



# Technical success of the applied biogas upgrading methods



#### Keywords:

Biogas, biomethane, upgrading, water scrubber, pressure swing adsorption, chemical absorption, physical absorption, membrane separation, cryogenic distillation

#### Abstract:

This deliverable aims to give a short and compact overview on both the status and the technical success of the applied biogas upgrading methods of partners in the BIOGASMAX project. Furthermore, it describes other upgrading methods that are currently not available in the project. Written by: Michael Beil and Uwe Hoffstede, Fraunhofer IWES

reviewed by: Henning Hahn, *Fraunhofer IWES* Arthur Wellinger, *Nova Energie* 

November 2010

## www.biogasmax.eu



EUROPEAN COMMISSION





## **Table of Contents**

| Document history                                                     | 2  |
|----------------------------------------------------------------------|----|
| Review                                                               | 2  |
| Table of Contents                                                    | 3  |
| 1. INTRODUCTION                                                      | 4  |
| 2. BIOGAS UPGRADING METHODS FOR CO2 REDUCTION                        | 5  |
| 2.1. Biogas Upgrading Methods available in the project               | 6  |
| 2.1.a. Pressure Swing Adsorption (PSA)                               | 6  |
| 2.1.b. Water Scrubber                                                | 7  |
| 2.1.c. Chemical Absorption (organic solvents)                        | 9  |
| 2.2. Biogas Upgrading Methods currently not available in the project |    |
| 2.2.a. Physical Absorption (organic solvents)                        |    |
| 2.2.b. Membrane Separation                                           |    |
| 2.2.c. Cryogenic Distillation                                        |    |
| 3. CONCLUSION                                                        |    |
| 4. APPENDIX: SITE DATA                                               |    |
| 4.1. Berne and Lucerne                                               |    |
| 4.2. Göteborg                                                        |    |
| 4.3. Lille                                                           |    |
| 4.4. Stockholm                                                       | 23 |



## 1. INTRODUCTION

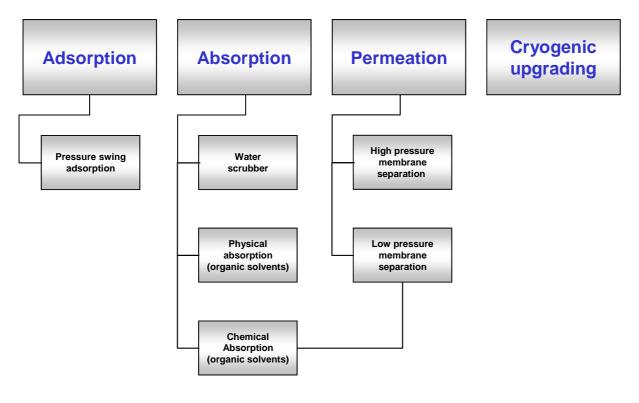
This deliverable aims to give a short and compact overview of both the status and the technical success of the applied biogas upgrading methods of partners involved in the BIOGASMAX project. It includes specific information of all project plants in the form of a fact sheet, and furthermore provides data focused on the main upgrading step "CO<sub>2</sub> reduction" demonstrated as  $CH_4$  concentrations in the raw biogas and biomethane for all 3 upgrading methods used in the project.

Furthermore, it describes other upgrading methods currently not included in the BIOGASMAX project.

At the beginning of the project it had been planned also to monitor a membrane system as well as a cryogenic system but both systems had not been constructed within the project. Therefore the monitoring and evaluation did not materialize.

By a decision on 30-09-2010, both plants of Lille site won't be part of the evaluation because they had not been in continuous operation mode by the end of the project.

More detailed information of the plant evaluation will be found in deliverable D3.6.


A cost comparison of several biogas upgrading systems will be found in deliverable D3.7.



## 2. BIOGAS UPGRADING METHODS FOR CO<sub>2</sub> REDUCTION

The main step of the production of biomethane is the removal of  $CO_2$ . The market available upgrading technologies can be separated in 4 groups shown in Figure 1:

- 1. Adsorption
- 2. Absorption
- 3. (Gas) Permeation
- 4. Cryogenic upgrading (to LBG or CBG)



[ISET, 2008]

Figure 1: Overview biogas upgrading technologies for  $\ensuremath{\text{CO}_2}$  removal.

The following chapter describes different methods for biogas upgrading to biomethane.

It is separated in two sub chapters. In section 2.1, all methods monitored in the project will be described. Section 2.2 will give an overview of methods that are currently not part (anymore) of the BIOGASMAX project.



The following chapter will give an overview of the biogas upgrading methods that were part of the BIOGASMAX project.

#### 2.1.a. Pressure Swing Adsorption (PSA)

BIOGASMAX -Integrated Project

No 019795

The pressure swing adsorption (PSA) is an adsorptive upgrading technology. For the central unit, there are mostly used carbon molecular sieves. Besides  $CO_2$ , also other compounds like  $H_2O$ ,  $H_2S$ ,  $N_2$  and  $O_2$  can be separated from the gas stream. In a practical use, it is required to do a desulfurization and drying of the raw biogas before it enters the molecular sieve. Typical pressures are in the range from 4 to 7 bars. Typical CH<sub>4</sub> concentrations in the product gas stream are >96%. Because the exhaust gas stream includes >1% CH<sub>4</sub> (related to the CH<sub>4</sub> mass flow of the biogas), an exhaust gas cleaning is recommended.

Figure 2 describes the PSA process in Lucerne (4 modules) and shows the places in the process where  $H_2S$ ,  $H_2O$  and  $CO_2$  are separated.

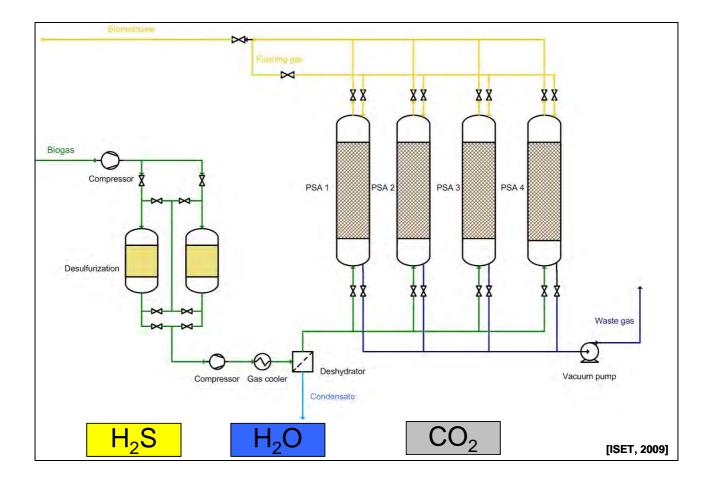



Figure 2: Flow chart pressure swing adsorption.



Figure 3 shows the  $CH_4$  concentrations of the raw biogas compared to the product gas. The negative peaks of the biomethane stream are caused by shutdowns of the plant because the plant is not in operation continuously.

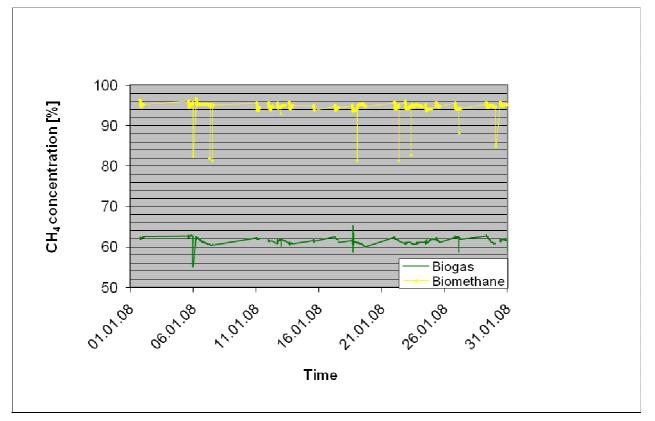



Figure 3: Methane concentrations in raw gas and upgraded gas of the PSA system in Lucerne in month 01-2008

#### 2.1.b. Water Scrubber

The water scrubber technology is an absorptive method for separating  $CO_2$  from the gas stream. Besides  $CO_2$ , also  $H_2S$  and  $NH_3$  can be separated. Normally it is not required (and also not included in current plants) to schedule a desulfurization step before the raw gas enters the absorption column. But this can be helpful to avoid significant  $H_2S$  emissions into the atmosphere by the exhaust gas, or alternatively if there is an exhaust gas treatment technology installed, it will avoid  $SO_2$  emissions. Pressures in the absorption column are in the range from 7 – 10 bars. Typical  $CH_4$  concentrations in the product gas stream are ~97% depending on the raw gas composition.

Because the exhaust gas stream includes >1%  $CH_4$  (related to the  $CH_4$  mass flow of the biogas) an exhaust gas cleaning is required.

Figure 4 describes the water scrubber process of the Malmberg system (Falköping and Stockholm-Henriksdal) and shows the places in the process where  $H_2S$ ,  $H_2O$  and  $CO_2$  are separated.

BIOGASMAX -Integrated Project No 019795



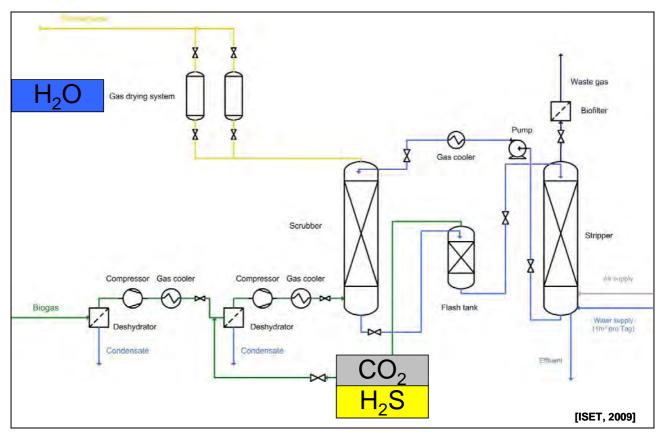
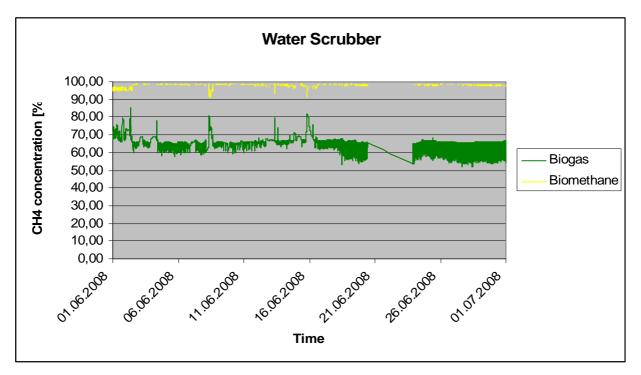
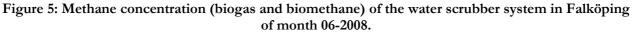





Figure 4: Flow chart water scrubber (with regeneration).

Figures 5-6 next show concentration levels at the Malmberg water scrubber system of Falköping. The negative peaks of  $CH_4$  in the biomethane flow can be caused by  $N_2$  or  $O_2$  in the raw gas flow. Beside,  $CH_4$  concentrations > 98% can be seen as very positive results of the application of this technology.







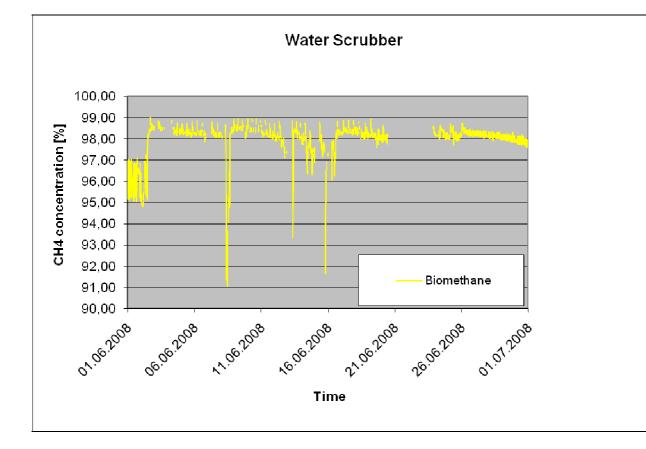



Figure 6: Methane concentration (only biomethane) of the water scrubber system in Falköping of month 06-2008.

#### 2.1.c. Chemical Absorption (organic solvents)

The chemical absorption technology using organic solvents (mostly MEA or DEA) is a combination of a physisorption and a chemisorption. Besides  $CO_2$  also  $H_2S$  and  $NH_3$  can be theoretically separated. In practical use, a desulfurisation step is required before the biogas enters the absorption column to avoid unwanted reactions in the process. The pressure in the absorption column is normally only a few mbars. For regeneration in the desorption column, a temperature level of 120–160°C is required. Typical  $CH_4$  concentrations in the product gas stream are in the range from ~99 % if there is no  $N_2$  and/or  $O_2$  in the biogas flow. An exhaust gas treatment is not necessary.

Figure 7 describes the process and shows the places in the process where  $H_2S$ ,  $H_2O$  and  $CO_2$  are separated.



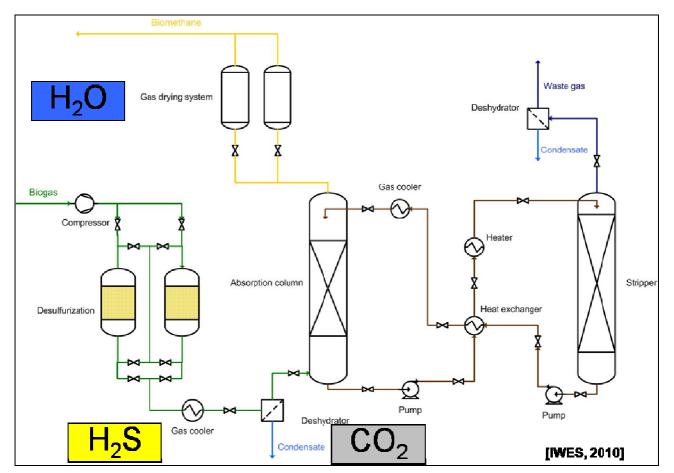



Figure 7: Flow chart chemical absorption (using organic solvents).

Figures 8 and 9 show the chemical scrubber system of Göteborg. The negative peaks of  $CH_4$  in the biomethane flow can be caused by  $N_2$  or  $O_2$  in the raw gas flow. Figure 9 shows that the system with  $CH_4$  concentrations >99% is running very stable and well for most of its operation time.

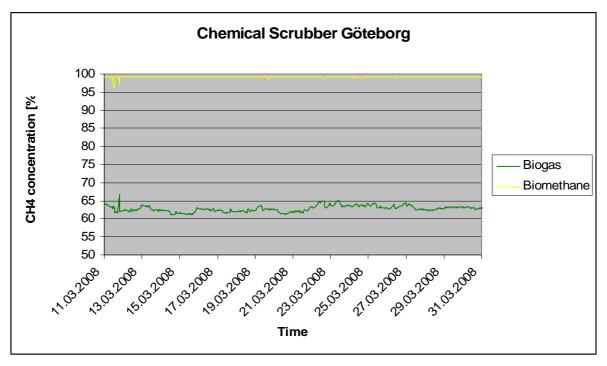



Figure 8: Methane concentration (biogas and biomethane) of the chemical scrubber system in Göteborg of month 03-2008.



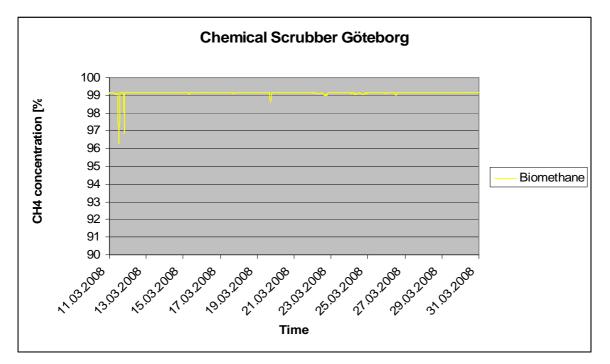



Figure 9: Methane concentration (only biomethane) of the chemical scrubber system in Göteborg of month 03-2008.



#### 2.2. <u>Biogas Upgrading Methods currently not available in the project</u>

The following chapter will give an overview about the biogas upgrading methods that are currently not part of the BIOGASMAX project. ISET/IWES had several talks in the past with plant manufacturers. There is the opportunity to also evaluate (thanks to receiving process data of the plant manufacturers) a physical absorption system (Genosorb scrubbing, primarily planned for use in Jona/Switzerland) from HAASE and a cryogenic upgrading from GtS (primarily planned for use in Falköping/Sweden).

#### 2.2.a. Physical Absorption (organic solvents)

The physical absorption technology using organic solvents (mostly Selexol or Genosorb) is basically comparable with the water scrubber technology. Besides  $CO_2$  also  $H_2S$ ,  $NH_3$  and  $H_2O$  can be separated. Normally it is not required (and also not built in the most of the current plants) to schedule a desulfurization step before the raw gas enters the absorption column. But it can be helpful to avoid significant  $H_2S$  emissions to the atmosphere by the exhaust gas or alternatively if there is an exhaust gas treatment technology installed, it will avoid  $SO_2$  emissions. The pressure in the absorption column is normally ~8 bars. For regeneration in the desorption column, a temperature level of ~50°C is required. Typical  $CH_4$  concentrations in the product gas stream are in the range of 93–98 %.

Because the exhaust gas stream includes >2% CH<sub>4</sub> (related to the CH4 mass flow of the biogas) an exhaust gas cleaning is required.

Figure 10 describes the process and shows the places in the process where  $H_2S$ ,  $H_2O$  and  $CO_2$  are separated.

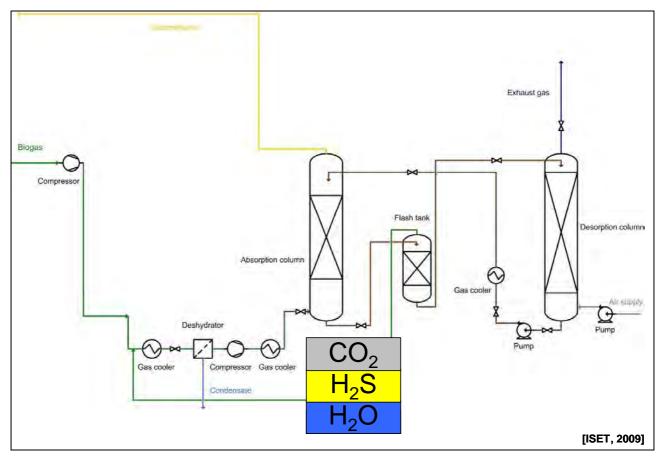



Figure 10: Flow chart physical absorption (using organic solvents).



#### 2.2.b. Membrane Separation

BIOGASMAX -

Integrated Project

No 019795

Basically there are two different membrane separation technologies available: a dry high pressure one and a low pressure one that is a combination of a permeation and a chemical absorption using organic solvents. For the practical use, there are currently only dry high pressure systems relevant.  $CO_2$ ,  $H_2O$ ,  $H_2S$  and  $NH_3$  pass through the membrane nearly complete and will be found in the permeate stream. The retentate stream consists mainly of  $CH_4$ . In practical use, generally two stage systems will be found. To increase the lifetime of the membrane modules, it is mostly required to install a desulfurization and drying step before the raw gas enters the membrane.

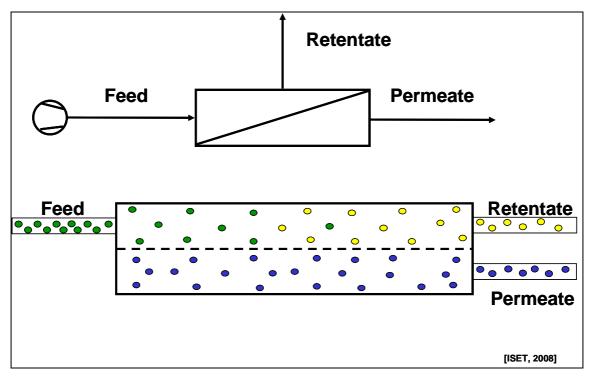


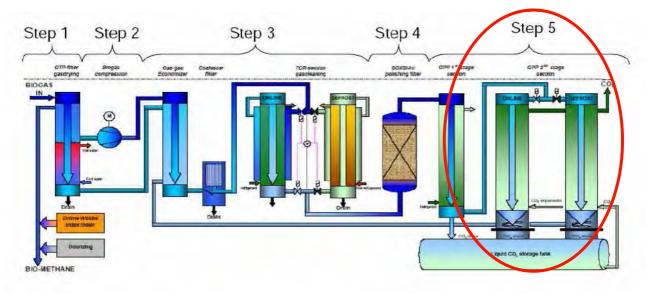

Figure 11: Description of the CO2 separation step of membrane systems.



BIOGASMAX -Integrated Project

No 019795

The cryogenic biogas upgrading shown in figure 12 is an example of the Netherlands company GtS. The process is separated in 5 steps:


Step 1: Gas drying.

Step 2: Compression.

Step 3: Gas cleaning – siloxane removal.

Step 4: Desulfurization.

Step 5: Carbon dioxide removal.



[GTS, 2008]

Figure 12: Overview cryogenic upgrading process (Example: GPP® of GtS).

## 3. CONCLUSION

Currently, three different biogas upgrading technologies are part of the monitoring programme in the BIOGASMAX project. For each technology, there are at minimum one plant with operational experiences available at the moment. No partner reported critical problems with their implemented biogas upgrading technology. In this report it could be demonstrated that all 3 monitored upgrading systems are applicable for the upgrading of biogas to biomethane. So it can be asserted that the **water scrubber** technology, the **pressure swing adsorption** technology and the **chemical absorption** technology are state-of-the-art for biogas upgrading to biomethane.



## 4. APPENDIX: SITE DATA

This chapter gives a common overview of all biogas upgrading plants included in the BIOGASMAX project.

#### 4.1. Berne and Lucerne

|                                                   | Unit    | 1st plant                    | 2nd plant                                                        |
|---------------------------------------------------|---------|------------------------------|------------------------------------------------------------------|
| Country                                           |         | Switzerland                  | Switzerland                                                      |
| BGX Site                                          |         | Bern                         | NOVA                                                             |
| BGX partner                                       |         | ARB                          | NOVA                                                             |
| City                                              |         | Berne                        | Lucerne                                                          |
| Plant name                                        | _       | ARA Region Bern ag (arabern) | ARA Region Luzern                                                |
| In operation since / inauguration planned         |         | 10.01.2008                   | 06.January 2005                                                  |
| Manufacturer of biogas upgrading unit             |         | CarboTech Engineering GmbH   | CarboTech Engineering GmbH                                       |
| Operating company of biogas upgrading unit        |         | ARA Region Bern ag           | Gemeindeverband für<br>Abwasserreinigung Region Luzern<br>(GALU) |
| Operating company of<br>biogas production<br>unit |         | ARA Region Bern ag           | Gemeindeverband für<br>Abwasserreinigung Region Luzern<br>(GALU) |
| CO <sub>2</sub> removal technique                 |         | PSA                          | PSA                                                              |
| H₂S removal<br>technique                          |         | Activated Carbon             | Activated Carbon                                                 |
| Biogas volume flow<br>(average in 12/2007)        | [Nm³/h] |                              | 115                                                              |
| Biomethane volume<br>flow (average in<br>12/2007) | [Nm³/h] |                              | 70                                                               |
| Operating hours foreseen                          | [h/a]   | 6.050                        | 4.700                                                            |
| Actual operating hours (2007)                     | [h/a]   |                              | 3.800                                                            |
| Biogas composition (average in 12/2007):          |         |                              |                                                                  |
| CH <sub>4</sub> -concentration                    | [%]     | 65,20                        | 61,00                                                            |
| CO <sub>2</sub> -concentration                    | [%]     | 33,70                        | 37,00                                                            |
| O <sub>2</sub> -concentration                     | [%]     | 0,50                         | 0,20                                                             |
| -<br>H <sub>2</sub> S-concentration               | [ppm]   | <25                          | -                                                                |



| Biomethane<br>composition (average<br>in 12/2007): |             |                                                                                   |           |
|----------------------------------------------------|-------------|-----------------------------------------------------------------------------------|-----------|
| CH <sub>4</sub> -concentration                     | [%]         | 97,50                                                                             | 95,70     |
| CO <sub>2</sub> -concentration                     | [%]         | 2,00                                                                              | 1,30      |
| O <sub>2</sub> -concentration                      | [%]         | 0,02                                                                              | 0,09      |
| H <sub>2</sub> S-concentration                     | [ppm]       | -                                                                                 | -         |
| Manufacturer<br>warranty:                          |             |                                                                                   |           |
| Plant capacity: Biogas volume flow                 | [Nm³/h]     |                                                                                   | 110 - 140 |
| Plant capacity:<br>Biomethane volume<br>flow       | [Nm³/h]     | 192                                                                               | 60 - 85   |
| CH₄-concentration in the biomethane                | [%]         | >96                                                                               | 96,00     |
| Kinds of feedstock                                 |             | Primary and biological sludge,<br>dairy and food wastes,<br>slaughterhouse wastes |           |
| LPG conditioning                                   | YES /<br>NO | NO                                                                                | NO        |
| Pressure                                           | [bar]       |                                                                                   | 4,00      |
| Biomethane<br>distribution                         |             | Grid injection                                                                    | Grid      |
| Biomethane utilisation                             |             | Vehicle fuel for public transport Vehicle fuel                                    |           |

Table 1: Biogas upgrading plant sheet Berne and Lucerne.





Picture 1: Biogas upgrading in Berne.

BIOGASMAX -Integrated Project No 019795



Picture 2: Biogas upgrading in Lucerne.



## 4.2. <u>Göteborg</u>

|                                                    | Unit    | 1st plant           | 2nd plant                    |
|----------------------------------------------------|---------|---------------------|------------------------------|
| Country                                            |         | Sweden              | Sweden                       |
| BGX Site                                           |         | Göteborg            | Göteborg                     |
| BGX partner                                        |         | GE                  | FK                           |
| City                                               |         | Göteborg            | Falköping                    |
| Plant name                                         |         | Arendal             |                              |
| In operation since / inauguration planned          |         | 2007-04-13          | January 2008                 |
| Manufacturer of biogas upgrading unit              |         | PURAC               | Malmberg                     |
| Operating company of biogas upgrading unit         |         | Göteborg Energi AB  | Göteborg Energi AB           |
| Operating company of<br>biogas production<br>unit  |         | GRYAAB              | Municipality of<br>Falköping |
| CO <sub>2</sub> removal<br>technique               |         | Chemical Absorption | Water Scrubber               |
| H₂S removal<br>technique                           |         | Activated Carbon    | Water Scrubber               |
| Biogas volume flow<br>(average in 01/2008)         | [Nm³/h] | 863                 | 100                          |
| Biomethane volume<br>flow (average in<br>01/2008)  | [Nm³/h] | 558                 |                              |
| Operating hours foreseen                           | [h/a]   | 8600                |                              |
| Actual operating<br>hours (2007)                   | [h/a]   |                     |                              |
| Biogas composition (average in 01/2008):           |         |                     |                              |
| CH <sub>4</sub> -concentration                     | [%]     | 63                  | 64                           |
| CO <sub>2</sub> -concentration                     | [%]     |                     |                              |
| O <sub>2</sub> -concentration                      | [%]     | 0.2                 |                              |
| H <sub>2</sub> S-concentration                     | [ppm]   |                     |                              |
| Biomethane<br>composition (average<br>in 01/2008): |         |                     |                              |
| CH <sub>4</sub> -concentration                     | [%]     | 99                  | 97,5                         |
| CO <sub>2</sub> -concentration                     | [%]     | Not measured        | 0.7                          |
| O <sub>2</sub> -concentration                      | [%]     | Not measured        | 0.5                          |



| H <sub>2</sub> S-concentration               | [ppm]       | Not measured                                                   | 0                                           |
|----------------------------------------------|-------------|----------------------------------------------------------------|---------------------------------------------|
| Manufacturer<br>warranty:                    |             |                                                                |                                             |
| Plant capacity: Biogas volume flow           | [Nm³/h]     | 1.600                                                          | 200                                         |
| Plant capacity:<br>Biomethane volume<br>flow | [Nm³/h]     |                                                                |                                             |
| CH₄-concentration in the biomethane          | [%]         | 98,00                                                          | 97,00                                       |
| Kinds of feedstock                           |             | Sewage sludge                                                  | Sewage sludge, household waste              |
| LPG conditioning                             | YES /<br>NO | YES                                                            | NO                                          |
| Pressure                                     | [bar]       | 4,00                                                           | 10,00                                       |
| Biomethane<br>distribution                   |             | Grid                                                           | Pipe from upgrading unit to filling station |
| Biomethane utilisation                       |             | Mostly vehicle use but also use in<br>CHP and District Heating | Vehicle fuel                                |

Table 2: Biogas upgrading plant sheet Göteborg site.





Picture 3: Biogas upgrading plant Göteborg [GE].



Picture 4: Biogas upgrading plant Falköping [IWES].



## 4.3. <u>Lille</u>

|                                                    | Unit    | 1st plant      | 2nd plant               |
|----------------------------------------------------|---------|----------------|-------------------------|
| Country                                            |         | France         | France                  |
| BGX Site                                           |         | Lille          | Lille                   |
| BGX partner                                        |         | LMCU           | LMCU                    |
| City                                               |         | Lille          | Lille                   |
| Plant name                                         | _       | Marquette      | Organic Recovery Center |
| In operation since / inauguration planned          |         | March 2008     | January 2008            |
| Manufacturer of biogas upgrading unit              |         | Flotech        | Flotech                 |
| Operating company of biogas upgrading unit         |         | SEMEN          | Carbiolane              |
| Operating company of<br>biogas production<br>unit  |         | SEMEN          | Carbiolane              |
| CO <sub>2</sub> removal technique                  |         | Water scrubber | Water scrubber          |
| H₂S removal<br>technique                           |         | Water scrubber | Water scrubber          |
| Biogas volume flow<br>(average in 12/2007)         | [Nm³/h] | 100            | 750                     |
| Biomethane volume<br>flow (average in<br>12/2007)  | [Nm³/h] | > 30           | 487                     |
| Operating hours<br>foreseen                        | [h/a]   | > 8300         | 8.497                   |
| Actual operating hours                             | [h/a]   | Start-up phase | Start-up phase          |
| Biogas composition (average in 12/2007):           |         |                |                         |
| CH <sub>4</sub> -concentration                     | [%]     | 64,00          | 56,00                   |
| CO <sub>2</sub> -concentration                     | [%]     | 35,00          |                         |
| O <sub>2</sub> -concentration                      | [%]     |                |                         |
| H <sub>2</sub> S-concentration                     | [ppm]   | 3.000,00       | 250,00                  |
| Biomethane<br>composition (average<br>in 12/2007): |         |                |                         |
| CH <sub>4</sub> -concentration                     | [%]     |                | 97,00                   |
| CO <sub>2</sub> -concentration                     | [%]     |                | 0,50                    |
| O <sub>2</sub> -concentration                      | [%]     |                |                         |



| H <sub>2</sub> S-concentration               | [ppm]       |                                         | 0,00                                                         |
|----------------------------------------------|-------------|-----------------------------------------|--------------------------------------------------------------|
| Manufacturer<br>warranty:                    |             |                                         |                                                              |
| Plant capacity: Biogas volume flow           | [Nm³/h]     | 100                                     | 1200                                                         |
| Plant capacity:<br>Biomethane volume<br>flow | [Nm³/h]     | >30                                     | 670                                                          |
| CH₄-concentration in the biomethane          | [%]         | Gross calorific value > 10.7<br>kWh/Nm3 | Gross calorific value > 10.7<br>kWh/Nm3                      |
| Kinds of feedstock                           |             | Sewage sludge                           | Source separated biowaste                                    |
| LPG conditioning                             | YES /<br>NO | no                                      | no                                                           |
| Pressure                                     | [bar]       | 9,00                                    | 9,00                                                         |
| Biomethane<br>distribution                   |             | On-site                                 | Dedicated pipeline (planned injection into natural gas grid) |
| Biomethane utilisation                       |             | Bus - Waste collection trucks           | Bus - Waste collection trucks                                |

Table 3: Biogas upgrading plant sheet Lille site.



Picture 5: Biogas upgrading in Lille [LMCU].



## 4.4. Stockholm

|                                                    | Unit    | 1st plant           |
|----------------------------------------------------|---------|---------------------|
| Country                                            |         | Sweden              |
| BGX Site                                           |         | Stockholm           |
| BGX partner                                        |         | VK                  |
| City                                               |         | Västeras            |
| Plant name                                         |         |                     |
| In operation since / inauguration planned          |         | 10/2004             |
| Manufacturer of biogas upgrading unit              |         | YIT                 |
| Operating company of biogas upgrading unit         |         | Svensk Växtkraft AB |
| Operating company of<br>biogas production<br>unit  |         | Svensk Växtkraft AB |
| CO <sub>2</sub> removal technique                  |         | Water scrubber      |
| H₂S removal<br>technique                           |         | Water scrubber      |
| Biogas volume flow<br>(average in 12/2007)         | [Nm³/h] | 355                 |
| Biomethane volume<br>flow (average in<br>12/2007)  | [Nm³/h] | 226                 |
| Operating hours foreseen                           | [h/a]   | na                  |
| Actual operating<br>hours (2007)                   | [h/a]   | na                  |
| Biogas composition (average in 12/2007):           |         |                     |
| CH <sub>4</sub> -concentration                     | [%]     | 63,40               |
| CO <sub>2</sub> -concentration                     | [%]     | 36,30               |
| O <sub>2</sub> -concentration                      | [%]     | 0,20                |
| H <sub>2</sub> S-concentration                     | [ppm]   | 1.000,00            |
| Biomethane<br>composition (average<br>in 12/2007): |         |                     |
| CH <sub>4</sub> -concentration                     | [%]     | 97,10               |
| CO <sub>2</sub> -concentration                     | [%]     | 2,90                |
| O <sub>2</sub> -concentration                      | [%]     | na                  |



| H <sub>2</sub> S-concentration               | [ppm]       | 0,20                                                                                             |
|----------------------------------------------|-------------|--------------------------------------------------------------------------------------------------|
| Manufacturer<br>warranty:                    |             |                                                                                                  |
| Plant capacity: Biogas volume flow           | [Nm³/h]     | 550                                                                                              |
| Plant capacity:<br>Biomethane volume<br>flow | [Nm³/h]     |                                                                                                  |
| CH₄-concentration in the biomethane          | [%]         | >97                                                                                              |
| Kinds of feedstock                           |             | Raw gas from biogas plant and<br>from sewage plant                                               |
| LPG conditioning                             | YES /<br>NO | yes                                                                                              |
| Pressure                                     | [bar]       | <= 4                                                                                             |
| Biomethane<br>distribution                   |             | Pipeline to filling station for busses<br>and cars + filling station for<br>movable gas storages |
| Biomethane utilisation                       |             | As much as possible for vehicle<br>fuel. Surplus gas for production of<br>electricity and heat   |

Table 4: Biogas upgrading plant sheet Stockholm site.



Picture 6: Biogas upgrading in Västerås - Stockholm.