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In stably stratified flow over a three-dimensional hill, we can define a dividing 
streamline that separates those streamlines that pass around the hill from those that 
pass over the hill. The height H ,  of this dividing streamline can be estimated by 
Sheppard’s simple energy argument; fluid parcels originating far upstream of a hill 
at an elevation above H ,  have sufficient kinetic energy to rise over the top, whereas 
those below H ,  must pass around the sides. This prediction provides the basis for 
analysing an extensive range of laboratory observations and measurements of stably 
stratified flow over a variety of shapes and orientations of hills and with different 
upwind density and velocity profiles. For symmetric hills and small upwind shear, 
Sheppard’s expression provides a good estimate for H,. For highly asymmetric flow 
and/or in the presence of strong upwind shear, the expression provides a lower limit 
for H,. As the hills become more nearly two-dimensional, these experiments become 
less well defined because steady-state conditions take progressively longer to be 
established. The results of new studies are presented here of the development of the 
unsteady flow upwind of two-dimensional hills in a finite-length towing tank. These 
measurements suggest that a very long tank would be required for steady-state 
conditions to  be established upstream of long ridges with or without small gaps and 
cast doubt upon the validity of previous laboratory studies. 
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1. Introduction 
Hunt & Snyder (1980) conducted towing-tank experiments to test Drazin’s (1961) 

theory for low-Froude-number flow over three-dimensional obstacles. They verified 
that, for a bell-shaped hill, a linearly stratified environment, and an effectively 
uniform approach-flow velocity profile, Drazin’s theory was applicable in the range 
F< 0.4, where F is the Froude number ( =  U/Nh,  U being the towing speed, N the 
Brunt-VaisiilL frequency and h the hill height). Hunt & Snyder showed evidence for 
a dividing streamline (on the centreplane determined by the flow and the axis of 
the axisymmetric hill) of height H ,  such that streamlines below H,  would impinge 
on the hill surface and follow the surface around the sides, whereas streamlines above 
H,  would go over the top. Moreover, they suggested the simple formula 

H , =  h(1-F) 

as the criterion to determine whether a plume embedded in the flow approaching the 
hill would impact on the surface or surmount the top, for 0 < F < 1. 

Snyder, Britter & Hunt (1980) presented further laboratory evidence in support 
of the simple formula; they showed that it was applicable to other shapes of 
axisymmetric hills, including a cone and a hemisphere. Furthermore, they presented 
another simple formula and supporting experimental data for determining whether 
an elevated (step) inversion would surmount a hill. This second formula, predicting 
the point at which the inferface just reaches the hilltop, is 

where g is the acceleration due to gravity, h, is the height of the interface, Ap is the 
density difference across the interface, and p1 is the density of the fluid between the 
interface and the surface. 

A more general formula for determining this dividing-streamline height was, in fact, 
suggested by Sheppard (1956), based upon simple energy arguments. He aaked the 
question : in a strongly stratified flow approaching a hill, does a particular fluid parcel 
at some height upstream possess sufficient kinetic energy to overcome the potential 
energy required to lift the parcel through the potential density gradient from its 
upstream elevation to the top of the hill ? Sheppard’s formula may be written as 

where the left-hand side may be interpreted as the kinetic energy of the parcel far 
upstream at elevation H,, and the right-hand side as the potential energy gained by 
the parcel in being lifted from the dividing streamline H ,  to the hill top h through 
the density gradient dpldz. This integral formula is applicable to a fluid with any 
shape of stable density profile and, presumably, with any shape of approach-flow 
velocity profile. In  practice, it  must be solved iteratively, because the unknown H ,  
is the lower limit of integration. The formula can easily be reduced to the simpler 
formulae ((1) and (2) by using the boundary conditions applicable to those special 

The concept of a dividing-streamline height, of course, has very important 
consequences in the assessment of pollutant concentrations from sources located in 
or near complex terrain. For example, because of the essentially horizontal flow field 
below H, in a strongly stratified atmosphere, plume diffusion from a point source can 

cases. 
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be modelled by considering horizontal flow and horizontal diffusion alone, i.e. the 
three-dimensional problem is reduced to a two-dimensional one of diffusion from a 
line source about a cylinder (e.g. Hunt, Puttock & Snyder 1979). This treatment 
suggests, and experiments by Snyder & Hunt (1984) support, that maximum surface 
concentrations under such conditions may approach or even exceed those that would 
have existed at the centre of the plume in the absence of the hill. These concentrations 
are, of course, very much larger than would be obtained from a plume diffusing 
normally onto a surface. 

Questions that naturally arise concern the applicability to the atmosphere of the 
simple integral formula and these laboratory results. For example, is the formula still 
applicable as the hill is elongated into a ridge ? What occurs when the ridge is not 
perpendicular to the approach wind ? Is the hill slope important ? What is the effect 
of shear in the approach flow, as most certainly occurs in the atmosphere 1 And, of 
course, the density structure of the approach flow is seldom linear; more typical is 
a strong surface-based inversion with a weaker gradient approaching neutral above. 

A few other studies have shed light on some of these problems. Baines (1979a), 
for example, conducted towing-tank studies of low-Froude-number flows around a 
barrier with a gap. His results suggest 

H, /h  = 1-2F (4 ) 

for barriers with very small gaps, tending toward H, /h  = 1 - F for those with wider 
gaps. Weil, Traugott & Wong (1981) extended Baines’ work by conducting similar 
towing-tank studies and found quite similar results. However, some doubts are 
expressed (see later discussion) concerning the experimental techniques, the estab- 
lishment of ‘ steady-state ’ conditions, and the interpretation of results in view of the 
fairly substantial scatter in the data. 

Data from a field study by Rowe et al. (1982) of stable air flow over a ‘long’ ridge 
showed much better agreement with the expression for axisymmetric hills (1) than 
for ridges with gaps (4). This ridge had a cross-wind length-to-height ratio of 
about 55. 

A major field study was designed (Holzworth 1980) and the fist phase was con- 
ducted (Spangler & Taylor 1982; Lavery et al. 1982a, b) partly based upon the results 
of the laboratory studies described above. This field study tended to confirm (3); 
indeed, H ,  was computed in real time from incoming meteorological data and 
used to determine operational strategy during the field experiment. 

In conjunction with that field study, several more laboratory experiments were 
conducted to test the general validity of the integral formula (3) and to assess its limits 
of applicability. These laboratory experiments, which will be discussed in the 
following sections, included : 

( 1 )  Towing-tank studies on a model of the field-study hill, Cinder Cone Butte, in 
southwestern Idaho. It is an isolated, 100 m high, roughly axisymmetric hill in the 
flat, broad Snake River Basin. Density profiles were set up in the tank to simulate 
(in somewhat idealized fashion) those expected during the field-study period, i.e. 
strong surface-based inversions over a fraction of the hill height with weaker (but 
stable) gradients above to several hill heights, and towing speeds were established 
to simulate field conditions. Dividing-streamline heights were calculated according 
to (3) and neutrally buoyant, different-coloured dyes were released upstream slightly 
above, at, and slightly below, the calculated H,. Visual and photographic obser- 
vations were made to establish an observed dividing-streamline height, which was 
then compared with the predicted dividing-streamline height. 

9 FLM 152 
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(2) Towing-tank studies on truncated, steep-sided ridges of various crosswind 
aspect ratios. These studies included examination of upstream ‘blockage ’ regions, 
surface flow patterns, and lee-wave structure and are reported separately (Castro, 
Snyder & Marsh 1983); only those aspects dealing specifically with the dividing- 
streamline concept will be reported here. 
(3) Stratified wind-tunnel studies on shear flow over vertical fences of various 

crosswind aspect ratios and over a model of Cinder Cone Butte. 
(4) Towing-tank studies on a truncated sinusoidal ridge that had a maximum slope 

of 40” and was positioned perpendicular to and a t  other angles to the approach wind 
direction. 

(5) Towing-tank studies on a series of three ‘infinite’ ridges of quite different 
cross-sectional shape, and on a long sinusoidal ridge, to test the validity of the 
‘steady-state’ assumption of flow upwind of an obstacle under strongly stratified 
conditions. 

Section 2 provides a rigorous derivation of Sheppard’s integral formula and 
presents a discussion of blockage effects and upstream influence. Experimental 
apparatus, techniques and models are described in $3. Results are presented in $ 4  
and conclusions in $5. 

2. Review of theory and experiments 
2.1. Overview 

Several theoretical and experimental studies have been performed to analyse the 
influence of two-dimensional objects on stratified flow. Much of this work has been 
concerned with describing the formation and structure of lee waves. Some effort, 
however, has been directed toward determining the conditions under which the 
upstream flow may be ‘blocked’ by the obstacle. A description of the path of the 
dividing streamline for two-dimensional hills would prove useful in determining the 
fate of pollutants released upwind of such hills. 

Laboratory studies have been performed by towing freely mounted or surface- 
mounted, two-dimensional objects in layered or continuously stratified tanks. Many 
questions remain as to how the results of these experiments performed in a tank of 
finite depth and length apply to the atmosphere. The dimensions of the tank 
determine possible wave motions of the fluid. 

One feature of stratified experiments conducted in finite towing tanks that has not 
been adequately addressed is how the upstream conditions change during a tow. A 
fixed end on the tank, in effect, provides a uniform approach velocity profile at  a 
distance upstream of the obstacle that varies as the experiment progresses. If fluid 
is blocked by the obstacle, the density gradient will be modified by the blocked fluid 
as the blockage influence is observed farther and farther upstream. The assumption 
usually made, that the approach-flow density gradient remains unchanged through- 
out the tow, could lead to a misinterpretation of the observations. 

In  applying the theory of the dividing-streamline height to three-dimensional 
axisymmetric hills, i t  is assumed that the portion of the flow with insufficient energy 
to surmount the hill top is able to pass around the sides. However, the fluid blocked 
by a two-dimensional hill is trapped upstream. If the aspect ratio (width of the hill 
perpendicular to the flow divided by the hill height) is taken as the experimental 
variable, the value at which the centreline flow deviates from the patterns established 
for axisymmetric cases can be determined. A complication that arises in towing-tank 
experiments is that the amount of the test-section cross-sectional area that is blocked 
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must remain below some limiting value. As will be discussed later, the ratio of the 
area occupied by the model to the tank cross-sectional area that would be occupied 
if the model were extended to the width of the tank, is important in stratified flow. 

Long (1953, 1954, 1955) performed both theoretical and experimental analyses of 
two-layer and continuously stratified flow over ‘easy’ shapes in a finite tank. Long 
made the hypothesis of an undisturbed approach flow at a sufficient distance 
upstream of the obstacle. He was interested in the upstream propagation of gravity 
waves rather than blockage effects and, thus, did not perform experiments at low 
Froude numbers. The reality of Long’s hypothesis has been the subject of much 
controversy and has been discussed by Long (1972), McIntyre (1972), and more 
recently by Baines (1977). Application of Long’s hypothesis to a tank experiment 
implies that for a portion of the experiment, presumably near the middle of the tow, 
a ‘ steady state ’ exists. 

Wei et al. (1975) towed a 1 in circular cylinder, a 2 in circular cylinder, and a 1 in 
flat plate through a linearly stratified fluid. Upstream columnar disturbance modes 
were observed for Froude numbers from 0.084 to 0.24, based on the half-depth of 
the tank. Some disturbances appeared as unattenuated horizontal jets. Froude 
numbers based on the radii of the cylinders (or half-width of the plate) ranged from 
0.78 to 4.72. The larger cylinder towed at a Froude number of 0.78 was the only case 
with a cylinder Froude number less than 1.0. In this case, the fluid extending 
upstream of the cylinder to at least 27 radii upstream approached the cylinder at 
a speed of about 0.7 times the towing speed. A layer of blocked fluid was not apparent. 
A tow at a Froude number of 1.10 exhibited a fluid layer upstream of the cylinder 
with a speed toward the cylinder of 0.9 times the towing speed. This layer also 
extended upstream a distance of at least 27 times the radius of the cylinder. 

Baines (19794 studied stratified flow past a surface-mounted, two-dimensional 
barrier, and barriers with gaps at the ends. Gap widths G were &, t ,  and Q (G is defined 
as the fraction of area removed from the model that spans the width of the tank). 
The cross-section of the hill was a ‘Witch of Agnesi ’ shape with a maximum slope 
of 39.4’. Neutrally buoyant beads were placed in the fluid to allow observation of 
the flow over the two-dimensional model. The flow over models with gaps was 
observed by releasing dye at various heights upstream. The density of the dye was 
adjusted to be neutrally buoyant at approximately one-half of the barrier height. 
Thus, when the release was below this height, the dye was buoyant; when the release 
was above this height, it was negatively buoyant. The magnitude of the errors 
introduced by this buoyancy was not addressed. 

Baines made his observations ‘after steady-state was reached (estimated by direct 
observation) and before the reflected upstream motions arrived’. The criterion for 
the existence of blocked fluid upstream of a two-dimensional barrier was found to 
be F < 0.5 (f0.05) based on the barrier height. The depth of blocked fluid zb was 
found to be approximately 0.5 h and essentially independent of Froude number. For 
the barriers with gaps of G = & and Q, he concluded that the blockage criterion for 
the two-dimensional case still applied. Further, the height of the dividing streamline 
was found to be given by h(1-2F). However, for the barrier with G = Q, the 
dividing-streamline height (as deduced from Baines’ figure 7) was more nearly 

Overall, observations of Weil et al. (1981) on two-dimensional ridges and ridges with 
gaps tended to support those of Baines (1979~) .  However, for the depth of blocked 
fluid upwind of a two-dimensional ridge, Weil et al. found zb/h = 1 -2F,  as opposed 
to the nearly constant value of zb/h = 0.5 for 0 < F < 0.5 found by Baines. 

h(1-0.7F). 

9-2 
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One other point needs to be made here. Baines (19794 assumed that H,+ h as G+ 1 
(for all F), and his figure 7 shows that result. Presumably, this idea is derived from 
the thought that, if the hill were 'needle-like ', all streamlines would easily pass around 
it, independent of F. However, in neutral flow, even for a 'needle-like' hill, all 
streamlines originating in the centreplane must pass over the crest, even a branch 
of one that was on the surface far upwind. The contention here is that, in a stratified 
flow, H J h  = 1 - F when G = 1 because the streamline at upstream elevation H ,  will 
branch at the needle, with a portion following the surface over the top and other 
portions going round the sides. 

Kitabayashi (1977) performed a stratified wind-tunnel study of the flow upstream 
of two different smooth two-dimensional hills (maximum slope of 10' and 1 5 O ) .  He 
found a critical Froude number of F = 2.3 below which a stagnant layer can form. 
However, the approach wind profile was not uniform and the density profile was not 
linear, so the Froude numbers he calculated are not directly comparable to those of 
more idealized laboratory studies. 

Kitabayashi (1981) continued his studies of stratified flow over two-dimensional 
objects by analysing the flow over thin, vertical barriers. He used the wind-tunnel 
test-section depth in defining his Froude number, but concluded that a critical Froude 
number based on the barrier height should be adopted. His data (Kitabayashi 1981 ; 
figure 19) can be used to support the argument for a critical Froude number for 
upstream blocking, based on hill height, of F x 1.0. 

2.2. Derivation of integral formula for dividing-streamline height 

An integral formula for calculating the height of the dividing-streamline for flow in 
the atmosphere or in a laboratory water tank can be derived by calculating the height 
attainable by a parcel of fluid if its kinetic energy of horizontal motion were converted 
into buoyant potential energy. The derivation presented here closely follows that of 
Sheppard (1956). This energy argument is simple, naive, and has theoretical 
limitations (e.g. hydrostatic assumption, continuity not invoked). Despite such 
limitations, the argument yields predictions of H ,  that are in good agreement with 
experimental data. 

This 'parcel ' method assumes that a small volume of fluid can be identified and 
followed as it moves through the environment. The pressure within the fluid parcel 
remains equal to that of the local environment, which is assumed to be in hydrostatic 
balance. Consideration of the motion along the dashed lines AA' in figures l ( a )  
and (b), just above the dividing-streamline, shows that, if the slope is small and the 
velocity gradient is small, the vertical accelerations are small (cf. calculations and 
experiments of Lamb 6 Britter 1984). Frictional forces are neglected. Therefore, in 
the atmosphere, the parcel motion is adiabatic, while, in the water tank, the parcel 
maintains its original density. 

Under these assumptions, the equation of energy conservation is 

d 1 d P  
h-;(+g"+gz)+-- = 0. 

P dt 
(5 )  

The hydrostatic balance of the atmosphere can be expressed as 

3 = -gpe, 
dz 
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A' A' --- 

FIGURE 1. Schematic of flow over hills of (a) small slope and ( b )  large slope. 

where the subscript e is used to denote a local environmental value. Recall the 
assumption that P = P, and combine (5) and (6) to obtain 

Application of the equation of state for dry air yields 

d g )  = ( T ) g d z ,  

where T is the absolute temperature. Assuming the existence of a streamline that 
originates at a height Hs and that approaches a stagnation point on the hilltop ( z  = h), 
(8) can be integrated between these limits to obtain the integral formula: 

Because the parcel moves adiabatically, T = Te(Hs)+yd(z-Hs), where yd is the dry 
adiabatic lapse rate. Thus 

Equation (9) can also be written in terms of potential temperature 8 through the 
application of Poisson's equation 

T 3 = (;J 
where K = 0.286 for dry air and Po is lo00 millibars. Integrating by parts and noting 
that 8 , (HS) /8 , ( z )  N 1 yields 

Equation (lo), however, is a simpler computational form. 
To obtain a corresponding formula for flow in a water tank, (7) can be written as 

where z* is directed downward (models are inverted and towed along the surface of 
the water tank). Again, assuming the existence of a dividing streamline, (13) can be 
integrated to obtain 
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Adding and subtracting hp,(h) and integrating by parts gives 

In general, these formulae must be solved iteratively to obtain H,. 
As mentioned earlier, this formula may be reduced to H,/h = 1 - F under conditions 

of uniform velocity and linear density gradient. This reduction assumes that all 
kinetic energy is converted into potential energy. A more general formula which 
allows for only a portion of the kinetic energy to be converted is H,/h = 1 - a F ,  with 
a < 1. In neutral flows, the pressure field set up by the body allows kinetic energy 
along a streamline to increase (e.g. speed-up over a hill). Hence, a is not necessarily 
less than 1 for all F ,  but the pressure effects are expected to be small for F < 1. 
However, the data of Baines ( 1 9 7 9 ~ )  and Weil et al. (1981) suggest that a > 1.0, 
indeed, as large as 2.0 for long ridges with narrow gaps. As discussed in the next 
section and as shown by the experiments described in $4, the validity of their 
experiments, or at least the applicability of their results to the atmosphere, is 
questioned. 

2.3. The squashing phenomenon 
Drazin’s (1961) theory of flow over hills suggests that, in the limit of extreme stability 
(F+O), vertical motions are inhibited, i.e. the flow is constrained to move in 
horizontal planes. Let us imagine a stratified towing tank of finite length L in which 
we tow a two-dimensional obstacle of finite height h a t  very low speed (i.e. F+O). 
Let us further imagine that the fluid is incompressible, that the obstacle is suspended 
near mid-depth, and that the tow begins at  one end of the tank. The fluid initially 
in the layer between the top and bottom of the obstacle must conserve its volume 
(Lh)  because of the incompressibility assumption. Hence, as the distance between the 
obstacle and the opposite end wall of the tank decreases (even infinitesimally), the 
height of the layer increases (also infinitesimally). What happens in practice, of 
course, is that this fluid spills over the top and under the bottom of the obstacle, filling 
the void behind it .  If the obstacle moves a distance z down the tank, a volume hz 
is displaced and fills the void in the lee. Because of the inhibition of vertical motions, 
the fluid filling the void must come from the thin layers just below the top and just 
above the bottom of the obstacle. Because no dynamics are involved (U+O),  these 
layers must extend from the obstacle to the opposite end of the tank, and their 
thicknesses are zh/2(L-z) each. 

The fluid remaining in the space ahead of the obstacle has its density gradient 
modified by the multiplicative factor 1 -z/L.  This phenomenon will be referred to 
as the ‘squashing ’ phenomenon in analogy with water spilling over the top of a bucket 
when the sides are ‘squashed ’. These finite height changes of fluid parcels upstream 
of the obstacle are prohibited by Drazin’s theory, which allows only infinitesimal 
changes of elevation as the velocity approaches zero. Foster & Saffman (1970) 
discussed exactly the same phenomenon, but did not call it ‘squashing ’. They derived 
the same formulae for this case as well as others (and calculated drag and other 
parameters). 

Of courae, in a real towing tank, the obstacle must be towed at  some finite speed, 
so that dynamics become important. However, Drazin’s theory has been largely 
confirmed experimentally and extended (ultimately to F = 1 )  by Riley, Liu & Geller 
(1976), Brighton (1978) and Hunt & Snyder (1980), and the experiments to be 
described in $4 certainly confirm the existence of essentially horizontal flow around 
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three-dimensional obstacles (including very long ridges) below some height H,. Note 
that, on the basis of Drazin’s dynamical theory, H J h  = 1 -aF, where a = O(1). This 
was the basis of Hunt & Snyder’s (1980) formula, rather than Sheppard’s energy 
argument. Hence, we might expect Drazin’s theory (and Sheppard’s formula) to apply 
to all obstacles. The question is : can it be extended to the two-dimensional limit ? 

The results of experiments by Baines (1979~)  and Weil et al. (1981) for two- 
dimensional ridges and ridges with gaps were surprising because they suggested that 
fluid parcels could surmount the hills even though they had insufficient kinetic energy 
far upwind to do so. We suggest that their results are due largely to the squashing 
phenomenon, i.e. the gaps in their ridges were insufficiently large to allow a ‘relief 
valve ’ to avoid the squashing. 

This squashing phenomenon seems to have no counterpart in the atmosphere. If 
true blocking occurred upwind of an ‘infinite’ ridge in the atmosphere, it  seems that 
the flow would be blocked to infinity upwind (i.e. there is no ‘endwall’ forcing the 
flow toward the ridge). In more practical terms, ‘blocking’ upstream of a very long 
ridge would imply ‘upstream influence’ to very large distances, .possibly through an 
upstream-propagating front, which would imply non-steady-state behaviour. From 
another viewpoint, there are no infinite ridges, so that fluid parcels can always be 
diverted around the obstacles without changing their elevation. 

2.4. Upstream in$uence and blocking of $ow over hills 
The energy argument given in 82.2 assumes steady-state conditions upwind of the 
obstacle. The very low Froude number arguments of $2.3 show that the squashing 
phenomenon causes the density profile to be continuously modified when an obstacle 
is towed along the tank. At a small but finite Froude number (say, 0.1 < F < l) ,  the 
steady-state assumption may be incorrect upwind of two-dimensional obstacles. 
‘Columnar disturbance modes ’ are gravity waves of wavenumber zero. These waves, 
whether generated near the obstacle (Baines 19793) or in the tails or terminal zones 
of the lee waves (McInGiyre 1972), can propagate upstream. 

The dispersion equation for waves in a tank of finite depth d is 

0 2 ( k 2 + F ) - P k 2  = 0, 

where k: = 2n/A is the horizontal wavenumber, n is the mode in the vertical, w is 
the circular frequency, and N is, aa before, the BruntrVaisala frequency (Turner 1979 ; 
Wei, Kao & Pao 1975). Columnar disturbance modes, k = 0, have frequency w = 0, 
but the group velocity is 

Cg(n) = - = -. (17) 
ao Nd 
ak nx 

Because energy is transported at the group velocity, when Cg(n) > U, energy will 
be transmitted upstream of the obstacle. Upstream disturbances are thus generated 
when 

T T  4 
U I 

F = -  <-. 
Nd nn 

When 1/2n < F < l /x ,  only one mode can propagate upstream; when 1/3x < F 
< 1/2n, modes 1 and 2 can propagate upstream, etc. Baines (1979~)  has indicated 
that, if the obstacle height h is such that h > d/2n,  the nth mode will be inhibited 
because the obstacle height will exceed of its vertical wavelength and extend into 
the region of ‘reversed ’ flow for that particular wavelength. However, evidence 
presented in $4.5 tends to disprove that statement. 
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It is clear that the upstream conditions are modified as the body is towed along 
the tank. Far upstream, long waves arrive first, yielding a broad velocity profile. Short 
waves, which travel more slowly, arrive later and result in a region that moves with 
the velocity of the body. These waves eventually reflect from the upstream endwall 
of the tank and propagate back downstream to influence the flow in the vicinity of 
the obstacle. As the reflected waves return, the velocity perturbations cancel and 
density perturbations add. Baines (1979a) argued that valid observations could be 
made of the flow over and around the obstacle in isolation (in the absence of end 
effects) by making the observations after steady state was reached (estimated by 
direct observation), but before reflected upstream motions arrived. Evidently, he 
believed that a local steady state was achieved in that, at some not-too-distant point 
upstream of the obstacle, steady-state velocity and density profiles were established 
before the reflected motions returned to modify them. However, his results were not 
specified in terms of the local steady-state conditions, but rather in terms of the 
towing speed and initial density gradient. 

The goal of the experiments described in $4.5 was to test whether a local steady-state 
condition is achieved at  some not-too-distant point upstream. For example, does a 
portion of the tow exist wherein the density profile is in steady state, i.e. where it 
does not change shape with distance ? In  other words, at some point upwind of the 
obstacle (say, 10 hill heights), is there a significant period of time during the tow (in 
which to make observations) wherein all upstream-propagating modes have passed 
that point (so that a steady state has been reached) and, at the same time, ru) 

upstream modes have been reflected from the end wall of the tank and returned to 
influence the flow at the point ? 

2.5.  Effects of shear and hill slope on$ow structure 

In the first-order solution of Drazin (1961), the flow is assumed to be inviscid and 
two-dimensional in horizontal planes with no vertical coupling. Brighton (1978) has 
shown how to extend this solution to higher order, and how to calculate small vertical 
deflections of streamlines which arise from the vertical pressure gradients required 
by the two-dimensionality of the flow. For an obstacle with circular contours of radius 
Ro (and in the absence of rotation), Brighton has shown that the streamline deflection 

where U, is the approach-flow velocity ( U ,  = U,(z)), and ( r ,  0 )  are cylindrical co- 
ordinates. The first term represents the displacement caused by shear in the 
approach flow, and the second that caused by the slope of the hill. Assuming 
dU,/dz > 0 and a,/& < 0, then (19) confirms the physical arguments that the 
shear leads to a drop in the streamline upstream of the hill and a rise as the fluid 
passes round the sides. The slope of the hill has just the opposite effect-a rise 
upstream and a drop as the fluid passes round the sides. The physical reason is that, 
as dU,/dz increases, the along-slope gradient of stagnation pressure increases (i.e. 
PB-- PCt increases; see figure l),  leading to a downwash flow. Conversely, as - dR,/dz 
increases (slope decreases), the differential between the stagnation pressure at C' and 
the pressure at B increases, leading to upward deflections. Note that different 
mathematical and physical arguments are appropriate below H ,  because all centre- 
line streamlines stagnate on the surface. Note also that, at the stagnation point, the 
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deflection caused by the slope is zero, whereas that caused by the shear is negative 
( -  Uo/N2) (dUo/dz). Also, (19) is valid only when 

Some typical values are calculated as examples of the influence of the two effects. 
Let U ,  = 4 m/s at  z = 50 m (linear velocity profile), N = 0.1/s (very strong strati- 
fication), R, = 500 m, h = 100 m, and dR,/dz = 2 (26.5" slope). The contribution of 
the shear term at the stagnation point is 32 m, a value that violates (20), but is 
certainly indicative of the strong effect of the shear. The maximum deflection due 
to the slope term occurs at 8 = 90°, and is -26 m. This deflection also violates (20), 
but again indicates strong effects. In  view of the variability of instantaneous wind 
and temperature profiles that occur in a typical night-time stable atmosphere, it is 
not difficult to imagine an extreme variability in plume behaviour as a plume 
encounters a hill ! 

For a general body where dR,/dz = 0 (e.g. for flow about vertical fences or flat 
plates), 

where U and V are the horizontal mean velocity components. A t  the stagnation 
points, where vertical deflections of streamlines may be expected to be largest, this 
expression reduces to 

which is independent of the plate width. Hence, the centreplane flow structure of 
strongly stratified flows about vertical plates (indeed, any vertical-walled object) may 
be expected to be independent of aspect ratio. 

3. Apparatus and procedures 
3.1. Towing-tank experiments 

Most of the experiments described in this section were conducted in the large stratified 
towing tank of the EPA Fluid Modeling Facility. The tank is 1.2 m deep, 2.4 m wide, 
and 25 m long. The sides and bottom are lined with acrylic plastic for viewing 
purposes. The model hills were mounted flush on a 2.4 m square baseplate which was 
inverted and suspended from a carriage such that the surface of the baseplate was 
submerged approximately 4 mm below the water surface. The carriage permitted 
towing speeds from 3 to 50 cm/s. For additional details, see Thompson & Snyder 
(1976) or Hunt, Snyder & Lawson (1978). 

Salt water was used to obtain stable density profiles. For the present work with 
linear profiles, the BrunbViiisiilii frequency was nominally 1.33 rad/s. Towing of the 
models slowly eroded the linearity of the density profiles at the top; this nonlinear 
layer was skimmed off daily, and the water height (108 cm) was restored by filling 
from the bottom with saturated salt water (for additional details, see Castro et al. 
1983). The linearity and slope were maintained accurately, but there was an 
increasingly deep region of saturated salt water at the bottom of the tank. In  all cases 
(except as described in §4.5), the depth of the linear layer exceeded 80 cm (2 6 hill 
heights), so that this changing bottom boundary condition is not believed to have 
affected the results significantly. 
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Cinder Cone Butte 8tudy 

Twelve tows were made with the Cinder Cone Butte (CCB) model using different 
density profiles, towing speeds, and dye-release heights, as shown in table 1. The 
density profiles consisted of strong near-surface gradients (N w 2.5 rad/s) and weaker 
gradients 'above' (N x 0.86 rad/s). In actuality the weaker gradients were below the 
stronger gradients, as the models were towed upside down, but, for purposes of 
clarity, the experiments will be described as if the model were right-side-up. The 
depth of the surface layer was initially set at 18 cm (1.25 h). On subsequent tows, 
this depth was successively reduced (by skimming) to 13, 8, and 5 cm (0.9 h, 0.56 h, 
and 0.36 h) to simulate different depths of typical night-time stable atmospheric 
flows. These density profiles are shown in figure 2; the initially sharp breakpoint 
between the two layers was eroded slightly, but, for practical purposes, the profiles 
are well described as two linear-gradient layers. The changes in the Brunt-Viiisiilii 
frequencies were primarily caused by changes in the reference densities as opposed 
to changes in the slopes of the curves. 

Each day, water samples were drawn from up to 100 elevations using a rake and 
vacuum system. The density of each sample was determined by measuring the 
displaced weight of a plumb bob that was suspended in the sample from an electronic 
balance (Mettler PL200). The standard deviation in repetitive measurements of 
specific gravity of a typical sample was determined to be 0.0002. 

These density profiles were entered into a PDP 11/40 minicomputer system where 
the numerical integration of (3) was performed to calculate the towing speed required 
to obtain a desired H ,  value. Dye mixtures were emitted horizontally (and isokine- 
tically) at  each of 3 elevations 160 cm (1  1 h) upstream of the hill centre. Each dye 
solution was neutrally buoyant at its release elevation. Red dye was emitted at H ,  
and blue dye 1 cm above and below H ,  through 1.6 mm-diameter tubing. According 
to the dividing-streamline concept, the upper streamer should pass freely over the 
hill and the lower one should pass round the sides. Because of its finite thickness, 
the middle one should split, with the upper portion passing over the hill and the lower 
portion passing round the sides. Visual and photographic observations were made 
during each tow to ascertain the validity of (3). In  practice, the accuracy of this 
determination of the dividing-streamline height was assessed to be approximately 
- +0.5 cm ( f0 .03 h). 

The CCB model was constructed of acrylic plastic by vacuum moulding onto a 
wooden form. The 1 : 690 scale model was made from enlarged U.S. Geological Survey 
maps. A contour map (figure 3) shows that the butte is double-peaked with a height 
of approximately 100 m (model height 14.4 cm), a saddle-point height of 83 m (model 
height 11.9 cm), and base diameter of 1 km (model diameter 1.6 m). The maximum 
slope was approximately 26". The 110" wind direction simulated during this series 
of tows was nearly perpendicular to a line connecting the two peaks; hence, the flow 
tended to be channelled through the draw between the two peaks. The appropriate 
hill height was thus the saddle-point height of 11.9 cm; this height was used in 
calculating the dividing-streamline height from (3), and the experimental criterion 
was whether the dye streamers succeeded in passing through the draw. 

Triangular ridge study 
The ridge models were triangular in cross-section with height (9 cm) equal to base 

length (63' slope). They were made of acrylic plastic. Four models were used such 
that the spanwise width between the vertical end faces was 1 , 2 , 4  or 8 h. The models 
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Breakpoint Release 
Tow height Nl Nu height Speed 

0 18 2.6 0.86 10 5.0 
- - - 8 10.5 1 

2 - - - 8 10.5 
3 - - - 5 18.3 

- 2 25.4 4 
5 13 2.4 0.86 2 25.4 
6 8 2.2 0.86 8 5.7 
7 - - - 5 12.5 

- 2 21.5 8 
9 5 2.3 0.89 7 5.8 

10 - - - 4 11.3 
11 - - - 2 17.4 

TABLE 1. Schedule of tows for Cinder Cone Butte model. Height of hill, h = 14.4 cm 
and height of saddle point = 11.9 cm (see figure 2). 

number (cm) (rad/s) (rad/s) (cm) (cm/s) 

- - 

- - 

1 1.05 1.1 1.15 1.2 

Specific gravity 

FIQURE 2. Density profiles for Cinder Cone Butte model tows. 
Tow numbers: A, CL4; 0, 5; 0 , 6 4 3 ;  0, S11. 
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0'' 200 m Field scale I 

FIQURE 3. Contour map of Cinder Cone Butte. 

were mounted 10 h downstream from the leading edge of the baseplate such that the 
ridge axes were normal to the tow direction. A fairly substantial tripwire (5 x 5 mm) 
was mounted 5 cm from the leading edge of the baseplate. Further details on these 
models may be obtained from Castro et al. (1983). Isokinetic dye releases were made 
on the ridge centrelines about 8 h upstream at H ,  f 1 cm, as previously described for 
the CCB model. Full-depth linear density profiles were maintained by skimming ; 
density profiles were measured prior to each tow and the towing speed required to 
obtain the desired H ,  was calculated from the density profiles as described above. 
Filming by motion-picture camera was used in addition to the normal visual and 
photographic observations. 

Sinusoidal ridge study 

acrylic plastic. The cross-sectional shape is described by 
The sinusoidal hill is sketched in figure 4. This model was also vacuum formed from 

z = -  ( l + c  osF), 
2 

where h = 10 cm and W = 37 cm, giving a maximum slope of 40". This hill is a 
truncated ridge where the length of the straight section is 163 cm. The end caps have 
the same vertical cross-section, and they are semicircular in horizontal planes. The 
skirt of the hill is moulded in integral fashion into a flat circular plate that fits flush 
into the carriage baseplate. Thus, the wind direction 0 can easily be changed. When 
oriented perpendicular to the tow direction, the cross-sectional area of this hill was 
75 yo of the area of an 'infinite' ridge of the same height stretching across the width 
of the channel (i.e. the gap width as defined by Baines ( 1 9 7 9 ~ )  was G = 0.25). 
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FIGURE 4. Details of sinusoidal hill model. (a) Cross-sectional view, 

(a) plan view of hill on baseplate. 

Tows of this model were made with linear density profiles, Froude numbers of 0.3, 
0.5, and 0.7, and wind angles of 90", 60" and 30". In this series of tests, neutrally 
buoyant red dye was isokinetically released at the upstream edge of the baseplate 
(z = - 1.2 m or - 12 h) on the centreline at an elevation of Hs+ 1 cm and blue dye 
a t  H ,  - 1 cm. Additionally, some dye releases were made during the 8 = 30" case, all 
releases being at the same elevation but separated in the lateral direction. The 
purpose of this test was to examine possible changes in H ,  with source offset from 
the centreline, as will be discussed later. 

Two-dimensional ridge studies 

In the 'infinite' ridge studies designed to test the 'steady-state' assumptions, a 
series of three ridges of different cross-sectional shape was used. All of these ridges 
extended completely across the width of the tank, and sponge-rubber pads were 
inserted to seal the small gaps between the ridge ends and the tank sidewalls. The 
first ridge was triangular in cross-section, having the same height and shape as the 
truncated ridges described previously. In this case, the ridge was towed at Froude 
numbers of 0.25 and 0.5 (based on the near-linear ambient density profiles), and 
samples of fluid were drawn during the tow through vertical sampling rakes 
positioned at 0.1 m (h) and 1.0 m (11 h)  upwind of the ridge. Each rake sampled 



264 W. H .  Snyder et al. 

the fluid at 21 levels; the spacing between individual tubes was 1 cm. The two rakes 
were laterally offset by 12 cm on opposite sides of the centreline to avoid influences 
of the upstream rake on the downstream rake. The total length of the tow was 20 m 
(222 h). The intention was to take rapid samples at four points during each tow (i.e. 
during the first and last metre and at the one-third and two-thirds points of each 
tow). Because of logistics problems in switching banks of tubes, the length of the 
sampling intervals varied from 2.0 to 2.7 m and the centrepoints of the intervals 
varied slightly from the precise one-third points, but the basic objective was 
accomplished (it was possible to determine whether a local steady state was realized 
by comparing the density profiles measured at different periods during the tow). 

The second ‘infinite’ ridge was designed to duplicate (as closely as possible 
non-dimensionally ) the two-dimensional experiments of Baines ( 1979 a). Its shape 
was the Witch of Agnesi, z = hu2/(x2 + a2), with parameters h and a being exactly three 
times the values used by Baines (h = 18.78 cm and a = 14.85 cm). The ratio of the 
tank depths was also exactly 3, so that the most significant non-dimensional 
parameters (F, E = nh/D, and K = ND/nU)  could all be matched. Hence, the 
numbers and relative amplitudes of the upstream columnar disturbance modes should 
also have been matched. Furthermore, because the ratio of the tank lengths was 
approximately 3 (2.7 to be precise), the relative distances at which reflected waves 
returned to influence the flow field in the vicinity of the hill were approximately the 
same as those in Baines’ experiment. 

The third ‘infinite ’ ridge was simply a vertical fence of the same height as the Witch 
of Agnesi above. This fence was similar in construction to that used in the stratified 
wind-tunnel experiments (figure 5 ) .  The purpose of this third ridge was to compare 
results with the Witch of Agnesi to ascertain the effects, if any, of the shape of the 
ridge on the upstream influence. 

Two density-sampling rakes were used in the experiments with the fence and the 
Witch of Agnesi. One was fastened to the baseplate 8 h upstream of the ridge centre 
and hence was towed with the ridge. The second rake was placed 1 m from the tank 
endwall opposite the starting position of the model. As in the triangular-ridge 
experiments, density samples were collected prior to the start of each tow, during 
the first and last metre and at the one-third and two-thirds points of each tow. 
Because all these experiments were conducted at F = 0.2, the towing speed was 
smaller and the sampling intervals were smaller in length (about 1 m) than in the 
triangular-ridge experiments with F = 0.5. 

In  order to visualize the columnar disturbance modes propagating upstream, 
potassium permanganate crystals were dropped into the tank at  particular times and 
locations. The crystals sank fairly quickly, forming vertical dye lines. The horizontal 
deformations of these lines thus illuminated the columnar disturbances modes. 

3.2. Wind-tunnel experiments 

One series of experiments was conducted in the stratified wind tunnel of the National 
Institute for Environmental Studies of the Japan Environment Agency (Ogawa et 
al. 1981). This vertically closed-return wind tunnel has a test section 3 m wide, 2 m 
high and 24 m long. The speed in the test section may be controlled from 0.1 to 10 m/s, 
and the ambient air temperature may be maintained at  any value between 12 and 
87 O C .  A temperature-profile cart (TPC) a t  the entrance to the test section allows the 
creation of vertical temperature gradients; the TPC is essentially a series of heaters 
that divide the 2 m height of the test section into 20 horizontal sections. Each section 
(10 cm height) independently increases the temperature of the incoming air by a 
controlled amount (maximum of 30 “C). 
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The temperature of each 3 x 3 m floor panel may be independently controlled 
between 7 and 112 "C, with a uniformity of k0.2 "C. Previous experience had shown 
that, at high ambient air temperatures, secondary flows (downward along the 
test-section walls) were created; therefore, interior side walls made of 1 m high 
aluminium plates were placed 30 cm from the tunnel walls to minimize these 
secondary flows (Ogawe et al. 1981). 

The tunnel was designed for use at wind speeds greater than - 1 m/s, and the very 
low bulk Froude numbers (0.2 < F < 1) required for the present experiments were 
difficult to obtain. Reverse flows were observed which changed remarkably in depth 
and elevation with very small changes in fan speed. After considerable experimentation 
and the installation of thick felt pads at the entrance and exit of the test section, 
a range of operating modes was found that yielded reasonably strong shear layers 
with depths more than twice the depth of the fences (h = 15 cm) in conjunction with 
strong stable temperature gradients. 

The controlled temperatures were as follows. The floor panels were set at 6 "C, and 
the ambient air temperature (that approaching the TPC) was set at 50 "C. The TPC 
was set at: = 50 "C (level 1, lowest, 0-10 cm); T, = 56 "C, and Tn = (60+n) "C 
for n = 3 to 20, so that T,, = 80 "C (level 20, highest, 190-200 cm). This condition 
was chosen and is referred to as 'maximum stratification' because it yielded the 
strongest practical temperature gradient over the height of the model while main- 
taining a slight stability in the air layers above. 

The fences were constructed of 6 mm acrylic plastic, as sketched in figure 5. They 
were 15 cm high, sharp-edged, with lengths of 7.5,15,30, 60 and 120 cm. They were 
centred in the tunnel perpendicular to the tunnel centreline and with the flange along 
the floor pointing downstream. 

For the CCB studies, the model was identical to that used in the towing-tank 
studies. Because of the special floor panels in the wind tunnel, the model could not 
be recessed, so i t  was simply set on the tunnel floor. The overall height of this model 
was thus 15.4 cm (14.4 cm hill height and 1 cm skirt thickness). 

FIGURE 5. Model fences in stratified wind tunnel. 
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For these flow-visualization studies, a flattened, 10 mm diameter horizontal tube 
was fastened to a vertical standpipe of 6 mm diameter to emit smoke approximately 
isokinetically at the desired elevation and approximately 4 fence heights upstream. 
Mixtures of nitrogen and helium were fed into a smoke generator (an electrical heating 
element wrapped around glass wool soaked in paraffin oil), then to the 'stack'. The 
fraction of helium to be used was determined by trial and error in the absence of the 
fence, i.e. the fence was removed from the tunnel, the gas mixture was adjusted to 
obtain a non-buoyant plume, then the fence was installed and photographic 
observations were made while maintaining the nitrogen and helium flow rates. 

Photographic equipment included a Topcon 4 x 5 graphics camera equipped with 
a Polaroid back, an Olympus OM-1 camera equipped with a databack (for unique 
marking of each photograph), and a Sony Betamax video-tape recorder. 

A Tokyo Denpa quartz thermometer was used for temperature profile measure- 
ments. A sonic anemometer (Kaijo Denki Co., Ltd, model DA-390) with an X-sensor 
head was used to measure horizontal components of velocity (U and V ) .  This 
anemometer was specially constructed for wind-tunnel measurements, with a path 
length of 10 cm. Separate tests showed the velocity indications to be independent of 
air temperature over the range of 15-50 "C. A minicomputer sampled the outputs 
from the anemometer and calculated means and standard deviations of the signals. 
One-hundred-second averages were found to be adequate for the velocity 
measurements . 

4. Presentation and discussion of results 
4.1. Towing-tank studies with CCB model 

The schedule of tows of the CCB model was shown in table 1 and the density profiles 
were shown in figure 2. For each tow, a particular source height (centre tube) was 
chosen and (3) was integrated numerically using the measured density profile to 
predict the towing speed required such that the centre dye streamer would rise just 
to the elevation of the saddle point, i.e. the minimum height of the draw between 
the two peaks. If the formula were correct, the lower streamer would go round the 
sides of the hill, the upper streamer over the top, and the centre one, because of its 
finite thickness, would split, with the upper portions going over and the lower portions 
round the sides. Visual observations and periodic photographs were taken during the 
full length (20 m) of each tow. 

Figure 6 shows the results of the integrations of (3) for each density profile as well 
as the experimentally observed results of the 12 tows. The agreement between the 
predictions and observations is excellent. The error bars indicate the best judgement 
of variability during the observations. For example, tow number 0 showed little or 
no deviation of splitting of the centre streamer, so that the error was judged as zero. 
Tow number 3, however, showed occasional wisps of the lower streamer rising over 
the top and of the upper streamer going around the hill. Figure 7 shows top and side 
views of impinging streamers during a typical tow. 

This set of experiments in conjunction with the results of Hunt & Snyder (1980) 
and Snyder et al. (1980) for full-depth, linear density profiles as well as elevated 
inversions has demonstrated the validity of the general integral formula for predicting 
the dividing-streamline height as a function of wind speed for a wide range of shapes 
of stable density profiles. The remainder of the towing-tank studies described herein 
used only full-depth, linear density profiles. 
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u, cm/s 
FIQURE 6. Predictions and observations of dividing-streamline height over Cinder Cone Butte 

model in towing tank. Open symbols: predictions; closed symbols: observations. 

4.2. Towing-tank studies with truncated triangular ridges 
Figure 8 shows the observations made during 12 tows of the triangular ridges with 
aspect ratios of 1 (L = h) and 8 ( L  = 8h). It is apparent that the dividing-streamline 
height followed the ‘ 1 - F’ rule for F < 0.25, and deviated strongly for F > 0.25, but 
there were no observable differences resulting from the difference in aspect ratio. The 
deviation from the ‘ 1 - F’ rule is caused by the formation of an upwind vortex that 
produces a downward flow on the front face of the ridge. This downward flow is 
apparently caused by the combination of the steep upwind slope of the ridge and the 
shear in the approach flow. As mentioned earlier, the boundary layer was tripped by 
a fairly substantial tripwire and, of course, grew in depth over nearly 1 m of baseplate 
upwind of the ridges. The structure of this vortex may be seen in figure 9; its diameter 
(and, hence, its vertical extent) increased as the Froude number increased, and it 
reached a maximum of about 0.6h at F = 1.0. 

Notice that the data are on the opposite side of the ‘ 1 - F’ line from the ‘ 1 - 2F’ 
line suggested by Baines (1979a)) even for the ridge with aspect ratio 8. But, of course, 
the ‘gap’ ratio here (as defined by Baines) was very large (0.7). 

The conclusion from this set of experiments is that H ,  is independent of the width 
of the hill and that it deviates from the ‘ 1 - F’ rule because of the combination of 
the steep upwind slope and the shear in the approach flow. Unfortunately, it  was not 
possible to investigate further the nature of the boundary layer in this case, but work 
in the stratified wind tunnel (see $4.3) tends to support these conclusions. 
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FIGURE 7. Top and side views of streamers impinging on Cinder Cone Butte model in towing 
tank. Centre streamline is released at dividing-streamline height. 

4.3. StratiJied wind-tunnel study of shear flow over fences 

Figure 10 shows the mean velocity profiles measured with the sonic anemometer a t  
the position of the fences but in the absence of them. Nine profiles are plotted, 8 under 
‘maximum ’ stratification and 1 under neutral conditions. The temperature boundary 
conditions were maintained at constant levels and the stratification was varied by 
changing the fan speed. Reverse curvature in the profiles may be observed at  fan 
speeds below 220 r.p.m., and reverse flow in the lowest 4 cm was observed at 200 r.p.m. 
A slight overshoot of the velocity is observed near the top of the boundary layer under 
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FIQURE 8. Dividing-streamline height from triangular ridge study. A, L = h ;  0, L = 8 h. 

neutral conditions; this overshoot seems to be enhanced by the stratification. The 
depth of the boundary layer was about 15 cm in the neutral case, and it gradually 
increased to 40-50 cm as the stratification increased. 

Figure 11 shows the corresponding temperature profiles. Temperatures near the 
floor systematically decreased and temperature gradients increased slightly as the fan 
speed was reduced. 

Crosswind mean velocities V are shown in figure 12. A positive V implies that a 
plume would veer to the right (looking downstream) as it was transported down the 
tunnel. In neutral flow, the largest observed crosswind velocity was 0.9 cm/s, which 
is to be compared with the streamwise velocity of 85 cm/s at  the same elevation, 
implying an angle of 0.6'. This angle is very small, and the sonic anemometer is 
probably not capable of measuring such a small deviation. A t  220 r.p.m., the largest 
crosswind velocity was -6.6 cm/s; this is to be compared with the streamwise 
velocity of 40 cm/s; implying an angle of lo", not a t  all insignificant. Indeed, smoke 
from a vertical rake was frequently observed to veer away from the tunnel centreline 
and to follow the directions indicated in the figure. This crosswind component is not, 
however, believed to have had a significant influence on the structure of the flow over 
the fence. 

Longitudinal and crosswind turbulence intensity profiles are shown in figures 13 
and 14, respectively. Unlike the neutral cases where the maximum was much nearer 
ground level, the most notable characteristic of the stratified profiles is the elevated 
maxima. Most noticeable are the very large intensities at 241 r.p.m., where the peak 
value is located at  an elevation of 12 cm and the value is 2.5 times the maximum 
neutral value. This result corresponds with visual observations of smoke, where 
Kelvin-Helmholtz billows (cf. Turner 1979) were observed. These measurements 
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(b) 
FIQURE 9. Multilevel dye release upwind of triangular ridge with aspect ratio of 2 

(from Castro et al. 1983). (a) F = 0.8; ( b )  F = 1.0. 

indicate only relatively large scales of turbulence because the large path-length of 
the anemometer does not allow resolution of scales smaller than about 10 cm. Visual 
observations, in any event, suggested there was little energy at scales smaller than 
10 cm. 

Repeat measurements of longitudinal and lateral mean-velocity profiles showed 
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FIQURE 10. Mean velocity profiles in stratified wind tunnel. Fan speed in r.p.m.: 0, 200; 
+, 205; 0,  208; ., 211; A, 214; 0, 220; 0 , 2 3 0 ;  0, 241; A, 250 (neutral). 
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FIQURE 11. Temperature profiles in stratified wind tunnel. Caption as in figure 10. 
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FIQURE 12. Crosswind mean velocity profiles in stratified wind tunnel. Caption as in figure 10. 
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Longitudinal turbulence intensity profiles. Caption as in figure 10. 
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FIQTJRE 14. Crosswind turbulence intensity profiles. Caption as in figure 10. 

excellent repeatability; the data seemed to imply that the crosswind velocity 
component could be repeated to within f0 .5  cm/s! The data also indicated very 
good repeatability of the flow in the tunnel, as various profiles were taken several 
days apart. Similar repeat measurements of temperature and turbulence intensities 
(not shown) also showed excellent correspondence. 

From these velocity and temperature profiles, the dividing-streamline height was 
calculated using (3). The results are graphed in figure 15; the data appear to fall on 
a straight line from 10.5 cm at 200 r.p.m. to 0 at 241 r.p.m. These data were used 
to characterize the stratification, and the results will be described in terms of release 
height H R  relative to this dividing-streamline height. 

A large number of photographs of smoke plumes flowing over and around the 
various fences were obtained. Although all the pictures could not be reproduced in 
this article, a representative set is presented in figures 16-18. At 205 r.p.m. (figure 
16), the dividing-streamline height H ,  calculated from (3) (figure 15) was approxim- 
ately 9 cm or 0.6 h. The photographs show, however, that the plume from the 0.6 h 
stack did not split over the fence top, as would be expected from the dividing- 
streamline concept. Instead, the plume went totally around the sides of the fence for 
all aspect ratios. Indeed, only a tiny fraction of the plume released at 0 . 8 h  
surmounted the fence, and only about half the plume released at 1 h passed over the 
top. Moreover, this behaviour was essentially independent of aspect ratio. Such 
behaviour appears to be caused by an upwind vortex, with downward flow along the 
front face of the fence ; it is very similar to that observed on the front faces of buildings 
in shear flows (at least in wind-tunnel studies!). However, one difference is quite 
evident. There is a bottom limit to this vortex; it does not extend to the tunnel floor 
as would be expected in a neutral shear flow. Instead, the streamline originating far 
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Fan speed, r.p.rn. 

FIQURE 15. Dividing-streamline height for a 15 cm hill as a function of fan 
speed in the stratified wind tunnel. 

upstream at fence-top elevation appears to be limited in how far down it  can travel, 
presumably by the amount of kinetic energy it possessed initially, i.e. its kinetic 
energy is expended in moving vertically through the density gradient (increasing its 
potential energy). Indeed, the bulk Froude number based on the (far upstream) 
fence-top velocity was 0.67. From another viewpoint, the velocity gradient is nearly 
constant over the full depth of the fence and the temperature gradient decreases with 
height, so that the Richardson number also decreases with height, i.e. an ‘upper’ 
layer behaves more like neutral flow and a ‘lower’ layer exhibits strongly stable, 
horizontally constrained flow characteristics. 

At 220 r.p.m. (figure 17), the calculated dividing-streamline height (from figure 15) 
was approximately 5.5 cm (0.36 h). The plume behaviour was somewhat similar to 
the previous case, but here the plume released at 1 h completely surmounted all fences 
and the upwind vortex appeared to reach the tunnel floor. Evidently, the streamlines 
impinging just below the top of the fence possessed sufficient kinetic energy to 
overcome the potential-energy difference between the top and base of the fence. 
Indeed, the bulk Froude number based on the (far upstream) fence-top velocity 
was 1.1. 

Note that the upstream vortex in this case (figure 17) is similar to that upwind 
of the triangular ridge of the same aspect ratio in the towing tank (figure 9) ; in all 
cases, the dividing-streamline height is small and the cause of the vortex is attributed 
to the shear in the approach flow. The depth (diameter) of the vortex is clearly related 
to the depth of the shear layer and to the balance of kinetic and potential energies. 

In  neutral flow (figure 18), the plume behaviour appeared to be much more 
dependent upon the fence aspect ratio. For long fences, the plume appeared to 
surmount the fence (even for the plume released at 0.2 h), whereas, for the short 
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H, = 0.6 h, L = h H, = 0.6 h, L = 4 h 

FIUURE 16. Views of smoke streamers over vertical fences in stratified wind tunnel. Calculated 
H,  = 0.6 h (205 r.p.m.). HR = release height; L = crosswind length of fence. 
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€IR = 0.4 h 

FIGURE 17. Views of smoke streamers over vertical fence in stratified wind 
tunnel. Calculated H, = 0.36 h (220 r.p.m.), L = 2 h. 
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L = 0.5 h 

FIGURE 18. Views of smoke streamers over vertical fences in wind tunnel. 
Neutral flow (250 r.p.m.), H E  = 0.6 h. 
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fences, most of the plume appeared to go around rather than over the fences (even 
the plume released at  0.8 h). 

To summarize, even a relatively small amount of stratification drastically alters 
the flow structure over fences and the shear seems to have an overwhelming influence ! 
Tentative conclusions are: (1) for strongly stratified flows, the basic flow structure 
is independent of aspect ratio; (2) the shear creates an upwind vortex so that upwind 
plumes are swept downwards on the front face of fences; and (3) under very strong 
stratification, the downward penetration of elevated streamlines is limited - the 
extent of this downward penetration appears to be predictable as a balance between 
kinetic and potential energies (hence, characterized by the Froude number), using 
arguments similar to those from the dividing-streamline theory. 

Later flow-visualization studies with the CCB model hill under these same stratified 
shear-flow conditions showed no evidence of upwind vortex formation, but systematic 
studies to locate H ,  were not conducted. However, concentration measurements (to 
be described in another paper) on the hill surface of effluent released from an upwind 
source of 48 mm elevation first showed evidence of flow through the draw between 
the two peaks at a fan speed of 220 r.p.m., where the calculated dividing-streamline 
height (based on the saddle-point height) was 45 mm. These results suggest that, 
because of the relatively low upwind slope of the CCB model, the formation of an 
upwind vortex was not possible. The results also suggest that (3) may be a good 
indicator of dividing-streamline heights, even in strong shear flows, for the vast 
majority of real hills (i.e. maximum slopes less than 26"). 

The strong effect of the shear in the fence studies is not surprising in light of the 
discussion in $2.5. The slope term dR,/dz, which normally tends to counteract the 
shear term, was zero. In  the CCB model, the minimum value of dR,/dz was 2.0, so 
that the slope term evidently roughly balanced the shear term, thus inhibiting the 
upwind vortex formation. Also, as indicated in $2.5, it is not surprising that the 
centreline flow structure was independent of the hill aspect ratio ; however, because 
of the very large streamline deflections, it is not appropriate to make estimates 
using (19). 

4.4. Towing-tank studies with the sinusoidal ridge 
Nineteen tows were made of the truncated sinusoidal ridge at Froude numbers of 0.3, 
0.5, 0.7, and 1.0 and wind directions of 90", 60", and 30". To conserve space, data 
from the 90" and 60" cases are not shown, but these data were completely consistent 
with all previous data for axisymmetric hills, and they supported the ' 1 - F' rule 
(within the resolution of the method, + O . l  h) .  Data from the 30" cases are shown 
in figure 19, where the release heights of the dye streamers are plotted versus Froude 
number. Open symbols indicate that the streamers passed freely over the ridge, closed 
symbols show they were diverted around the ridge, and the half-filled symbol 
indicates that the streamer split, with half going over the top and half going round 
the end. These data suggest a relation something like H J h  = 1-0.7F, as the 
streamers were diverted around the hill even though they had sufficient kinetic energy 
to pass over the top. This results does not violate the dividing-streamline concept; 
even though a fluid parcel far upwind has sufficient kinetic energy to surmount the 
hill, it will not necessarily do so. In  this 30" case, the flow apparently found a path 
of lower potential energy in travelling round the end of the ridge. 

These streamers were released on the centreline of the towing tank and, hence, were 
not on (or even near) a stagnation streamline. A few tows were made with F = 0.5 
releasing dye from three tubes positioned at the same elevation but at different lateral 
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0 0.5 1 .o 
F 

FIQURE 19. Dividing-streamline height for truncated sinusoidal ridge at 30" to tow direction. 0,  
streamers over ridge; 0,  streamers diverted around ridge; 0 ,  streamer split. -, H J h  = 1 - F ;  
---, H J h  = 1 -0.7F. 

positions. These releases showed that the stagnation streamline was very near the 
most-upwind end of the ridge, as was also found experimentally and theoretically by 
Weil et al .  (1981). Further tows showed that streamers released (at z / h  = 0.6) above 
the stagnation streimline ( H J h  = 0.5) travelled over the ridge and that streamers 
released 1 h on either side of the centre streamer travelled around opposite ends of 
the ridge, even though their elevation was above H,. When the centre streamer was 
released at z / h  = 0.4 (below H,),  it travelled round the sides, periodically switching 
from one side to the other. These data are consistent with Sheppard's (1956) criterion 
when it is interpreted as a necessary but not sufficient condition on the kinetic energy 
of a fluid parcel far upstream. 

These experiments suggest that the lateral offset of the source from the stagnation 
streamline can be a very important parameter that affects the location and value of 
the maximum surface concentration, especially when the elevation of the source is 
below H,. However, the data of figure 19 also suggest that lateral offset can be 
extremely important even when the source is above H,, when the wind is not normal 
to the ridge. Other tows with truncated ridges (both sinusoidal and triangular) 
oriented perpendicular to the tow direction suggested that lateral offset was not a 
significant parameter when the source was located above H ,  unless it was also located 
very near the ends of the ridges. Hence, the question of whether a plume will impact 
on a ridge is expected to be a function of both the source height relative to the 
dividing-streamline height and lateral offset. However, lateral offset greatly increases 
in significance as the angle between the ridge axis and the wind direction is reduced. 

4.5. Strongly strati$& towing-tank experiments with two-dimensional ridges 
Two tows were made of the two-dimensional triangular ridge at Froude numbers of 
0.3 and 0.5 (based on the tow speed and the undisturbed density profiles). Figure 20 
shows the sampling positions and intervals for one of the tows. One sampling rake 
was positioned at the leading edge of the baseplate (11 hill heights upstream) and 
the other at 10 cm upstream (1.1 hill heights). A typical set of density profiles is 
compared with the initial density profile in figure 21. It is clear that the initial 
near-linear density profile was continuously modified during the tow at a position 
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FIGURE 21. Density profiles measured 11 hill heights upstream of two-dimensional triangular ridge. 
A, initial density profile. Sampling interval centred at r = : 0, 1.3 m; 0, 6.7 m; 0, 11.8 m; and, 
A, 17.7 m from start of tow. 

11 h upstream and that upstream conditions did not reach a steady state. The profiles 
tended toward neutral at elevations below half the hill height. These results tend to 
support the squashing model described in 32.3. The profiles taken at 1.1 h upstream 
and those at F = 0.3 showed similar tendencies, but the tendency toward neutral 
behaviour occurred over a greater depth of approximately 0.8 h. 

As an indication of the effects of the changing density structure H,, the density 
profiles measured a t  11 h upstream were used to calculate H ,  according to Sheppard's 
integral formula. Since the perturbed velocity profile was not measured, a uniform 
approach wind profile (equal to the tow speed) was assumed. The observations showed 
that the true velocity was somewhat smaller and, therefore, would result in an even 
lower value for H,. The results are shown in figure 22. Because the density gradients 
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X l L  

FIQURE 22. Dividing-streamline heights as functions of towing distanoe 
for two-dimensional triangular ridge. F = : 0, 0.3; A, 0.5. 

below the hill top were reduced, the dividing-streamline heights were also reduced 
as the tow progressed. This behaviour was substantiated by observing dye streamers 
released simultaneously at various elevations during the tow. 

In Baines’ (19794 experiments on ridges with gaps, the dye-release rake was hinged 
in such a way that dye was released at eight different elevations. However, the rake 
was moved from one elevation to the next during the length of the tow, so that 
observations of dye behaviour at each level took place for not more than 1 m. 
It is not difficult to imagine that, because of the systematic change of release 
elevation with tow distance in conjunction with the decrease in H, with tow distance 
(cf. figure 22), the results were interpreted incorrectly to arrive at H,/h = 1 -2F.  

A total of twelve tows was made with the two-dimensional Witch of Agnesi and 
fence models (6 each). The purposes of these tows were to: 

1. Examine the steady-state nature of the approach flow. This was done through 
the collection of density samples 8 h upstream of the ridges and 1 m from the end 
wall of the tank opposite the starting position of the ridge. 

2. Illustrate the nature and effects of the upstream columnar disturbance modes 
and examine the validity of Baines (19794 statement concerning the inhibition of 
modes with mode number n 2 D / 2 h .  This was done through the collection of density 
samples as described above and through viewing the deformation of the vertical dye 
lines formed by the potassium permanganate crystals. 

3. Examine the effects of hill shape on the nature of the columnar disturbance 
modes or on the nature of the steady-state behaviour of the approach flow. 

4. Examine the effect of the depth of the linearly stratified layer in the tank. As 
mentioned in $3.1, towing of the models slowly eroded the linearity of the density 
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profiles at the top surface. This nonlinear layer was skimmed off daily and the 
original water height was restored by filling from the bottom with saturated salt 
water. Hence, the linearity and slope of the upper layer of water in the tank were 
maintained accurately, but an increasingly deep region of non-stratified (saturated) 
salt water was formed at  the bottom of the tank. To examine whether the depth of 
the linearly stratified layer had any influence on the results, a pair of tows was done 
wherein the only difference was the depth of the linear layer, D,. 

5. Examine the repeatability of the measurements. This was accomplished through 
repeat tows under ostensibly identical conditions. 

6. Examine the effects of start-up conditions, i.e. rapid or ‘instantaneous’ versus 
slow startup. The normal startup is rapid, i.e. the model is accelerated to full speed 
in less than one-half second. A comparison tow was made wherein the model was more 
gradually accelerated to full speed over a time interval of 30 seconds. 

Results of the density measurements from the rake positioned 1 m from the up- 
stream end wall of the tank (21 m upstream of the starting position of the hill) 
are shown in figure 23. Plotted here are the density difference profiles, i.e. at each 
level the density measured immediately prior to starting the tow was subtracted from 
the density measured at each sampling interval. Notice that no density perturbation 
was observed at the upstream end wall during the first metre of travel of the models; 
this is in contrast to the results of figure 21 ( F  = 0.5), where significant perturbations 
were observed 11 hill heights upstream during the first 2.7 m of travel of the 
triangular ridge. It is also in contrast with results from these same tows (not shown), 
where significant perturbations were observed 8 h upstream during the first metre 
of travel in each case. However, by the time the models reached the point 6 m from 
the starting position, density perturbations were observed a t  the upstream end wall. 
These perturbations grew steadily in amplitude as the models progressed toward the 
upstream end wall. When the model reached the 18th metre, the maximum in the 
density perturbation (0.027) was nearly as large as the initial density difference from 
the base to the top of the fence (0.032). For practical purposes, the perturbations 
caused by the Witch of Agnesi and by the fence were identical, i.e. the differences 
between the two were within the range of repeatability of either experiment under 
ostensibly identical conditions. 

Figure 24 shows a photograph of the deformation pattern of the potassium 
permanganate dye line caused by the columnar disturbance modes. In this case, the 
tow speed was 4.67 cm/s and the parameter K = ND/xU was 9.13, so that 9 modes 
could propagate upstream. The position where the dye crystals were dropped into 
the tank was 16 m upstream of the starting position of the fence, and they were 
dropped at a time when the fence was located at 12.5m (268s), i.e. the dye-line 
position was located 18.6 h upstream of the fence and i t  was formed just after the 
mode-7 disturbance reached that point (263 s). The photograph was taken 28 s later 
(296 s), just prior to the arrival of the mode-8 disturbance (300 8) .  Hence, the first 
7 modes should have acted to deform the dye line. Whereas there is some question 
as to what happens a t  the top and bottom surfaces, the presence of the sixth mode 
is clearly evident from the number of peaks in the deformed dye line. According to 
Baines’ (1979~) statement, modes greater than n are inhibited when h > D/2n or, 
in this case, when n 2 3. This is clearly not the case. 

In  the interest of saving space, the results of the experiments to examine the effects 
of the depth of the linear layer and the effect of start-up conditions are reported but 
the data are not shown. One pair of tows was made with the Witch of Agnesi wherein 
the only difference was that, in one case, the stratification consisted of a full-depth 
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FIQURE 23. Density-difference profiles measured 21 m upstream of starting position of hill. Open 
symbols: Witch of Agnesi. Closed symbols: fence. Profiles measured when hill waa centred at x = : 
A, 0.63 m; 0, 6.2 m; 0, 12.0 m; 0, 18.0 m. 

FIQURE 24. Deformation of vertical dye line by columnar disturbance modes 16 m upstream of 
starting position of fence. Dye line was formed when fence was at x = 12.5 m (18.6 h upstream of 
fence). Photograph was taken when fence was at x = 13.8 m (1 1.6 h upstream of fence). Fence is 
out of photograph, approaching from the top left. 
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linear profile (DL = 108 cm) and, in the other case, D ,  = 77 cm (the depth of the 
non-stratified layer was 31 cm). Another pair of tows was made with the fence wherein 
the depths of the linear layers were 108cm and 73cm. The measured density 
perturbations were within the range of repeatability of any of the experiments under 
ostensibly identical conditions. Hence, our conclusion is that, within the range tested 
(3.9 h < D,  < D = 5.7 h), the depth of the linear layer is an irrelevant parameter. 

Similarly, through one pair of tows with the fence wherein the only difference was 
the start-up conditions, our conclusion is that, for practical purposes, startup 
conditions are irrelevant. 

It is notable that, in the two-dimensional ridge studies, in contrast to the truncated 
ridge studies, no upwind vortex was observed. The blocked fluid upstream of the 
ridges (visualized through dye injection, hydrogen bubbles and neutrally buoyant 
beads) was essentially stationary with respect to the hill; some amount of large-scale 
horizontal meandering of dye clouds within the blocked region was observed, much 
as described by Weil et al. (1981), but the only vertical motion observed was the very 
slow rise due to squashing. 

Some additional experiments with the truncated sinusoidal ridge (G = 0.25, 
W / h  = 16) showed that, even though the H,/h = 1 - F formula was well-verified, a 
very long time period (or a long length of tow) was required for steady-state 
conditions to be established at 10 h upwind. 

4.6. S u m m a r y  of results 

Table 2 provides a summary of the main features and findings of the various 
experiments. The meaning of ‘lower limit ’ in the table is intended in the sense that 
the integral formula (3) predicts a dividing-streamline height below which streamlines 
will not surmount the obstacle; streamlines above the H ,  predicted by (3) will not 
necessarily pass over the hill top: the flow may be diverted around the obstacle or 
rolled up in the upwind vortex and pass round the sides. 

5. Conclusions 
(1) From the studies with the CCB model, it  is concluded that the integral formula 

of Sheppard (1956) is valid for predicting the height of the dividing-streamline for 
a wide range of shapes of stable density profiles and a wide range of roughly 
axisymmetric hill shapes. 

(2) From the studies with truncated triangular and sinusoidal ridges perpendicular 
to the wind, it is concluded that the aspect ratio, p e r  se, does not have a significant 
influence on the dividing-streamline height H,. Deviations from the H, /h  = 1 - F rule 
are attributed to the combination of shear in the approach flow and the steep slope 
of the triangular ridges, which resulted in the formation of an upwind vortex with 
downward flow on the front faces of the ridges. The ‘ 1 - F’ rule was validated for 
the sinusoidal ridge with a length-to-height ratio greater than 16: 1 ; in this case, the 
shear in the approach flow was much less pronounced and the upwind slope was 
substantially smaller. Note that the above deviations from the ‘ 1 - F’ rule do not 
invalidate Sheppard’s concept ; the rule should be interpreted as a necessary but not 
sufficient condition, i.e. a fluid parcel may possess sufficient kinetic energy to 
surmount a hill, but i t  does not necessarily do so. 

(3) In the stratified wind-tunnel studies, a range of operating modes was found that 
yielded reasonably strong shear layers with depths more than twice the hill heights 
in conjunction with strong stable temperature gradients. These modes provided 
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dividing-streamline heights as large as 0.75 h. In the vertical fence studies with a 
stratified approach flow, the shear was found to have an overwhelming influence. The 
conclusions are : (a) as in the triangular ridge studies, the aspect ratio was relatively 
unimportant ; the basic flow structure was independent of aspect ratio ; (b) the shear, 
in conjunction with the steep slope, created an upwind vortex such that plumes were 
downwashed on the front faces; and (c) under strong enough stratification, there was 
a limit to the downward penetration of elevated streamlines; the extent of this 
penetration is apparently also predictable as a balance between kinetic and potential 
energies. However, when these same shear flows approached the much lower sloped 
CCB model, there was m evidence of upwind vortex formation. Limited concentration 
measurements on the CCB model suggested that Sheppard's integral formula 
correctly predicted the height of the dividing-streamline. 

(4) From the sinusoidal ridge studies with wind angles at other than 90", it is 
concluded that the effect of deviations in wind direction (from 90") are relatively 
insignificant until the wind direction is in the vicinity of 45" to the ridge axis. At 30°, 
significant departures from the H s / h = l - F  rule were observed; the fluid had 
sufficient kinetic energy to surmount the ridge but, presumably, found a path 
requiring less potential energy round the end of the ridge. When the dye streamers 
were moved closer to the upstream stagnation streamlines (upwind of the upstream 
end of the ridge), they behaved according to the H s / h  = 1 - F rule. 

These experiments suggest that the lateral offset of the source from the (probably 
contorted) plane of stagnation streamlines is an important parameter to consider in 
determining the location and value of surface concentration, especially when the wind 
is at a small angle to the ridge axis (say, < 45"). 

(5) The two-dimensional ridge studies showed that steady-state conditions are not 
established in strongly stratified flows (say, F < 1). The squashing phenomenon and 
upstream columnar disturbances continuously changed the shapes of the ' approach 
flow ' velocity and density profiles. Thus, these experiments have no analogue in the 
real atmosphere. Further, because long ridges cut by periodic small gaps require very 
long tow distances in order for steady state to be established, we conclude that 
previous laboratory studies are not valid models of atmospheric flows ; specifically, 
the H s / h  = 1 -2F formula proposed for flow about ridges with small gaps is not 
expected to apply to the real atmosphere. 

The cross-sectional shape of a ridge has no influence on the nature of the upstream 
perturbations to the density profiles, nor on the nature of the steady-state behaviour 
of the approach flow. 

The statement that columnar disturbance mode n will be inhibited if the obstacle 
height h is such that h > D / 2 n  is erroneous. 

Finally, a suggestion is made that the gap ratio must exceed 25% in order for 
steady-state conditions to be established in the usual size and shape of towing tanks. 
More work is required to firmly establish the relationships between model size and 
shape, stability, and tank size and shape in order to determine limits of applicability 
of fluid modelling and ranges of transferability to the atmosphere. 
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