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Abstract. Metabolism, and thus population dynamics, can be limited by energy, carbon,
nitrogen, and/or other nutrients. This is due to homeostasis, the relatively constant com-
position of biomass. Yet growth-rate-dependent changes in the composition of biomass do
exist. The dynamic energy budget (DEB) theory provides the framework to deal with these
simultaneous limitations and stoichiometric restrictions. We illustrate the application with
three examples. First, we discuss simple single-species growth of a chemolithoautotroph
to illustrate the interactions between nutrients and substrates in growth. We show how the
macrochemical reaction equation with variable yield coefficients can be decomposed in a
number of subprocesses with constant yield coefficients. We then discuss a simple predator–
prey system, where nutrients are accumulated in the prey, which no longer have a constant
composition of biomass. The implication is a varying conversion efficiency from prey to
predator, with consequences for qualitative aspects of population dynamics. We illustrate
the principles with a grazer (a heterotrophic consumer) feeding on algae (autotrophic pro-
ducers). The algae frequently have an excess of energy in the form of carbohydrates, which
are excreted and serve as food supplements for the heterotroph. This exchange of carbo-
hydrates against nutrients is basic to a symbiosis, our third example of application of DEB
theory for solving stoichiometric problems in species interactions. The algae are no longer
grazed as long as the grazer is able to extract nutrients from other sources. Depending on
parameter values of the system, the coexistence can be very stable and further integrate
into a single entity with mixotrophic properties. This process is basic to the evolution of
the eukaryotic cell and to the organizational structure of metabolism. Mixotrophs can
specialize under particular environmental conditions into autotrophs or heterotrophs, which
again can associate in symbiotic relationships. The chemical composition of membranes
testifies to the frequent occurrence of this process, which can now also be understood
quantitatively.

Key words: autotrophs and heterotrophs; bifurcation theory; dynamic energy budget (DEB)
theory; ecosystem dynamics; Liebig’s minimum rule; macrochemical reaction equation; mixotrophy;
nutrient limitation; producer–consumer dynamics; stoichiometry; symbiosis; syntrophy.

INTRODUCTION: NUTRIENTS AND ENERGY

If a zebra eats grass, one gets less grass and more
zebra till the grass supplies are so poor that the zebras
can hardly reproduce. Most population-dynamic mod-
els try to describe this process on the basis of simple
assumptions about the growth of grass, in order to an-
alyze the population dynamics of zebras. The problem
with the application of those models in biological re-
search is the fact that grass growth is usually nutrient
limited, and that the zebra excretes most of the nutrients
locked into grass biomass, and eventually returns al-
most all nutrients as legacy. This obviously stimulates
grass growth, which is usually not modeled explicitly.
The same applies to lions, which feed on zebras. The
inefficient conversion of zebra into lion comes with a
nutrient leak, which stimulates grass growth and so
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zebra production. The lions, therefore, not only eat ze-
bras, but also feed them indirectly. The indirect quan-
titative support of the zebra by the lion received less
attention than the direct qualitative support, which is
well know since Darwin: lions prefer weak individuals
(less effort, less health risks). Apart from genetic se-
lection, and reduction of the probability of epidemics
of contagious diseases, lions affect competition for
grass between weak and strong zebras, to the benefit
of the strong (reproductive) ones. The combination of
quantitative and qualitative aspects is required for evo-
lutionary insight. Factors such as the effects of weather
and climate, and migrations in spatially heterogeneous
environments, make this insight not easy to acquire.

This example illustrates that we should focus on the
fate of nutrients to understand the quantitative rela-
tionships between grass, zebras, and lions, as further
illustrated in Daufresne and Loreau (2001). A few dif-
ferent types of nutrient usually limit growth in their
roles as building blocks, but energy is of importance
as well for (thermodynamic) work. Organisms usually
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extract energy in the form of carbohydrates, lipids, and
proteins. These polymers have a dual role as supplies
of energy as well as building blocks; the part that func-
tions as energy supply results in the production of nu-
trients (and carbon dioxide, water, and heat). Excretion
of nutrients is, therefore, basic to metabolism. Some
bacteria manage to extract energy from certain mineral
compounds, but energy in a community usually orig-
inates from light that is fixed by plants, algae, or certain
bacteria, and passed to other organisms via the food
web.

Because autotrophs acquire energy and nutrients in-
dependently, they store them independently within the
cells (body), while their structural composition is rather
constant. The latter property is called ‘‘homeostasis.’’
Autotrophs’ homeostasis implies that grazers acquire
energy and nutrients in rather fixed ratios; predators
then acquire energy and nutrient in almost perfectly
fixed ratios.

We here discuss the stoichiometric restrictions on
metabolism and interactions between organisms in the
context of the dynamic energy budget (DEB) theory
for the uptake and use of nutrients and substrates. In-
troductions to this theory can be found in (Kooijman
2000, 2001, Nisbet et al. 2000). This theory is based
on energy and mass balances in an explicit way, and
can handle contraints that are more complex than sim-
ple element ratios; conservation of elements is nec-
essary, but frequently not sufficient (Anderson et al.
2004). It can also handle particular changes in biomass
composition, which is essential to understand growth
patterns (Vrede et al. 2004). To simplify the discussion
we take the organism’s surface area that is involved in
assimilation proportional to its structural mass. This
eliminates the distinction between the individual and
population level. It is frequently a good numerical ap-
proximation for organisms that divide, i.e., organisms
that reset their volume frequently. It is not appropriate
for large-bodied multicellulars, where we need for-
mulations in terms of individual-based population dy-
namics. Our approach can be implemented in such for-
mulations in a straightforward way (Kooijman 1995,
Kooijman et al. 1999, Kooijman and Nisbet 2000), but
is obviously a bit more complex.

As an introduction to more complex transformations,
we first discuss the decomposition of growth of chem-
olithoautotrophic bacteria, and show how this already-
rather-complex chemical transformation can be decom-
posed into simpler ones. This serves as an exercise to
deal with stoichiometric restrictions, while biomass has
a variable composition. We then discuss a simple prey–
predator system and show that the conversion of prey
into predator is not constant, and depends on the com-
position of the preys’ biomass. We finally study a sym-
biotic system that is based on the exchange of nutrients.
This example illustrates a basic relationship between
organisms.

The rates of transformations that are involved will
be specified in terms of that of ‘‘synthesizing units.’’
A short section just introduces this concept first.

SYNTHESIZING UNITS

A synthesizing unit (SU) (Kooijman 1998) can be
conceived as a (generalized) enzyme that behaves ac-
cording to the association–dissociation rules as pre-
scribed by classic enzyme kinetics, with two modifi-
cations: the kinetics is not specified in terms of sub-
strate concentrations, but in terms of arrival fluxes of
substrate molecules to the enzyme, and the enzyme–
substrate complex does not dissociate (enzymes are
only released after transformation of substrate into
product). If arrival is controlled by diffusion (or con-
vection) in a well-mixed environment, the arrival rate
is proportional to the concentration of substrate. The
transformation yACA 1 yBCB → C, then amounts to

JCmJ 5C 211 1 K /M 1 K /M 2 (M /K 1 M /K )A A B B A A B B

J 5 2y J J 5 2y JA AC C B BC C

where MA and MB stand for the amounts of A and B in
a unit volume, respectively, JCm for the maximum flux
of Carbon C, which is achieved for MA, MB → `. The
half-saturation constants KA and KB include transport
phenomena, binding probabilities, and stoichiometric
requirements. The expression is an approximation only;
stoichiometric details appear in the exact expression
(Kooijman 1998, 2000). Arrival can also be the result
of an intracellular allocation process, which is linked
to metabolic transformations; we will meet such a sit-
uation in the discussion on predation. Arriving fluxes
imply the existence of rejected fluxes that require a
destination, which places allocation in a central posi-
tion in metabolic organization; allocation is basically
a partitioning of fluxes to specific destinations.

The numerical behavior of a SU closely follows Lie-
bigs’ minimum rule, except for a narrow window of
concentrations where several substrates limit the trans-
formation simultaneously. So, if MA/KA K MB/KB or
MA/KA k MB/KB we have

J M J MCm A Cm BJ . or J . .C CK 1 M K 1 MA A B B

However, in the case of SUs, the transition from one
limiting substrate to another at changing substrate con-
centrations in the environment is smooth, which is rath-
er essential in combination with reserves; substrates
can be absent in the environment, while not (yet) lim-
iting growth, due to the presence of reserves. This im-
plies complex algorithms for evaluation of the moment
at which the switch occurs for each individual, which
can be avoided with SUs because of the absence of
switches.
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The application of SU kinetics in the dynamic energy
budget (DEB) theory is in the assimilation process,
which transforms substrates in the environment into
reserves, and in the growth process, which transforms
reserves into structural mass. Each reserve, and each
structure, has a single type of SU, thus the basic DEB
model has two types of SUs. The flux of substrate that
is rejected by the growth SU is returned to the reserves,
or excreted into the environment with a fixed fraction.
If all rejected substrate would be returned, no upper
boundary for that reserve would exist. The return frac-
tion quantifies the damming up of nonlimiting reserves,
with the remarkable consequence that the growth rate
increases with limiting-reserve density, but decreases
with the nonlimiting ones. Excretion can be treated
implicitly in single-reserve–single-structure systems
by inclusion into the overheads of assimilation, main-
tenance, and growth. It must be treated explicitly, how-
ever, in multivariate cases, because excretion of one
reserve depends on the dynamics of the others.

In the above-mentioned transformation, substrate A
as well as B are required to produce C and are processed
in a parallel way; such substrates are called ‘‘comple-
mentary.’’ If transformations A → C and B → C are
possible, A and B are called ‘‘substitutable substrates,’’
and the SU expression for the product C for serially
processed substrates becomes

JCmJ 5C 211 1 (M /K 1 M /K )A A B B

with
J 5 aJ 1 (1 2 a)JCm Am Bm

J 5 y aJ J 5 y (1 2 a)JA AC C B BC C

21M KB Aa 5 1 1 .1 2M KA B

The coefficient a weighs the contribution of A in the
production of C. The arriving flux A, which is propor-
tional to the concentration MA, will not be processed
completely, partly because the SU is not always in the
binding stage when a particle arrives, partly because
the binding probability can be ,1. The processed fluxes
of A and B follow from the production rate JC. These
reduce to JAm and JBm for large production capacities,
and the production flux becomes a simple addition: JC

5 JCm(MA/KA 1 MB/KB). The strength of the SU concept
becomes clear in more complex situations, such as in
gradual transitions from the parallel complementary to
the serial substitutable cases and co-metabolism
(Brandt 2002), in substrate inhibition and slow adap-
tation to available substrates (Brandt 2002), in simul-
taneous limitations by more than two substrates (see
the next section, and Kooijman et al. [2002]).

SINGLE-SPECIES POPULATION GROWTH

The chemical impact of an individual on its sur-
roundings can be summarized in the macrochemical

reaction equation. Contrary to ordinary chemical re-
action equations, the yield coefficients are not constant,
but depend on substrate availability. This is because
maintenance has priority over growth and because the
chemical composition of biomass depends on its
growth rate. According to the DEB (dynamic energy
budget) theory, the macrochemical reaction equation
can be decomposed into several constituting processes
with fixed yield coefficients; the relative importance of
these subprocesses depends on environmental condi-
tions. We illustrate the principle with autotrophs that
grow on simple nutrients, methanotrophs,

CH 1 Y CO 1 Y O 1 Y NH 1 Y H O4 CX 2 OX 2 NX 3 HX 2

→ Y CH O NWX n n nHW OW NW

where the chemical indices of biomass, nHW, nOW, and
nNW, depend on nutrient availability. Biomass consists
of structural mass MV and reserve mass ME (both mea-
sured in moles of carbon [C-moles]). The ‘‘reserve den-
sity’’ is defined as the ratio of the reserve and structure
masses mE 5 ME/MV. Then, the chemical indices of
biomass can be written as niW 5 (niV 1 mEniE)/(1 1 mE),
where the chemical indices for structure niV, and for
reserve niE are fixed (i is H, O, or N), and the reserve
density mE depends on environmental conditions (the
concentrations of methane, carbon dioxide, dioxygen,
and ammonia, assuming abundant water).

The basic DEB model for metabolism assumes that
substrates (and nutrients) are transformed into reserves
(the transformation is called ‘‘assimilation’’), and re-
serves are transformed into structure (growth), while
reserves are also used for maintenance purposes. All
three transformations come with an overhead, which
implies the production of ‘‘minerals’’ (carbon dioxide,
water, ammonia) or other compounds. Both reserve and
structure are taken to be generalized compounds: mix-
tures of chemical compounds that do not change in
composition. The implication is that the transforma-
tions are subjected to stoichiometric constraints and
that both substrates and reserve have a dual role: they
are used to drive the transformation and they serve as
building blocks (anabolic substrates).

Both the chemical indices niW, and the yield coeffi-
cients YiX depend on the availability of nutrients, which
makes the representation in terms of the macrochemical
reaction equation less useful and calls for a decom-
position of underlying simpler transformations with
constant yield coefficients. The varying yield coeffi-
cients and chemical indices complicate the concept
‘‘the reaction rate’’ that is widely applied in chemical
kinetics; each compound is appearing or disappearing
at its own rate in a more complex transformation, while
energy and mass balances provide constraints on these
rates. Reactions of this type should be characterized by
a vector-valued rate, rather than a scalar.

Classic physiology delineates catabolism (the col-
lection of processes that decomposes compounds to
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TABLE 1. The yield coefficients (upper panel) and the chemical indices (lower panel) for the seven compounds that are
involved in the five transformations of a Type I methanogen with one reserve and one structure.

Symbol Definition†

Yield coefficients

Methane,
X

Carbon
dioxide, C

Water,
H

Dioxygen,
O

Ammonia,
N

Reserve,
E

Structure,
V

Specific
rates

Yield coefficients, Y
AC

AA

M
GC

GA

assim. (cat.)
assim. (ana.)
maintenance
growth (cat.)
growth (ana.)

21
21

0
0
0

1
0
1
1
0

2
YA

HX

YM
HE

YM
HE

YG
HE

22
YA

OX

YM
OE

YM
OE

YG
OE

0
YA

NX

NNE

NNE

YG
NE

0
1

21
21
21

0
0
0
0
1

(yXE 2 1)jEA

jEA

jEM

(1 2 yVE)jEG

yVE jEG

Chemical indices
C carbon 1 1 0 0 0 1 1
H
O
N

hydrogen
oxygen
nitrogen

4
0
0

0
2
0

2
1
0

0
2
0

3
0
1

nHE

nOE

nNE

nHV

nOV

nNV

Notes: Following microbiological tradition, the substrate is chosen as the reference in the yield coefficients, i.e., methane
for assimilation, and reserve for maintenance and growth. Given the chemical indices n, the yield coefficients Y follow from
the conservation law for elements, and the specific rates jEA, jEM, and jEG are specified by the dynamic energy budget (DEB)
theory; see Single-species population growth. The yield coefficients for the catabolic aspect of growth equal those for
maintenance.

† Key to abbreviations: assim. 5 assimilation, cat. 5 catabolic, ana. 5 anabolic.

release energy and building blocks for the synthesis of
new compounds) and anabolism (the collection of pro-
cesses that synthesizes new compounds that become
part of new biomass). These concepts are more com-
plex in the context of the DEB theory. Assimilation
and growth both have catabolic and anabolic aspects
because both reserve and structure are taken to be gen-
eralized compounds that involve synthesis from build-
ing blocks that are extracted from substrate and reserve,
respectively.

These aspects of assimilation and growth can be writ-
ten as generalized transformations. We here use classic
notation for chemical transformations with yield co-
efficients Yij, which are negative if one of the com-
pounds disappears and the other appears. This points
to a notational problem that is hard to deal with in a
consequent way, due to the various possible levels of
organization that can be considered (population, or-
ganism, cell, organelle, molecule). Yield coefficients Y
are ratios of fluxes—but notice that yield coefficients
yij have almost the same interpretation, but they are
treated as positive constant mass–mass couplers. Spe-
cific fluxes ji are here taken to be positive.

Methanotrophs use methane (CH4) as energy source;
methane is the only carbon source in Type I methan-
otrophs, such as Methylomonas, Methylomicrobium,
Methylobacter, and Methyloccus, which use the mono-
phosphate pathway to process formaldehyde (CH2O),
a metabolite of methane. Methane and carbon dioxide
(CO2) are carbon sources for Type II methanotrophs,
such as Methylosinus and Methylocystis, which use the
serine pathway to process formaldehyde. These organ-
isms can also fix dinitrogen. We here selected type I
methanotrophs to illustrate the stoichiometric princi-
ples because only very simple compounds are involved.

Table 1 gives the yield coefficients and the chemical
indices of the seven compounds that are involved in
five transformations for growing Type I methanotrophs.
Phosphates and micronutrients are not included for
simplicity’s sake. The yield coefficients are on methane
for assimilation, and on reserve for maintenance and
growth. If we assemble a matrix of chemical indices
n, with four elements in the rows and seven compounds
in the columns, and a matrix of yield coefficients Y,
with seven compounds in the rows and five transfor-
mations in the columns (Table 1 presents Y9 rather than
Y, for typographic reasons), then the conservation law
for elements implies that nY is a 4 3 5 matrix of zeros.
This law does not tell anything about rates, but it de-
termines all yield coefficients. In other words: the yield
coefficients are such that nY 5 0; it takes only simple
bookkeeping and some patience to solve for these yield
coefficients. For the five transformations given in Table
1, this gives the following yield coefficients:

AY 5 2nNX NE

A AY 5 2 2 Y 3/2 2 n /2HX NX HE

A AY 5 2Y /2 2 n /2OX HX OE

MY 5 2n 3/2 1 n /2HE NE HE

M MY 5 21 1 n /2 2 Y /2OE OE HE

GY 5 n 2 nNE NE NV

G GY 5 n /2 2 n /2 2 Y 3/2HE HE HV NE

G GY 5 n /2 2 n /2 2 Y /2.OE OE OV HE

It is thus possible to decompose the macrochemical
reaction equation into five transformations in a unique
way, given knowledge about the chemical composition
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FIG. 1. Fluxes of compounds as functions of specific
growth rate. (a) The specific fluxes of carbon dioxide (C ),
reserves (E ), ammonia (N ), methane (X ), and dioxygen (O)
as a function of the specific growth rate of a methanotroph.
Those of water and structure are not shown. (b) The ratio of
the fluxes of methane (top curve), carbon dioxide (bottom
curve), and ammonia (middle curve), with that of dioxygen.
Parameters: maximum specific assimilation rate (of E) jEAm 5
1.2 mol·mol21·h21); yield coefficients yEX 5 0.8 mol/mol and
yVE 5 0.8 mol/mol; maintenance rate constant kM 5 0.01 h21;
reserve turnover rate kE 5 2.00 h21; chemical indices of re-
serve and structure: nHE 5 1.8; nOE 5 0.3; nNE 5 0.3; nHV 5
1.8; nOV 5 0.5; nNV 5 0.1.

of reserve, structure, and nutrients. This knowledge can
be acquired from a study of changes in the composition
of biomass as a function of the growth rate. The specific
rate of appearance of ammonia in association with
maintenance, for instance, is jNM 5 nNEjEM; that of diox-
ygen is jEM. If we assemble the rates in Table 1 inMYOE

a five-vector k, the seven-vector of specific rates of
appearances or disappearances of compounds is given
by Yk, where each rate can be positive as well as neg-
ative.

The assimilation flux of reserves depends on the con-
centrations of the complementary compounds methane,
dioxygen, and ammonia. The SU rule for the assimi-
lation rate of reserves jEA for x 5 X/KX, o 5 O/KO, n
5 N/KN works out as follows:

21 21 21 21j 5 j /[1 1 x 1 o 1 n 2 (x 1 o)EA EAm

21 21 212 (x 1 n) 2 (o 1 n) 1 (x 1 o 1 n) ]

where X, O, and N are the concentrations of methane,
dioxygen and ammonia, and KX, KO, and KN are the
half-saturation constants; jEAm is the maximum specific
assimilation rate of reserves. The consumption of meth-
ane, dioxygen, and ammonia follow from the produc-
tion of reserve via fixed coupling coefficients. A rather
small range of concentrations of methane, dioxygen,
and ammonia limit assimilation simultaneously. In
many practical applications we have, at abundant diox-
ygen and x K n or x k n,

j j XEAm EAmj . 5EA 211 1 x K 1 XX

or
j j NEAm EAmj . 5 .EA 211 1 n K 1 NN

This is the familiar standard formulation for single-
substrate limitation. The use of reserve for metabolism
is a first-order process on the basis of densities, so
density dynamics is d/dt mE 5 jEA 2 kEmE where kE is
the reserve turnover rate.

The specific maintenance flux of reserve is constant
at rate

j 5 y k .EM EV M

The flux of reserve associated with growth (including
overheads) is

j 5 y rEG EV

with
d m k 2 jE E EM21r [ M M 5V Vdt m 1 yE EV

where specific growth rate r equals the ratio of two
quantities: mEkE 2 jEM, which is the reserve flux that
is released from the reserves minus the losses through
maintenance, and mE 1 yEV, which is the specific cost
for new reserve plus structure. So the growth rate de-
pends on the reserve density mE, not on the nutrient

concentrations directly. Growth ceases at reserve den-
sity mE 5 jEM/kE, where all mobilized reserves are used
for maintenance.

This completes the specification of the rates in Table
1 in terms of the state of the organism (amounts of
reserve and structure) and of the environment (con-
centrations of nutrient and substrate).

Fig. 1 gives the specific fluxes of compounds as func-
tions of the specific growth rate. It also gives the ratio
of the carbon dioxide and dioxygen fluxes, and that of
ammonia and dioxygen. Many text books deal with
these ratios as being proportional to the specific growth
rate. This obviously does not apply here.

The result we obtained is that we can relate the yield
coefficients and chemical indices of biomass to (vary-
ing) concentrations of nutrients in the environment, and
to a (varying) reserve density, which involves a number
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of constant energy-budget parameters. These constant
parameters are the specific maintenance rate kM, the
reserve turnover kE, the yield of structure on reserve
yVE, the chemical indices of reserve and structure, and
the parameters of the assimilation process. Some text
books mention that methanotrophs consume two meth-
ane molecules for each produced carbon dioxide mol-
ecule. Our analysis shows, however, that such a fixed
relationship does not exist; it is very sensitive to en-
vironmental conditions.

Methane burning in assimilations’ catabolic trans-
formation should generate enough energy to drive as-
similations’ anabolic component. For the chemical po-
tential mX of methane and mE of reserve, we require
mX . (mE 2 mX) or mX(1 2 yEX) . (mE 2 mX)yEX orC Aj jXA XA

yEX . mE/mX.
Notice that ammonia is taken up as well as excret-

ed—a phenomenon that only recently attracted atten-
tion in algal physiology. We know a priori that am-
monium uptake always exceeds excretion at steady
state.

The summary of this exercise is that, given the con-
centrations of the rate-limiting compounds (here meth-
ane, dioxygen, ammonia, and biomass), the DEB the-
ory specifies the rates of the organizing transformations
(assimilation, maintenance, and growth), and stoichio-
metric constraints specify the appearance and disap-
pearance of all compounds that are involved. The rates
can be used in the specification of a dynamical system
(where the transformations affect the concentrations),
such as a batch culture, a chemostat, or as part of a
more complex system, that involves other chemical or
biological species. It is important to realize that the
macrochemical reaction equations are still far away
from a detailed chemical description of metabolism.
Compounds can be produced in one part of the path-
way, and used in another part, and do not occur in the
macrochemical reaction equation. The chemical vari-
ability of biomass can be increased by delineating more
types of reserves. This extension is natural in the con-
text of the DEB theory, but it obviously increases the
number of parameters, which should be balanced by a
sufficient increase of goodness of fit with experimental
data. Such data are frequently not available.

PREDATION

When one organism eats another one with a chemical
composition that can vary, there is a need to deal with
conversion efficiencies of prey into predator in a bit
more detail than is usual in ecological theory. Things
simplify considerably when, as the basic formulation
of DEB (dynamic energy budget) theory assumes, bio-
mass can be decomposed into a single reserve and a
single structure that do not change in composition. The
assimilation process of the predator then should specify
how the two components of its prey, together with nu-
trients from the environment, transform into predator
reserves. Think for instance of daphnids feeding on

algae. Alga’s main carbon component, cellulose, is of
no nutritional value for the daphnid. It is the starch and
lipids in alga’s reserves that are daphnids’ main energy
sources, while it also needs ammonia and phosphate,
for instance, as building blocks. Daphnids can obtain
part of these nutrients from the intra-cellular reserves
of the alga; sometimes they can also obtain them di-
rectly from the environment (Parker and Olsen 1966,
Urabe et al. 1997). So the nutritional value of the alga
for the daphnids is not a constant, but varies, and de-
pends on environmental conditions.

The implications of a variable nutritional value of the
producer P (alga) for the consumer C (daphnid) can be
illustrated with the following simple dynamical system:

d
P 5 r P 2 j CP PAdt

k m j PN N PAmr 5 j 5 (1)P PAy 1 m K 1 PNP N

d
C 5 (r 2 h)CCdt

21
1/r 1 1/r 2 1CP CNr 5C [ ](r 1 r )CP CN

r 5 y j 2 k r 5 y m j 2 k (2)CP CP PA MP CN CN N PA MN

where producers’ reserve density is mN 5 N/P 2 nNCC/
P 2 nNP, for a total amount of nutrient N, i.e., all nu-
trient that is not in producers’ or consumers’ structure
is in producers’ reserve. The chemical indices nNP and
nNC stand for producers’ and consumers’ moles of nu-
trient content per mole of carbon. The amount of nu-
trient in the environment is taken to be negligibly small.
The consumer has a constant hazard rate h, and dead
producers decompose instantaneously. The producers’
reserve turnover rate is kN, and producers’ maintenance
is neglected. This simplification of the DEB theory
amounts to Droop’s kinetics (Droop 1974) for the pro-
ducer (with a very small half-saturation constant, and
a very large specific maximum uptake rate). Consum-
ers’ reserves are not taken into account. This simpli-
fication of the DEB theory amounts to Marr-Pirt’s ki-
netics (Pirt 1965) for the consumer. The Marr-Pirt’s
kinetics results from the DEB model as a limit for
increasing reserve turnover rates. The expression for
the growth rate of the consumer follows from the SU
kinetics and the assumption that assimilates from pro-
ducers’ reserve and that from structure are comple-
mentary and parallelly processed with a large capacity.
There is no need to set a maximum to the capacity here,
because that is already set by the maximum specific
assimilation rate jPAm. Notice the SU (synthesizing unit)
formalism here deals with rates, rather then concen-
trations, as is basic to its derivation.

We will also study a model where the consumer con-
sumes the structural part of the producer only. Then
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FIG. 2. Bifurcation diagrams of producer–consumer dy-
namics in a closed system, producers requiring reserves of
consumer (i.e., without free nutrient in the environment). The
total amount of nutrient is used as the bifurcation parameter.
The producer follows Droop’s kinetics (Droop 1974), the con-
sumer follows Marr-Pirt’s kinetics (Pirt 1965) and has a con-
stant hazard rate. Producers’ reserve and structure are com-
plementary for consumers.

At very low nutrient levels, the system cannot exist. At
intermediary nutrient levels, the system has a point attractor.
A tangent (Te) and a Hopf bifurcation point (H2) mark the
boundaries of these intermediary nutrient levels. At larger
nutrient levels, the system oscillates with increasing ampli-
tude. A homoclinic bifurcation point (G5) marks the upper
boundary of this interval; the system cannot exist at higher
nutrient levels. Parameter values are: h 5 0.005 h21, nNP 5
0.15 mol/mol, nNC 5 0.25 mol/mol, yCN 5 0.8 mol/mol, yCP

5 0.5 mol/mol, yNP 5 0.15 mol/mol, K 5 10 mM, jPAm5 0.15
mol·mol21·h21 kN 5 0.25 h21, kMP 5 0.002 h21, kMN 5 0.001
h21. (See Predation for parameter definitions and the system
of differential equations.)

the growth rate of the consumer follows a simple Holl-
ing type-II functional response, that is rC 5 rCP. In other
words, the consumer is no longer limited by the re-
serves of the producer.

Model analysis

The two ordinary differential equations (Eqs. 1 and
2) describe the dynamics of the two populations. This
autonomous system can be analyzed using dynamical
systems theory, see Guckenheimer and Holmes (1985)
and Kuznetsov (1998) for an introduction into the gen-
eral theory and Bazykin (1998) and Kooi and Hane-
graaf (2001) for applications to simple food chains and
food webs. This theory deals with the dependency of
the qualitative long-term dynamical behavior on pa-
rameters.

Mathematically critical values where this behavior
changes are fixed by the steady-state (or periodic) so-
lutions and criteria that determine the stability prop-
erties. These criteria concern eigenvalues of the Ja-
cobian matrix evaluated in the equilibrium (for limit
cycles similar criteria hold). Since the producer–con-
sumer system is two dimensional there are two eigen-
values. As a result only a few types of bifurcations are
possible. Three ‘‘standard’’ types of bifurcations are
important here. In a tangent bifurcation point (Te) stable
and unstable equilibrium branches coincide and dis-
appear under parameter variation. This point marks a
region where an interior equilibrium (i.e., where the
equilibrium values of the two state variable P and C
are positive) can exist. A transcritical bifurcation point
(TC) marks a region where a predator can invade the
producer system. In both bifurcation points one eigen-
value is zero. In a Hopf bifurcation point (H2) the real
parts of the two complex conjugated eigenvalues are
zero. On one side of the critical parameter value these
real parts are negative and the equilibrium is stable
(saddle focus) and on the other side they are positive
and the equilibrium is unstable (saddle source), and the
solution converges to a (stable) limit cycle. These
points are so-called ‘‘local’’ bifurcations since they can
be deduced from local information at the point.

We will also deal with a so-called ‘‘global’’ bifur-
cation where the local informations is not sufficient,
but orbits have to be followed through the state space.
An orbit starting close to an unstable (saddle) equilib-
rium point that returns after a large excursion through
the state space back to the point itself is called a ‘‘hom-
oclinic’’ orbit. This can occur with saddle points where
one eigenvalue is positive (repelling) and the other is
negative (attracting). The critical parameter value
marks a homoclinic bifurcation.

A critical parameter value where the long-term dy-
namic behavior changes under parameter variation is
called a bifurcation point in the parameter space. When
two parameters are varied simultaneously, these points
form a curve in a two-parameter parameter space. They
are the boundaries in the parameter space with different

qualitative long-term behavior, such as an equilibrium
or a limit cycle where the population densities vary in
time periodically. Generally these bifurcation points
and curves have to be approximated numerically. We
used the computer package AUTO (Doedel et al. 1997)
to calculate the bifurcation points and curves. The com-
puter package HomCont (Champneys et al. 1996), im-
plemented in AUTO has been used to study the hom-
oclinic bifurcation to a saddle. Fig. 2 shows the as-
ymptotic dynamics of the system (1, 2). We observe
that it shows the typical paradox of enrichment (Ro-
senzweig 1971): the system starts oscillating above a
certain nutrient level H2. For higher nutrient levels
where the system fluctuates, the larger the nutrient lev-
el, the larger the amplitude of the oscillations. At a
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FIG. 3. Orbits of the producer–consumer system of Fig.
2 for nutrient levels (a) just below (N 5 7.775 mM) and (b)
above (N 5 7.825 mmol/L) the homoclinic bifurcation point
at N 5 7.795775 mmol/L. Orbits that start within the dashed
separatrix in (a) result in a stable oscillation (one such orbit
is indicated), while other orbits lead to extinction of the con-
sumer. This separatrix breaks open for higher nutrient levels
(b), and all orbits lead to extinction of the consumer (one
such orbit is indicated). The saddle point (one negative and
one positive eigenvalue), and the spiral source (positive real
part of the complex conjugate eigenvalues) are indicated. The
stable equilibrium where the consumer is absent (point P 5
N/nNP and C 5 0) is not shown.

FIG. 4. Bifurcation diagrams of producer–consumer dy-
namics, producers not requiring reserves of consumer. This
figure is as in Fig. 2, with the only difference that the con-
sumer is not limited by producers’ reserve, so rC 5 rCP. Notice
the absence of the tangent and homoclinic bifurcation points.
A transcritical bifurcation point (TC) marks the branching
with the trivial equilibrium where producers and consumers
are absent. The parameter values used in this bifurcation di-
agram are the same as in Fig. 2. Producers’ minima become
extremely small for increasing nutrient levels.

certain nutrient level the peak producer’s value ap-
proaches the unstable equilibrium value. The critical
nutrient level marks a homoclinic bifurcation indicated
by G5. Fig. 3 gives orbits in the phase plane (C, P) for
nutrient levels just below and above this value. These
curves were calculated with the computer package
DsTool (Back et al. 1992). Below G5 there is a limit
cycle with a very large period since the orbit stays for
long episodes close to the saddle point. At the bifur-
cation point this cycle is called a ‘‘homoclinic cycle.’’
At this point the cycle breaks up and for nutrients levels
above G5 the orbit converges always to the stable so-
lution mN 5 C 5 0 and P 5 N/nNP, that is, the consumer
goes extinct. Hence, the system has an upper boundary
for nutrient, above which it cannot exist. Contrary to
standard kinetics, the system has a lower bound for the
nutrient level, Te, due to the maintenance costs of the
consumer. This is further illustrated by a bifurcation
diagram in Fig. 4 for the system (1, 2) with rC 5 rCP.
This diagram resembles that of classical predator–prey
models cf. Gurney and Nisbet 1998) and Kooi and Ha-
negraaf (2001). There are two qualitative effects: both

the tangent bifurcation point Te, forming the lower lim-
it, and the homoclinic point G5, being the upper limit,
disappear. Now the consumer goes extinct at very low
nutrient levels by a gradual decrease of the consumer
population via a transcritical bifurcation TC. For nu-
trient levels higher than H2 where the system fluctuates,
the larger the nutrient level the larger the amplitude of
the oscillations. This continues in principle to unbound-
ed nutrient level; however, the producer population in
Fig. 4 reveals unrealistic low minima at high nutrient
levels where extinction due to demographic stochas-
ticity is likely (Fryxell and Lundberg 1998).

Notice that consumers cannot invade the producer
population with a very small inoculum size in the case
of co-limitation by producers’ reserve, but it can in
absence of this co-limitation (compare Fig. 2 and 4).
We can conclude that the nutritional details of the pro-
ducer–consumer interaction affect their kinetics in a
qualitative way. Muller et al. (2001) discuss a very
similar producer–consumer model, which deviates
slightly in the specification of consumers’ growth (im-
plementation of maintenance and of maximum growth).

In Fig. 5 the two-parameter bifurcation diagrams for
both models are depicted. We use the total amount of
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FIG. 5. The two-parameter bifurcation diagram for the
producer–consumer system, as in Fig. 2a and in Fig. 4b, using
the total nutrient level and consumers’ hazard rate as bifur-
cation parameters. The consumer requires producers’ struc-
ture and reserve (a) or producers’ structure only (b). Three
areas are indicated: n, no coexistence; s, stable coexistence;
u, unstable coexistence (oscillations). (a) When the consumer
needs both the structure and energy components of the pro-
ducer, the tangent (Te), Hopf bifurcation point (H2), and hom-
oclinic point (G5) bifurcation curves meet in a Bogdanov-
Takens point (BT). (b) When the consumer needs only the
structural component of the producer, the transcritical (TC)
and Hopf bifurcation curves diverge, and the region where
coexistence is possible (s) is much larger.

nutrient N and the consumer specific loss rate (hazard
rate, h) as bifurcation parameters while all other spe-
cies-specific parameters are fixed. When the consumer
needs both components of the producer the tangent (Te),
Hopf bifurcation point (H2), and homoclinic point (G5)
bifurcation curves meet in a Bogdanov-Takens point
(BT; Kuznetsov 1990). Hence there is an upper limit
for the loss rate of the consumers (h) where both pop-
ulations can coexist. When on the other hand the con-
sumer needs only the structural component of the pro-
ducer, the transcritical (TC) and Hopf (H2) bifurcation
curves, diverge and hence region where coexistence is
possible is much larger than in the previous case. The
curve G5 terminates for a h value where the minimum
of the producer population during the homoclinic orbit
becomes unrealistically low.

SYMBIOSIS

Almost all transformations from food into feces plus
a little bit of biomass and from maintenance processes
release nutrients that can be used by autotrophs for

growth. Autotrophs are frequently limited in their
growth by nutrients, and have energy (carbohydrates)
in excess, which they partly excrete. These excreted
carbohydrates can be used by heterotrophs as supple-
ment to their autotroph diet (Muscatine et al. 1983,
1984, 1989). Heterotrophs reuse part of the nitrogen
waste, and combine it with these carbohydrates to pro-
duce biomass. This reduces their waste production, and
so autotrophic growth is reduced as is the subsequent
excretion of carbohydrates, a strongly stabilizing feed-
back mechanism. This reciprocal syntrophy forms the
basis of most symbiotic relationships between organ-
isms and easily leads to biomass ratios of the partners
that vary only in a narrow range.

Quantitative knowledge of the exchange of com-
pounds is essential to the understanding of production
and the maintenance of biodiversity, and of the met-
abolic organization of cellular physiology; eukaryotes
evolved from an increasingly integrated symbiotic con-
sortium of symbiotic organisms. The exchange is gen-
erally rather open in a community, where the com-
pounds are excreted into the environment, and their
concentrations can vary. The exchange can gradually
become more direct and some species seek each other’s
company, and exchange compounds on a flux basis,
with hardly any accumulation in the environment. This
can eventually lead to endo-symbiosis (Kooijman et al.
2003).

Let us sketch the quantitative aspects, assuming that
a population of pelagic unicellular chlorophytes lives
together with a population of ciliates in a spatially ho-
mogeneous environment.

Autotrophs

Suppose that for simplicity’s sake, photosynthesis
CO2 1 H2O 1 light → CH2O 1 O2 is only limited by
carbon dioxide, CO2. Carbohydrate CH2O is both en-
ergy and carbon source for the autotroph. We delineate
two reserves, carbon reserves EC and nitrogen reserves
EN, which are taken to be generalized compounds. The
assimilation rate of both types of reserves EC and EN,
depends hyperbolically on the concentrations of carbon
dioxide and ammonia, respectively.

The use of the reserves, the catabolic rates, are first-
order processes on the basis of reserves densities, i.e.,
ratios of the reserves and the structure. After subtrac-
tion of the maintenance costs, which are proportional
to the amount of structure, both catabolic fluxes arrive
at the synthesizing units (SU) for the synthesis of struc-
ture, V. We are, therefore, dealing with the transfor-
mation

y E 1 y E →V 1 minerals.E V C E V NC N

As will be explained below, the application of SU rules
for the synthesis of structure from the two reserve flux-
es leads to the specific growth rate:
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21m (k 2 r) 2 jE E E Mi ir 5 O5 [ ]yi∈{C,N} E Vi

2121m (k 2 r) 2 jE E E Mi i2 O 6[ ]yi∈{C,N} E Vi

where m 5 M /MV is the reserve density i, kE is theE Ei i

turnover rate of the reserves (which are taken to be
equal here), and is the structure-specific mainte-jE Mi

nance costs for reserve i. This equation for the specific
growth rate is implicit; the growth rate also occurs at
the right-hand side because of the ‘‘dilution by growth’’
the reserve density not only decreases by the use of
the reserves, but also by the increase of the structure.
Mathematically, as well as numerically, implicit equa-
tions do not pose extra problems, relative to explicit
ones.

The flux m (kE 2 r) represents the catabolic flux; theEi

flux m (kE 2 r) 2 j arrives at the SUs for the syn-E E Mi i

thesis of structure, and the flux (m (kE 2 r) 2 j )/E E Mi i

has the role of in the general expression for they j9E V ii

production rate of the SU. We assume that the binding
probabilities equal 1. Since the reserve dynamics im-
plies an upper bound for the reserve density, and so an
upper bound for the catabolic flux, we assume that the
maximum production capacity, Jm, for structure is large
enough to avoid co-limitation of the growth of struc-
ture.

The upper bound for reserve densities depends, how-
ever, on the fate of the reserves that are rejected by the
SUs for growth. If all rejected reserves are fed back to
the reserves, the upper bound can disappear for the
nonlimiting reserve. To avoid such a situation, excre-
tion of (some of the) rejected reserves is essential. We
assume that a fixed fraction, 1 2 k , of rejected re-Ei

serves is excreted, the remaining fraction is fed back
to the reserve from where the flux originated. If this
excreted fraction 1 2 k is close to 0, nonlimitingEi

reserves can accumulate to high levels; so high levels
for the nonlimiting reserve can be expected for low
growth rates, and thus low levels of the limiting re-
serve. The technical process of biological phosphate
removal makes use of this phenomenon, for instance.
If the fraction is close to 1, we have the opposite effect:
nonlimiting reserve increases with the growth rate.

The dynamics of the reserve density i, for i ∈ {C,
N}, now amounts to

d
m 5 j 2 (1 2 k )(k 2 r)mE E A E E Ei i i idt

1 k ( j 1 y r) 2 rmE E M E V Ei i i i

where j 5 j (1 1 Ki/Xi)21 is the specific assimilationE A E Ami i

for reserve Ei, with half-saturation constant Ki and nu-
trient concentration Xi in the environment. The deri-
vation uses the specific catabolic flux (kE 2 r) , whichmEi

follows for the first-order kinetics, while a fraction
k of the rejected specific catabolic flux (kE 2 r)m 2E Ei i

j 2 y r is fed back to the reserve. The last term,E M E Vi i

rm , represents the dilution by growth. The excretion,Ei

therefore, amounts to

j 5 (1 2 k )[(k 2 r)m 2 j 2 y r].E E E E E E M E Vi i i i i

This is the full excretion flux for carbohydrates, but
for ammonia (and other ‘minerals’) we also have ex-
cretion fluxes that are associated with maintenance and
growth (in the overhead costs for growth). The fluxes
are fully determined by the conservation laws for mass,
and do not require any extra assumptions to specify their
size. The total specific ammonia excretion is given by

j 5 (1 2 k )(k 2 r)mNE E E E1 N N

1 k ( j 1 y r) 2 n r.E E ,M E V NVN N N

This result follows from the expression for 2d/dt
m where we take j 5 0, ignore the term for dilutionE E AN N

by growth, rm , and then subtract the flux that is fixedEN

in new structure, nNVr.
This mechanism allows growth, for example, in an

ocean where light and carbon, but no nutrients, are
available at the surface, and nutrients, but no light, at
the bottom of the mixing layer, while the cells move
up and down in wind-driven circulations. At each lo-
cation, growth conditions are far from optimal, but,
thanks to the wind, growth can be considerable.

Heterotrophs

Apart from assimilation, the metabolic organization
of heterotrophs is in fact the same as that for autotrophs,
but we usually need not delineate more than one reserve
(again taken to be a generalized compound), due to the
limited variation of its chemical composition. When a
heterotroph feeds on an autotroph, it eats its structure,
but also its reserves. There is usually no reason to
believe that excreted autotrophic reserves cannot be
taken up as well by the heterotroph. The nutritional
value of autotrophic reserves for the heterotroph usu-
ally exceeds that of autotrophic structure, which fre-
quently contains a lot of cellulose. This is the reason
why total organic carbon is a poor measure for the
amount of food for the heterotroph.

Heterotrophs’ specific growth is given by

m (k 2 r) 2 j m k 2 jE E EM E E EMr 5 ⇒ r 5
y m 1 yEV E EV

and the dynamics of its reserve density is

d
m 5 j 2 k m .E EA E Edt

These dynamics are the same as for the autotroph for
k 5 0, and no colimitation by two reserves. The cat-Ei

abolic fluxes are obtained for full excretion of rejected
reserves, kE 5 0, although hardly any reserve will be
rejected because of absence of co-limitation and a large
growth capacity. There is no need to model excretion
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in this case, because we can and should allow for over-
head costs of growth and maintenance; explicit mod-
eling of excretion is only necessary to deal with the
dynamics of more types of (independent) reserves.

Heterotrophs’ assimilation is more difficult to model.
We will assume that, apart from the autotroph, another
organic substrate X is available that contains nitrogen,
which can serve as an alternative food source for the
heterotroph. This organically bound nitrogen is not
available for the autotroph, and forms the basis of a
symbiotic relationship between the autotrophs and the
heterotrophs.

The specific assimilation flux can be found from the
application of the rules for the behavior of SUs, and
written in terms of contributions by the organic sub-
strate and autotrophic structure and reserves, and ex-
creted autotrophic reserves in the environment:

21j 9 O EAi 1 ij 5 1 for i ∈ {X, V, E} EA  j 9 j j 9O OEA EA m EAi i i i i

j 9 5 y b X j 9 5 y b XEA EX X EA EV V VX V A A A

21 21 21 21j 9 5 [ j 1 j 2 ( j 1 j ) ]EA EA EA EA EAE C N C N

j 9EAVj 5 y m 1 b X for i ∈ {C, N}EA EE E E Ei i i i i1 2yEVA

where VA refers to the structure of the autotroph, and
E (without index) to the reserve of the heterotroph. The
parameters bX, b , b , and b combine a meeting andV E EA C N

a binding probability. Although the expressions already
look complex enough, they are perhaps too simplistic
from a metabolic point of view, because autotrophs’
structure and reserves might be partially complemen-
tary for the heterotroph. Theory for such mixtures are
discussed in Brandt (2002).

The assimilation efficiencies y and yEX imply theEVA

presence of products (e.g., feces). For simplicity’s sake,
we will assume that these products are mineral. The
heterotroph excretes minerals, just like the autotroph,
in association with assimilation, maintenance, and
growth. The excretion products represent an important
feedback to the autotroph. Careful bookkeeping shows
that the total specific excretion of ammonia amounts to

j 5 j (n 1 m ) 1 a a j nNE V A NV E N E EA NE1 A A N

1 j n 1 (k 2 r)m n 2 j n 2 rnXA NX E E NE EA NE NVH

where

jEAEa 5E j 1 j 1 jEA EA EAX V E

is the fraction of the assimilation of heterotrophic re-
serve from autotrophic C reserve, and

b XE NNa 5N m j /y 1 b XE EA EV E NN V A N

is the fraction of ammonia relative to ammonia plus

consumed autotrophic N reserve. The first three terms
represent the processed fluxes of nitrogen (structure
plus N reserve), ammonia, and substrate. The next three
terms represent the catabolized nitrogen from the re-
serves, and the fixed nitrogen in the reserve and in the
structure.

Syntrophic interactions

Before we set up the dynamics of the autotroph–
heterotroph system, we note that all ingredients for the
symbiosis are already present; the autotroph excretes
carbohydrates, which can be used for energy purposes
by the heterotroph, while the heterotroph excretes am-
monia, which can be used by the autotroph. Part of this
ammonia originates from the organic substrate, which
was not accessible for the autotroph, without interfer-
ence by the heterotroph.

The uptake and use of substrates by the autotroph
and the heterotroph being determined, we now are
ready for chemostat dynamics, given a throughput rate
h and concentrations of ammonia XN and substrate X
in the feed. The specific growth rates equal the through-
put rate at steady state (if it exists). Assuming that carbon
dioxide and light are not limiting, the specific growth
rate of the autotroph at steady state reduces to

m k 2 jE E E MN Nr 5
m 1 yE E VN N

which implies that the N-reserve density amounts to
5 (y h 1 j )/(kE 2 h). This is only positive ifm*E E V E MN N N

h , kE. Similar results apply to the heterotroph. It is
not sure at all that a steady state exists; however, it can
oscillate, behave chaotically, or one or both partners
might wash out. Fig. 6 shows that the ratio of the
steady-state amounts of auto- and heterotroph struc-
tures hardly changes for ranges of ammonia and sub-
strate concentrations and a given set of parameter val-
ues. It is only a small step to a constant ratio, which
allows the structures to be taken together in a single
new one (mixotroph). The amount of variation of the
ratio depends on parameter values; to change param-
eters and study the effect on steady states, one can use
the software package DEBtool.4

The transition from herbivory to symbiosis can eas-
ily be made by the herbivore (i.e., heterotroph) if the
yield coefficients yEV are small (which means that the
heterotroph hardly gains from consuming autotrophs’
structure), and the half-saturation constants K andEC

K are small (which means that the heterotroph canEN

push autotrophs’ excreted reserve concentrations to
very low levels). A direct physical contact between the
partners facilitates the exchange of material.

The transition from symbiosis to mixotrophy is au-
tomatic, if the ratio of the amounts of structural masses
of both partners no longer change as functions of the
nutrient and substrate concentrations in the environ-

4 URL: ^http://www.bio.vu.nl/thb/deb/&
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FIG. 6. The ratio of the steady-state amounts
of the structure (V ) of symbiotic auto- (A) and
heterotrophs (H) in a chemostat as function of
substrate and nitrogen concentrations in the feed
at a fixed throughput rate (of 0.05 h21). Notice
that this ratio varies only within the range 3.41–
3.47, while the steady-state amount of the het-
erotroph varies in the range 19–26 mmol/L (not
shown).

ment. The quantitative details of this transition is at
this moment under study by us within the context of
the dynamic energy budget (DEB) theory, and is fun-
damental to evolutionary consistency. The interaction
of mixotrophs with their environment is discussed in
Kooijman et al. (2002).

Part of the specific costs for growth relate to the
synthesis of the assimilatory machinery, so the specific
growth costs for the mixotroph are expected to exceed
the mean specific growth costs of both partners. This
points to the evolutionary ‘‘advantages’’ of speciali-
zation, a process that can in principle be captured with-
in the theory of adaptive dynamics (Metz et al. 1996,
Geritz et al. 1997, 1998, 2002). The understanding of
environmental conditions that select for specialization
and those that select for mixotrophy is of importance
to understand the evolution of prokaryotes. It might
well be possible that mixotrophs can co-exist with auto-
and heterotrophs, and that mixotrophs can invade in an
autotroph–heterotroph community and vice versa.

DISCUSSION AND CONCLUSIONS

The present approach can be extended to include
more realistic situations. One example is an individual–
structure in population dynamics, which results from
particular surface-area-to-volume relationships, where
assimilation is linked to individuals’ surface area, and
maintenance to volume. This also affects reserve dy-
namics, via a size-dependent turnover rate. Other ex-
amples include a spatial structure, and the process of
aging, and decomposition of biomass.

Several authors have shown that stoichiometric con-
straints on the consumer level introduce qualitatively
new dynamics in simple autotroph–herbivore models
(e.g., (Andersen 1997, Loladze et al. 2000, Grover
2002)). Stoichiometric constraints imply a hump-
shaped herbivore null cline, which again allows for
additional stationary states, including the possibility of
deterministic extinction of the herbivore population

through a homoclinic bifurcation similar to that in Fig.
3. The models of Andersen (Andersen 1997) and Lo-
ladze et al. (Loladze et al. 2000) involved a piece-wise
linear ad hoc formulation on the stoichiometric effect
of autotroph nutrient content on herbivore growth. The
first-order discontinuities implied by piece-wise line-
arity will obviously limit the domain of local stability
analysis. In contrast, the present model is based on
mechanistically well-founded principles (synthesizing
units), with the desirable property of being analytical
everywhere.

The exchange of carbohydrates against nutrients, as
has been discussed earlier, also applies to plants, where
the root plays the role of the heterotroph, and the shoots
that of the autotroph. This results in a ratio of the
masses of shoots and roots that respond dynamically
to changes in the environment in a ‘‘natural’’ way,
using a relatively small number of parameters. The
model plant compensates for suboptimal growth con-
ditions by enhancing relative investments in roots or
shoots, without using any optimality argument; light
reductions can lead to larger shoot: root ratios, for in-
stance, whereas nutrient or water reductions can have
the opposite effect.

Nutrient recycling dominates the fate of an ecosys-
tem, and especially that of rather closed ones. System-
atic theoretical work on the relationships between eco-
system structure and function is still in its childhood.
In closed, spatially homogeneous systems, canonical
communities (Kooijman and Nisbet 2000), i.e., simple
three-species communities of consumers, producers,
and decomposers, and single-species mixotroph com-
munities (Kooijman et al. 2002) seem to share a gross
feature of the steady-state distribution of nitrogen as a
function of the total carbon in the system: dissolved
inorganic N decreases proportional to total C (see Fig.
7). Single-species mixotroph communities are obvi-
ously less plastic than canonical communities, and the
steady-state distribution of C as function of the total
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FIG. 7. The steady-state distribution of carbon and nitrogen in a three-species canonical community (panels a and b) and
a single-species mixotroph community (panels c and d) while increasing the total amount of carbon (a and c) or nitrogen (b
and d). Both communities are spatially homogeneous, open for energy, closed for mass, and have constant light. The amounts
of carbon and nitrogen are plotted cumulatively, from bottom to top.

The top panels show minerals [(a) dissolved inorganic nitrogen, N or (b) dissolved inorganic carbon, C (very small, not
labeled], detritus (very small, not labeled), consumers C, (structure and reserve), producers (structure, C- and N,C-reserves,
gray shaded), and decomposers (structure and reserve). The producers have three carbon components and two for nitrogen,
because one reserve lacks nitrogen.

The bottom panels show minerals [(c) dissolved inorganic nitrogen or (d) carbon], detritus (dead structure DV and reserve
DE), and biomass (living structure V and reserve E). Modified from Kooijman and Nisbet (2000) and Kooijman et al. (2002).

N in the system is rather different. A lot of work still
has to be done to determine the sensitivity of results
like these for choices of parameter values.

These analyses show that homeostasis has far-reach-
ing implications for the coexistence of organisms and
for transformation efficiencies. These effects can only
be understood with the help of models of sufficient
resolution. These models should minimally include the
(changes in) the chemical composition of biomass. Al-
though it is essential to keep the models as simple as
possible, models that are too simple miss the point.

More information about the DEB research program
and its results can be found at the home page of the
Department of Theoretical Biology of the Free Uni-
versity in Amsterdam, The Netherlands. You can down-
load the software package DEBtool and use it to an-
alyze the symbiosis dynamics numerically (see foot-
note 4).
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