the rotation of the Earth) still 
depends on the longitude of the observer.  For that reason, all the inhabitants of a zone on 
Earth roughly between longitudes 7o.5 East and West agree to use a standard the Local 
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Mean Solar Time at Greenwich, also called Greenwich Mean Time, GMT, or Universal 
Time, UT.   Similar zones about 15 degrees wide have been established around the world, 
within each of which the time differs by an integral; number of hours from Greenwich 
Mean Time. 
 
We shall discuss in Chapter 7 small distinctions between various versions of Universal 
Time as well as Ephemeris Time and Terrestrial Dynamical Time. 
 
 
6.7   Precession 
 
The First Point of Aries is the point where the ecliptic crosses the equator at the point 
occupied by the Sun at the March equinox.  It is the point from which right ascensions are 
measured.  We have hitherto treated it as if it were fixed relative to the stars, although we 
have hinted from time to time that this is not exactly so.  Indeed we have said that it is 
essential, when stating the right ascension and declination of a star, to state the date of the 
equinox to which it refers. 
 
In figure VI.6, I have drawn the ecliptic horizontally, and the celestial equator inclined at 
and angle of 23o.4.  You can see the north pole of the ecliptic, K, and the north celestial 
pole P.  The great circle P  (not drawn) is the equinoctial colure, and the right ascension 
of  is 0h.  The right ascension and declination of K are 18h, +66o.6, which is a point 
between the stars δ and ζ Draconis.   
 
Neither the north celestial pole P nor the “First Point of Aries”  are fixed, however.  
The north celestial pole P describes a small circle of radius 23o.4 around K, and the 
equinox  regresses westwards along the ecliptic in a period of 25,800 years.  This 
motion, called the precession of the equinoxes (or just “precession” for short) is not quite 
uniform, but is nearly so and will be treated as such in this section.  The complete cycle 
of 25,800 years corresponds to a westward regression of  along the ecliptic of 50″.2 per 
year or 0″.137 per day.  The component of that motion along the celestial equator is 
0″.137  cos 23o.4 = 0″.126 = 0s.008 per day.  That is why the length of the mean sidereal 
day (which is defined as the interval between two consecutive upper meridian transits of 
the first point of Aries) is 0s.008 shorter than the sidereal rotation period of Earth. 
 
The precession of P around K means that the entire system of equatorial coordinates 
(right ascension and declination) moves continuously, and the right ascensions and 
declinations of all the stars are continuously changing.  No matter where P is in its 
journey around K, however, the equatorial coordinates of  and of K are always 0h , 0o 
and 18h , +66o.5.   However, equatorial coordinates of the stars must always be referred to 
the equinox and equator of a stated epoch.    
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During much of the twentieth century, the epoch referred to by many catalogues and 
atlases was B1950.0.  That is the beginning of the Besselian Year of 1950, at the instant 
(shortly before midnight on the night of 1949 Dec 31 / 1950 Jan 1) when the right 
ascension of the Mean Sun was 18h 40m.  Most catalogues since 1984 have referred right 
ascensions and declinations to the mean equinox and equator of J2000.0.  That is the 
beginning of the Julian Year 2000, at the instant when Greenwich Mean Time (UT) 
indicated midnight.  For example, in the older catalogues, the right ascension and 
declination of Arcturus would be given as  
 
   α1950.0  =  14h  13m.4     δ1950.0  =  +19o 26′,  
 
whereas in more recent catalogues they are given as 
 
   α2000.0  =  14h  15m.8    δ2000.0   =  +19o 11′ . 
 
Thus it can be seen that for precise work the difference is not at all negligible, and to state 
the equatorial coordinates of an object without also stating the epoch of the equinox and 
equator to which the coordinates are referred is not generally useful.  Of course, when 
setting the circles of a telescope for the night’s observations, what one needs are the right 
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ascension and declination referred to the equinox and equator of date – i.e. for the date in 
question.  It is therefore essential for a practical observer to know how to correct for 
precession. 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the cosine formula (equation 3.5.2) to triangle PKX to obtain 
 
   .sincossinsincossin λβη+βη=δ    6.7.1 
 
Since  is regressing down the ecliptic, the ecliptic longitude λ of the star X is 
increasing.  If it is increasing at a rate λ&   (= 50″.2 per year), the rate of change of its 
declination can be obtained by differentiation of equation 6.7.1 with respect to time, 
bearing in mind that β and η are constant: 
 
   .coscossincos λλβη=δδ &&      6.7.2 
 
But (cos β cos λ)/cosδ  is obtained from the sine formula (equation 3.5.1): 
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    .
cos
cos

cos
cos

λ
δ

=
α
β      6.7.3 

 
Hence we obtain for the rate of change of declination of a star due to precession: 
 
    .cossin αηλ=δ &&      6.7.4 
 
To obtain the rate of change of right ascension, we can write equation 6.7.3 as 
 
    λδβ=α cosseccoscos     6.7.5 
 
and then differentiate with respect to time: 
 
   ( ),sincostanseccossin λλ−λδδδβ=αα− &&&   6.7.6 
 
which I am going to write as  
 
   ( ).tantancosseccossin λλ−δδλδβ=αα− &&&   6.7.7 
 
We can get cosβ secδ cosλ  from equation 6.7.5, and of course we have δ& from equation 
6.7.4, but we still need to find an expression for tan λ in terms of equatorial coordinates.  
We can do this from the cotangent formula (equation 3.5.4), in which the inner angle is 
90o + α and the inner side is η: 
 
   .tancostansinsincos λα−δη=αη−    6.7.8 
 
On substitution of equations 6.7.4, 6.7.5 and 6.7.8 into equation 6.7.7 we obtain, after a 
very small amount of algebra, for the rate of change of right ascension of a star due to 
precession: 
 
   ( ).sintansincos ηδα+ηλ=α &&     6.7.9 
 
With λ&  = 50″.2 per year and η = 23o.4, equations 6.7.4 and 6.7.9 become 
 
    α=δ cos9".19&      per year   6.7.10 
 
and   δα+=α tansin9".191".46&    per year   6.7.11  
 
or   δα+=α tansin33.107.3 ss&      per year.   6.7.12 
 
These formulae should be adequate for all but very precise calculations. 
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Problem:  Use equations 6.7.10 and 6.7.12 to verify the data about Arcturus – and please 
let me know if it isn’t right!  
 
At the time of Hipparcos (who discovered the phenomenon of precession as long ago as 
the second century B.C.), the spring equinox was in the constellation Aries – indeed at its 
eastern boundary.  Hence it was called the First Point of Aries.  Over the centuries, 
precession has carried the equinox westward right across the constellation Aries, and 
because of this, together with the way in which the constellation boundaries were 
formally fixed in 1928, the equinox is now near the western boundary of Pisces and is 
only a few degrees from Aquarius.   It is still called, however, by its traditional name of 
the First Point of Aries.   
Incidentally, the ecliptic actually passes through the constellation Ophiuchus, which is 
not one of the traditional twelve “Signs of the Zodiac”, and it is sometimes said that this 
is a result of precession over the centuries.  This is not the case.  Precession does not alter 
the plane of the ecliptic, and the ecliptic continues to pass through the same constellations 
regardless of where the equinox is along it.  The inclusion of Ophiuchus is merely a result 
of the way in which the constellation boundaries were formally fixed in 1928. 
 
 
The physical cause of the precession.   
 
The daily motion of the stars around the north celestial pole is, of course, a reflection of 
Earth’s rotation on its axis; and the annual motion of the Sun along the ecliptic, which is 
inclined at 23o.4 to the celestial equator, is a reflection of the annual orbital motion of 
Earth around the Sun, the plane of Earth’s rotational equator being inclined at 23o.4 to the 
plane of its orbit – i.e. to the ecliptic.  Although this obliquity of 23o.4 is approximately 
constant, the direction of Earth’s rotational axis is not fixed, but it precesses around the 
normal to the ecliptic plane with a period of 25,800 years.  
 
From the point of view of classical mechanics, Earth is an oblate symmetric top.  That is 
to say, it has an axis of symmetry and two of its principal moments of inertia are equal 
and are less than the moment of inertia about the axis of symmetry.  The phenomena of 
precession of such a body are well understood and are studied in courses of classical 
mechanics.  It is necessary, however, to be clear in one’s mind about the distinction 
between torque-free precession and torque-induced precession. 
 
The phenomenon of torque-free precession is the precession that occurs when a 
symmetric top is spinning about an axis that does not coincide with its symmetry axis and 
it is spinning freely with no external torques acting upon it.  In such circumstances, the 
angular momentum vector is fixed in magnitude and direction.  The symmetry axis 
precesses about the fixed angular momentum vector while the instantaneous axis of 
rotation precesses about the symmetry axis.  The rotation of Earth does indeed exhibit 
this type of behaviour, but this is not the precession that we are talking about in 
connection with the precession of the equinoxes.  The instantaneous axis of rotation of 
Earth is only a very few metres away from its symmetry axis and the period of the 
torque-free precession is about 432 days.  This gives rise to a phenomenon known as 
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variation of latitude, and it results in the latitudes of locations of Earth’s surface varying 
quasi-periodically with an amplitude of less than a fifth of an arcsecond.   The precession 
of the equinoxes that we have been discussing in this section is something entirely 
different. 
 
The figure of Earth is approximately an oblate spheroid.  If we call the equatorial radius a 
and the polar radius c, the geometric ellipticity ( ) aca /−   is about 1/297.0.  If we call the 
corresponding principal moments of inertia A and C, the dynamical ellipticity ( ) AAC /−  
is about 1/305.1.   Earth’s equator is inclined to the ecliptic, and, because of the 
equatorial bulge, the spinning Earth is subject to torques from both the Sun and the Moon 
(whose orbit is inclined to the ecliptic by about 5 degrees).  The magnitude of the torque 
is proportional to the diameter of Earth times the gravitational field gradient 2GM/r3, and 
the direction of the torque vector is perpendicular to the angular momentum vector. 
 
Exercise:  Look up the masses of Sun and Moon, and their mean distances from Earth.  
Show that M/r3 for the Moon is about twice that for the Sun.  Thus the torque on Earth 
exerted by the Moon is about twice the torque exerted by the Sun. 
 
Now if a symmetric top is spinning about its axis of symmetry with angular momentum L 
and if it is subject to an external torque τ, its angular momentum will change (not in 
magnitude, but in direction), and L will precess with an angular velocity Ω given by  
 
     τ  =  Ω  ×  L.     6.7.10 
 
Equation 6.7.10 does not give the direction of Ω uniquely – that depends on the initial 
conditions.  Figure VI.8 illustrates the situation.  The equatorial bulge is much 
exaggerated. The figure is drawn in a reference frame that is revolving around the Sun 
with the Earth, so there is no net gravitational force on Earth (the gravitational attraction 
of the Sun is counteracted by the centrifugal force).  In this frame, there is a little force F 
acting towards the Sun on the sunward-facing bulge, and an equal force acting away from 
the Sun on the opposite side.  This amounts to a torque of magnitude τ = Fd sin η, where 
η is the obliquity of the ecliptic and d is the diameter of Earth.  Thus if we equate the 
magnitudes of both sides of equation 6.7.10, we obtain for the angular speed of the 
precession 
 
             ,/ LFd=Ω      6.7.11 
 
which is independent of η.  This, then is the cause of the precession of the equinoxes, 
except that, for the purpose of figure VI.8, I referred only to the Sun.  You have yourself 
calculated that the influence of the Moon is about twice that of the Sun, and the combined 
effect of the Moon and the Sun is called the luni-solar precession.  There is a small 
additional precession resulting from the influence of the other planets in the solar system. 
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6.8   Nutation    
 
Those who have studied the gyrations of a spinning top will recall that, in addition to 
precessing, a top may nutate, or nod up and down (Latin nutare, to nod), the amplitude 
and type of nutation depending on the initial conditions.   Earth’s axis does indeed nutate, 
but not from the same cause.  Those who have studied tops will understand that damping 
more or less rapidly damps out the amplitude of the nutation, and, since Earth is a non-
rigid, flexible body, this type of nutation has long ago damped out.  
 
Earth’s axis of rotation nutates because it is subject to varying torques from Sun and 
Moon – the former varying because of the eccentricity of Earth’s orbit, and the latter 
because of both the eccentricity and inclination of the Moon’s orbit.  This means that the 
equinox  does not move at uniform speed along the ecliptic, and the obliquity of the 
ecliptic varies quasi-periodically.  These two effects are known as the nutation in 
longitude and the nutation in the obliquity.  While several effects involving both the Sun 
and the Moon are involved, the most important term in the general expressions for both 
nutation in longitude and nutation in obliquity involve the longitude of the nodes of the 
Moon’s orbit, which are known to regress with a period of 18.6 years.  Thus both 
nutations, in the first approximation, have a period of 18.6 years.  The nutation in 
longitude has an amplitude of 17″.2, and the nutation in the obliquity has an amplitude of 
9″.2.  In addition, planetary perturbations cause a secular (i.e. not periodic) decrease in 
the obliquity of about 0″.47 per year.   
 
A further point that should be mentioned is that the plane of the ecliptic is not quite 
invariable.  What is invariable in the absence of external torques on the solar system is 
the direction of the angular momentum vector of the solar system; the plane 
perpendicular to this is called the invariable plane of the solar system. 
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This section and the previous section have described briefly in a rather qualitative way 
the motion of the equinox along the ecliptic with a period of 25,800 years (i.e. 
precession) – a motion that is  not quite uniform on account of  the nutations in longitude 
and the obliquity.  This brief account may suffice for most purposes of the observational 
astronomer and for the aim of this chapter, which is a general overview of the celestial 
sphere.  A more thorough and detailed treatment of precession and nutation will have to 
wait for a special chapter devoted to the subject. 
 
 
6.9  The Length of the Year. 
    
The time taken for Earth to revolve around the Sun with respect to the stars, which is the 
same thing as the time taken for the Apparent Sun to move around the ecliptic with 
respect to the stars, is a Sidereal Year, which is 365d.25636, where the “d” denotes a 
mean solar day.  The length of the seasons, however, is determined by the motion of the 
Apparent Sun relative to .  Because  is moving westward along the ecliptic, the time 
that the Apparent Sun takes to move around the ecliptic relative to , which is called the 
Tropical Year, is a little less than the sidereal year.  We have seen, however that the 
motion of  along the ecliptic is not quite uniform, and we have to average out the 
effects of nutation.  Thus the Mean Tropical Year is the average time for the ecliptic 
longitude of the Apparent Sun to increase by 360o, which is 365d.24219.  
 
The calendar that we use in everyday life is the Gregorian Calendar, in which there are 
365 days in most years, but 366 days in years that are divisible by 4 unless they are also 
divisible by 100 other than those that are also divisible by 400.  Thus leap years (those 
that have 366 days) include 1996, 2000, 2004, but not 2005 or 1900.  (2000 was a leap 
year because, although it is divisible by 100, it is also divisible by 400.) The average 
length of the Gregorian Year is 365.2425, which is close enough to the Mean Tropical 
Year for present-day purposes, but which is of concern to calendar reformers and will be 
of some concern to our remote descendants. 
 
The Anomalistic Year is the interval between consecutive passages of the Earth through 
perihelion.  The perihelion of Earth’s orbit is slowly advancing n the same direction as 
the Earth’s motion, so the anomalistic year is a little longer than the sidereal year, and is 
equal to 365d.25964.  
 
Figure VI.9 illustrates a way of thinking about the relation between the sidereal and 
tropical years.  We are looking down on the ecliptic from the direction of the north 
ecliptic pole.  We see the Sun moving counterclockwise at angular speed ωsid and  
moving clockwise at angular speed ω .  The angular speed of the Sun relative to   
 
 
 
 
 
 



 21

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
is ωtrop  =   ωsid  +   ω .  But period P and angular speed ω are related by ω  = 2π/P.  
   

Therefore:    .111

sidtrop PPP
+=     6.9.1 

 
 
Thus Psid  = 365d.25636 and P   =  25800 years = 9.424 %  106 days.  Hence Ptrop = 
365d.2422.  Using the same argument, see if you can calculate how long it takes for the 
perihelion of Earth’s orbit to advance by 360o – bearing in mind that the perihelion is 
advancing, not regressing. 
 
One more point worth noting is that, during a sidereal year, the Sun has upper transited 
across the meridian 365.25636 times, whereas a fixed star has transited 366.25636 times.  
Expressed another way, while Earth turns on its axis 365.25636 times relative to the Sun, 
relative to the stars it has made one extra turn during its revolution around the Sun.  Thus 
 

   .
25636.366
25636.365

daysolarofLength
daysiderealofLength

=    

 
Thus the length of the sidereal day is 23h 56m 04s. 
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6.10 Problems 
 
   In Section 3.5 of Chapter 5, I suggested that it might be a good ides to write a computer 
program, which would last you for life, that would solve any problem involving plane or 
spherical triangles.  If you did that, the following problems will be easy.  If you didn’t, 
you are now about to suffer. 
 
6.10.1 
 
The equatorial coordinates (J2000.0) of Antares and  Deneb are, respectively 
 
Antares  α  = 16h 29m.5          δ   =   '2626o−  
Deneb           20  37.6                       + 45   17 
 
Calculate the positions of the poles of the great circle joining these two stars. 
 
I put one star in the northern hemisphere, and the other in the south, and I put the stars in 
the third and fourth quadrants of right ascension, just to be awkward. 
 
 
6.10.2 
 
The parallax of Antares is 00540".0 , and the parallax of Deneb is .00101".0    How far 
apart are the stars (a) in parsecs?  (b) in km?  (c) in light-years?  The speed of light is  
2.997 92  %  108 m s−1,  the radius of Earth’s orbit is 1.495 98 % 108 km, and a tropical 
year is 365.24219 mean solar days. 
 
 
6.10.3 
 
A meteor starts at   α  = 23h 24m.0          δ   =   '0004o+  
and finishes at   α  = 01h 36m.0          δ   =   '0010o+  
 
A second meteor, from the same shower (i.e. from the same meteoroid stream) starts at 
 
    α  = 00h 06m.0          δ   =   '0003o+  
and finishes at   α  = 02h 12m.0          δ   =   '.3005o+  
 
 
Calculate the position of the radiant (i.e. the position on the sky where the two paths, 
projected backwards, intersect). 
 
Again you’ll notice that I chose the coordinates to be as awkward as I could.   
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6.11 Solutions 
 
6.11.1 
 
I think the first thing that I would do, would be to convert the coordinates to degrees and 
decimals (or maybe even radians and decimals, though I do it below in degrees and 
decimals): 
 
Antares:  343.26375.247 &−=δ=α  
Deneb   .328.45400.309 &+=δ=α  
 
We already did a similar problem in Chapter 3, Section 3.5, Example 2, so I shan’t do it 
again.  I make the answer: 
 
One pole:                  α  = 11h 47m.3          δ   =   '1156o+  
The other pole:         α  = 23h 47m.3          δ   =   '49123o+  
 
 
 
 
 
6.11.2 
 
 
            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I have drawn the North Celestial Pole N, and the colures from N to Antares (A) and to 
Deneb (D), together with their north polar distances in degrees.  I have also marked the 
difference between their right ascensions, in degrees.  We can immediately calculate, 

N 

D 

A 

116.433 

44.717 
62.025 

ω 
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from the cosine rule for spherical triangles, equation 3.5.2, the angular distance ω 
between the two stars in the sky.  I make it ω  =   91º.190 79. 
 
Now that we know the angle between the stars, we can use a plane triangle to calculate 
the distance between them: 
 
   
 
 
 
 
 
 
I have marked Antares (A),  Deneb (D) and us (O), and the distances from us to the two 
stars, in parsecs.  (That’s the reciprocal of their parallaxes in arcsec.)  I have also marked 
the angles, in degrees, between Antares and Deneb.  We can now use the cosine rule for 
planes triangles, equation 3.2.2, to find the distance AD.  I make it 1011 parsecs. 
 
A parsec is the distance at which an astronomical unit (approximately the radius of 
Earth’s orbit) would subtend an angle of one arcsecond.  This also means, if you come to 
think of it, that the number of astronomical units in a parsec is equal to the number of 
arcseconds in a radian, which is 360 % 3600  +  (2π)  =  2.062648 %  105.  The distance 
between the stars is therefore 1011 %  2.062648 %  105 astronomical units.   Multiply this 
by 1.495 98 % 108, to get the distance in km.  I make the distance 3.120  % 1016 km. 
 
This would take light 1.040596 % 108 seconds to travel, or 3298 years, so the distance 
between the stars is 3298 light-years. 
 
 
6.11.3 
 
Let’s see if we can develop a formula for a general case.  We’ll have the first meteor start 
at ),( 1111 δα  and finish at ).,( 1212 δα   The second meteor starts at ),( 2121 δα  and 
finishes at ).,( 2222 δα   We have to find the coordinates ),( δα of the point from which 
the two meteors diverge. 
 
 
 
 
 
 
 
 
 
 
 

185.19 

990.10 

91.19 
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This is not a particularly easy problem – but is one that is obviously useful for meteor 
observers.  I’ll just outline some suggestions here, and leave the reader to work out the 
details.   I’ll draw below one of the meteors, and the radiant, and the North Celestial Pole: 
 
    
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Use the cotangent rule (equation 3.5.5) on the righthand triangle to get an expression for 
cot θ: 
 

.cot)sin(tancos)cos(sin 11121211111211 θα−α−δδ=α−αδ  

)11,11( δα )12,12( δα

)22,22( δα
)21,21( δα

N 

),( δα  

)12,12( δα  

)11,11( δα

N 

90º − δ12 

90º − δ11 

90º − δ 

 

α12 − α11 α1 − α 

θ 
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Use the cotangent rule (equation 3.5.5) on the lefthand triangle to get another expression 
for cot θ: 
 

.cot)sin(tancos)cos(sin 1112111111 θα−α+δδ=α−αδ  
 

Equate these two expression for cot θ (i.e. eliminate θ between the two equations).   This 
will give you a single equation containing the two unknowns, α and δ, everything else in 
the equation being a known quantity.  (This will be obvious if you are actually doing a 
numerical example.) 
 
Now do the same thing for the second meteor, and you will get a second equation in α 
and δ.  In principle you are now home free, though there may be a bit of heavy algebra 
and trigonometry to go through before you finally get there. 
 
I make the answer as follows: 
 

,
coscostansintansin
sinsintancostancostan

22212122221212

22212112122222

α−α+δα−δα
α−α+δα−δα
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where   
)tan(
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)sin(
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1211
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δ
−

α−α
δ

=a  

 
 

and   .
)tan(

tan
)sin(

tan

2221

22

2221

21
2 α−α

δ
−

α−α
δ
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Then  
 

].tan)cot(tan))[csc(sin(tan)cos(tan
or

]tan)cot(tan))[csc(sin(tan)cos(tan

222221212221222222

121211111211121212

δα−α−δα−αα−α+δα−α=δ

δα−α−δα−αα−α+δα−α=δ

 
 
Either of these two equations for tan δ should give the same result.  In the computer 
program I use for this calculation, I get it to calculate tan δ from both equations, just as a 
check for mistakes. 
 
This may look complicated, but all terms are just calculable numbers for any particular 
case.  If the equinoctial colure gets in the way (as it did – deliberately – in the numerical 
example I gave), I suggest just add 24 hours to all right ascensions.  
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For the numerical example I gave, I make the coordinates of the radiant to be: 
 

α  = 22h 01m.3          δ   =   '.3700o−  


