
MFPS 2005

A Type-theoretic Reconstruction of the Visitor
Pattern

Peter Buchlovsky 1

Computer Laboratory
University of Cambridge

Cambridge CB3 0FD, United Kingdom

Hayo Thielecke 2

School of Computer Science
University of Birmingham

Birmingham B15 2TT, United Kingdom

Abstract

In object-oriented languages, the Visitor pattern can be used to traverse tree-like
data structures: a visitor object contains some operations, and the data structure
objects allow themselves to be traversed by accepting visitors. In the polymorphic
lambda calculus (System F), tree-like data structures can be encoded as polymorphic
higher-order functions. In this paper, we reconstruct the Visitor pattern from the
polymorphic encoding by way of generics in Java. We sketch how the quantified
types in the polymorphic encoding can guide reasoning about visitors in general.

Key words: Visitor pattern, polymorphic types, object-oriented
programming, Generic Java

1 Introduction

Tree-like data structures, such as abstract syntax trees or binary trees, and
their traversal (often called tree walking) are ubiquitous in programming.
Modern functional languages, such as ML and Haskell, provide constructs
in the form of datatype definitions and pattern matching to deal with trees
and more general recursive datatypes. However, in object-oriented languages
such as Java, the situation is more complicated. Testing class membership
and branching on it is widely considered a violation of object-oriented style.

1 Email: Peter.Buchlovsky@cl.cam.ac.uk
2 Email: H.Thielecke@cs.bham.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Buchlovsky and Thielecke

Instead, the Visitor pattern [6] has been proposed to define operations on
tree-like inductive datatypes.

The simplest example using visitors is that of a sum type of the form A+B.
Since Java lacks a sum type, the Visitor pattern implements a class doing the
job of a sum type by a sort of double-negation transform. Concretely, the class
has a method for accepting a visitor; the visitor itself has two methods, one
accepting arguments of type A, the other of type B. If we take a very idealized
view by taking methods as functions and objects as tuples of such functions,
we can regard the above as an instance of a well-known isomorphism in the
polymorphic λ-calculus [8]:

A + B ∼= ∀α.((A→ α)× (B → α))→ α

These isomorphisms are firmly grounded in programming language theory.
Via the Curry-Howard correspondence, they also form part of a bigger picture
in terms of the definability of logical connectives such as disjunction in higher-
order logics.

The present paper aims to flesh out this type-theoretic view of visitors.
Specifically, a Design Pattern (such as the aforementioned Visitor pattern),
by its very nature, is not so much a single unambiguous definition, but a
variety of related instances. Hence we aim to clarify how variants of the Visitor
pattern relate to the more idealized type-theoretic picture. We classify visitors
as internal or external, depending on whether the visitor itself or the tree
specifies the traversal. Moreover these can be either functional (by returning
a value) or imperative (having a void return type and side-effects instead).

The resemblance of variants of the Visitor pattern to the encoding of algeb-
raic types into System F may be part of the type-theoretic folklore. However,
formulating this precisely seems to be very useful, given the possibility of
some technology transfer from the highly developed theory of polymorphic
lambda calculi to less rigorous, but widely used design patterns. Our point is
not to translate object-oriented languages into functional ones or conversely.
Rather, we can see that the same notion has a manifestation in both of these
very different scenarios.

The contributions of this paper include the following:

• We present a stylized polymorphic λ-calculus to make the relation of poly-
morphic encodings to visitors perspicuous.

• We show the type soundness of the resulting visitors in Featherweight Gen-
eric Java [9].

• We sketch how this abstract view of visitors could be useful for reasoning
about visitors.

For completeness, an appendix (Section A) gives more details on Feather-
weight Generic Java. These details are not essential for understanding the
paper.

2



Buchlovsky and Thielecke

2 Background

We briefly recall the two areas of relevant background between which we aim
to bridge: visitors as presented in the Design Patterns literature [6], and
polymorphic lambda calculi [7].

We find it useful to give some object-oriented terminology:

Interface – A fully abstract class. Defines a set of methods but does not give
their bodies. This corresponds to an ML signature.

Class – A class may implement an interface by providing a body for each
method header in the interface. This corresponds to an ML structure.

We will consider Generic Java [3] (Java extended with type parameters on
classes, interfaces and methods) throughout. Briefly, the syntax is as follows.
An interface or class definition of the form class C<α>{...} defines a class
C parameterized by the type variable α. The type C<Int> instantiates the
type parameter of class C to Int. A method definition of the form <α> T

m(...){...} defines a method m in which the type variable α is universally
quantified. A call to method m of the form o.m<Int>(...) instantiates α to
Int.

The purpose of the Visitor pattern is to organize a program around the op-
erations on a datatype as opposed to the constructors. The canonical example
of the Visitor pattern consists of abstract syntax trees and their traversal by
various phases of a compiler; this approach is used in SableCC [5]. We will
consider a simpler example based on binary trees of integer leaves and the
operation of summing up the leaves.

The standard object-oriented implementation of binary trees is based around
the Composite pattern [6]. The datatype signature (sometimes called “ele-
ment”) is represented as an interface and the constructor for each variant of
the datatype becomes a class (sometimes called “concrete element”) which
implements the interface. The interface includes method headers that specify
the signatures of all operations on the data. This forces each constructor class
to provide a method to handle the appropriate case of the operation.

This approach permits new datatype variants to be added without modi-
fying existing code, something that is not possible in ML. The disadvantage
is that adding new operations is difficult as every existing class has to be
amended. The Visitor pattern turns the situation around. It becomes easy to
add new operations but difficult to add new variants.

The Visitor pattern is used as follows. Every operation on the datatype
is packaged into a concrete visitor class. The case for handling each variant
is contained in a method typically named visitCons where Cons is the name
of the constructor class for that variant. Every concrete visitor implements a
visitor interface. This specifies the types of visit methods that must be present
in a concrete visitor. It can be seen as a signature for concrete visitors.

The constructor classes of the datatype are modified to include an accept

3



Buchlovsky and Thielecke

method. Its role is to accept a visitor and call the visit method for the variant
which the class implements. This is essentially a form of double dispatch on
the datatype variant and the visit method. Any components of the variant
stored in fields inside the class must be passed to the visit method. It is also
necessary to parameterize the accept methods and visitor interface since we
cannot know in advance the type yielded by any concrete visitor class.

To summarize, the visitor pattern consists of the following classes:

Visitor – This is an interface for visitors. It declares visit methods named
visitCons for each Cons class.

ConcreteVisitor – One class for each operation on the data. It implements
the Visitor interface and has to provide implementations for each of the
visit methods declared there.

Data/Element – This is an interface naming a datatype (e.g. BinTree). It
declares an accept method which takes a Visitor object as an argument.

ConcreteData/ConcreteElement – A Cons class for each variant of the
datatype (e.g. Leaf). This corresponds to an ML datatype constructor
named Cons. It implements the accept method that calls visitCons in the
Visitor object.

The Visitor pattern does not prescribe where a visitor should store interme-
diate results or how it should return the result to the caller. We will distinguish
between functional visitors which return intermediate results through the res-
ult of the call to accept and imperative visitors which accumulate results in
some field inside the visitor.

Another aspect of the Visitor pattern is the choice of traversal strategies
for composite objects. We could put the traversal code in the datatype. To do
this we ensure that the accept method is called recursively on any component
objects and passes the results to the visitor in the call to visit. Alternatively,
we could put the traversal code in the visitor itself. We will refer to these as
“internal” and “external” visitors respectively, by analogy with internal and
external iterators [6].

We will use the polymorphic lambda calculus (System F) to encode data
types. In fact, we need a more powerful extension of System F with poly-
morphic type constructors, called Fω, since it allows us to approximate gen-
erics and interfaces better than we could with System F alone. Most features
of this system will not be new to anyone familiar with advanced languages
like Haskell or ML: intuitively, Fω contains polymorphic functions and also
polymorphic type constructors.

See Figure 1 for a fairly standard presentation of Fω extended with finite
products. We write α /∈ Γ to mean that α is not among the free variables
in Γ. We abbreviate ∀α::∗.T as ∀α.T and similarly for Λα::∗.T . Empty
products are written as 1. We will also write ti for the projection πi t and
λ〈a, b〉:A×B.t for λx:A×B.[a 7→ π1 x, b 7→ π2 x] t.

4



Buchlovsky and Thielecke

Terms

t, s ::= x | λx:T .t | t t | Λα::K.t | t [T ] | 〈ti〉i∈1..n | πi t

Kinds

K ::= ∗ | K ⇒K

Types

T ::= α | T → T | ∀α::K.T | Λα::K.T | T [T ] |
∏

i∈1..n Ti

Contexts

Γ ::= ∅ | Γ, x : T | Γ, α :: K

Typing

x : T ∈ Γ(Var)
Γ ` x : T

Γ ` T1 :: ∗ Γ, x : T1 ` t : T2(Abs)
Γ ` λx:T1 .t : T1 → T2

Γ ` t : T1 → T2 Γ ` s : T1(App)
Γ ` t s : T2

Γ, α :: K ` t : T
(TAbs) α /∈ Γ

Γ ` Λα::K.t : ∀α::K.T

Γ ` t : ∀α::K.T1 Γ ` T2 :: K
(TApp)

Γ ` t [T2] : [α 7→ T2] T1

∀i ∈ 1..n Γ ` ti : Ti(Tuple)
Γ ` 〈ti〉i∈1..n :

∏
i∈1..n Ti

Γ ` t :
∏

i∈1..n Ti
(Proj)

Γ ` πj t : Tj

Kinding

α :: K ∈ Γ(TVar)
Γ ` α :: K

Γ, α :: K1 ` T :: K2(KAbs) α /∈ Γ
Γ ` Λα::K1 .T :: K1 ⇒K2

Γ ` T1 :: K1 ⇒K2 Γ ` T2 :: K1(KApp)
Γ ` T1 [T2] :: K2

Γ ` T1 :: ∗ Γ ` T2 :: ∗
(KArrow)

Γ ` T1 → T2 :: ∗
Γ, α :: K ` T :: ∗

(KAll) α /∈ Γ
Γ ` ∀α::K.T :: ∗

∀i ∈ 1..n Γ ` Ti :: ∗
(KTuple)

Γ `
∏

i∈1..n Ti :: ∗
Reductions

(λx:T .t) s ;β [x 7→ s] t

(Λα::K.t)[T ] ;β [α 7→ T ] t

πj 〈ti〉i∈1..n ;β tj

(Λα::K.T1)[T2] ;β [α 7→ T2] T1

Fig. 1. System Fω with products.
5



Buchlovsky and Thielecke

3 Visitors and algebraic type encodings

In this section, we recall the encoding of algebraic types in System F [14]
(sometimes called the Böhm-Berarducci encoding [2]). The standard descrip-
tion is in terms of F -algebra. However, we find it useful to present it in a
slightly different style: while isomorphic to the usual account, it makes the
connection to the Visitor pattern more explicit.

3.1 Internal visitors

We consider algebraic types of the form

µα.
∑

i∈1..n

Fi[α]

and we further restrict attention to Fi that are products of the recursive type
variable α and type constants. Thus the types defined this way are various
forms of trees, and we will see how visitors are tree walkers.

Definition 3.1 We define internal visitors to be pairs of the form 〈A, 〈ai〉i∈1..n〉,
where A is a type (called the result type), and 〈ai〉i∈1..n is a tuple of functions
ai : Fi[A]→ A (called the visit methods).

In the presence of sums, we could define F [X] =
∑

i∈1..n Fi[X]. Visitors
are essentially F -algebras, and their visit methods give the structure map.

Next, we consider the encoding of algebraic types (that is to say initial
F -algebras), but rephrased in terms of weakly initial visitors.

We define an object T as follows:

T = ∀α.(
∏

i∈1..n

(Fi[α]→ α))→ α

T comes equipped with visit methods:

consi : Fi[T ]→ T

consi = λx:Fi[T ].Λα.λv :
∏

j∈1..n

(Fj[α]→ α).vi(Fi[λt:T .t[α]v]x)

Intuitively, we think of the consi as the constructors of the datatype T .

Then T with 〈consi〉i∈1..n is weakly initial in the following sense. Let A
together with 〈ai : Fi[A]→ A〉i∈1..n be any visitor. Then there is a function
from T to A defined by:

λt:T .t[A] 〈ai〉i∈1..n

This explains the definition of T : any element t of T has the ability to
accept any visitor with result A and visit methods visiti, and to yield an
element of A.

T = ∀α.(
∏

i∈1..n

(Fi[α]→ α︸ ︷︷ ︸
visiti[α]

)

︸ ︷︷ ︸
Visitor[α]

)→ α

6



Buchlovsky and Thielecke

More intuitively, the elements of T can be thought of as trees; and they use
the visit methods to collapse themselves recursively into a single element of
A. This is achieved by letting the visitor visit any subtrees, thereby collapsing
them into elements of the result type, and then calling the appropriate visit
methods for the topmost node.

consi = λx:Fi[T ].︸ ︷︷ ︸
constructor arguments

accept visitor︷ ︸︸ ︷
Λα.λv :

∏
j∈1..n

(Fj[α]→ α). vi︸︷︷︸
call visit method

walk over subtrees︷ ︸︸ ︷
(Fi[λt:T .t[α]v]x)

Visitor morphisms that witness the initiality of T can be seen as calling
accept on a T object and passing it a concrete visitor:

â = λt:T . t[A]︸︷︷︸
call accept

concrete visitor︷ ︸︸ ︷
〈ai〉i∈1..n

3.2 External visitors

An external visitor consists of a pair 〈A, 〈vi〉i∈1..n〉, where A is a type and
〈vi〉i∈1..n is a tuple of functions vi : Fi[T ] → A. Note the T in the position
where an internal visitor would have another occurrence of A. Intuitively, an
external visitor has visit methods just like an internal one; the difference is
that these methods may accept trees of type T as arguments, rather than
automatically collapsing the trees into elements of result type A.

We define a structure S that accepts external visitors in the same way that
T accepts internal ones:

S = ∀β.(
∏

i∈1..n

(Fi[T ]→ β))→ β

This object has the structure of visit methods:

pi : Fi[S]→ S

pi = λx:Fi[S].Λβ.λm:
∏

j∈1..n

(Fj[T ]→ β).mi(Fi[λs:S.s[T ] 〈consi〉i∈1..n] x)

The visitor structure on S induces a function from the weakly initial visitor T .

p̂ : T → S

Intuitively, this map takes a tree and pattern matches it, so that it can be
visited by an external visitor.

External visitors can themselves use this map for further pattern matching
of subtrees and thus traversal. However, without adding recursion, an external
visitor can not traverse trees of arbitrary depth. Since the traversal of the
whole tree is no longer built-in the way it was in internal visitors, an external
visitor would have to recur under its own steam, as it were, which requires a
fixpoint combinator in the visitor.

7



Buchlovsky and Thielecke

4 Factorizing the encoding

The overall view on visitors in this section is as follows. Our aim is to bring
out the connection between the Visitor pattern and type encodings in System
F by factoring various translations. We present an encoding OJ·K of algebraic
types into a polymorphic λ-calculus that is stylistically close to object-oriented
languages. The calculus is a restricted subset of Fω (with products), and
the encoding corresponds to the classical encoding FJ·K of algebraic types
in System F (up to some reductions and type isomorphisms). On the other
hand, because our calculus resembles object-oriented languages, there is a
straightforward embedding J·K into Featherweight Generic Java (which is itself
a subset of Generic Java); and this lets us recover the internal variant of the
Visitor pattern (by composition).

Alg. Types
Visitor

xxqqqqqqqqqqq
OJ·K
��

FJ·K // F� _

��
GJ FGJ? _oo λoo

ω
J·Koo � � // Fω

We need a calculus for expressing visitors in such a way that we can then
transform them into both System F and FGJ. To do so, we will approxim-
ate “objects” as tuples of methods (of a restricted function type). Another
ingredient is a form of parameterized let on types that we will use for approx-
imating interfaces with generics. We define:

let α<β> be T1 in T2 ≡ (Λα::∗⇒ ∗.T2) [Λβ.T1]

Where there are no type parameters we omit <> and define:

let α be T1 in T2 ≡ (Λα::∗⇒ ∗.T2) [T1]

This construct could be extended to include an arbitrary number of parameters
β by adding a tuple kind to the definition of Fω.

We define some conventions: we write ‘+’ to mean “one or more occur-
rences”; ~β for β1, . . . , βp; [~S] for [S1] . . . [Sp]; and J~SK for JS1K, . . . ,JSpK. Our
calculus for defining visitor types is then as follows.

Definition 4.1 Types of λoo
ω are well-kinded types of Fω (with let) given by

J in

J ::= (let α<β> be O in)+ α[~S] interface definitions

O ::=
∏

i∈1..n Mi object type

M ::= ∀~β.(
∏

j∈1..m Sj)→ S method type

S ::= α[~S] interface instantiation

| int integer type

where α, β ∈ TyVar and int is a constant type. Note that this grammar
restricts all type variables to the kinds ∗ or ∗⇒∗. We also insist that all type
variables are bound and that all bound variables are distinct.

8



Buchlovsky and Thielecke

Using Definition 4.1, we can reformulate visitors as let types.

Definition 4.2 If T is a data type with constructors of type Fi[T ] → T , its
visitor encoding is as follows:

T = let

Visitor[β]︷ ︸︸ ︷
γ<β> be

∏
i∈1..n

( Fi[β]→ β︸ ︷︷ ︸
visiti[β]

) in let

accept︷ ︸︸ ︷
δ be ∀α.γ[α]→ α in δ

It is easy to see that this is equivalent to the System F encoding by a series
of reductions in Fω:

T = let γ<β> be
∏

i∈1..n

(Fi[β]→ β) in let δ be ∀α.γ[α]→ α in δ

= (Λγ ::∗⇒ ∗.(Λδ.δ)[∀α.γ[α]→ α])[Λβ.
∏

i∈1..n

(Fi[β]→ β)]

;β (Λγ ::∗⇒ ∗.∀α.γ[α]→ α)[Λβ.
∏

i∈1..n

(Fi[β]→ β)]

;β ∀α.(Λβ.
∏

i∈1..n

(Fi[β]→ β))[α]→ α

;β ∀α.(
∏

i∈1..n

(Fi[α]→ α))→ α

But we can also recover visitors in Generic Java. To do so, we define a trans-
lation.

Definition 4.3 The translation J·K from types of λoo
ω to a sequence of FGJ

interface definitions as follows: (To render this more compactly we slightly
abuse EBNF notation. Repeated occurrences on the LHS correspond to those
on the RHS.)

J(let α<β> be O in)+ α[~S]K = (interface α<β> {JOK})+

J
∏

i∈1..n MiK = (JMiK)i∈1..n

J∀~β.(
∏

j∈1..m Sj)→ SK = <~β> JSK m((JSjK xj)
j∈1..m);

Jα[~S]K = α<J~SK>

JintK = Int

where m and xj are fresh.

When considering the transform to FGJ it will be necessary to consider the
factors of Fi[β] separately. We will take Fi[β] to be

∏
j∈1..r−1 int ×

∏
k∈r..n β.

9



Buchlovsky and Thielecke

We define the following abbreviations:

Int ~f = Int f1, . . . , Int fr−1 (similarly for Int ~x)

D ~g = D gr, . . . , D gn (similarly for β ~g and S ~y)

Int ~f; = Int f1; . . . ; Int fr−1;

D ~g; = D gr; . . . ; D gn; (similarly for β ~g;)

this.~f=~f; = this.f1=f1; . . . ; this.fr−1=fr−1;

this.~g=~g; = this.gr=gr; . . . ; this.gn=gn;

this.~f = this.f1, . . . , this.fr−1

this.~g.accept<α>(v) = this.gr.accept<α>(v), . . . , this.gn.accept<α>(v)

Applying J·K to the let encoding of visitors results in

Jlet γ<β> be
∏

i∈1..n

(Fi[β]→ β) in let δ be ∀α.γ[α]→ α in δK

= interface γ<β> {

(β visiti(Int ~x, β ~y);)i∈1..n

}

interface δ {

<α> α accept(γ<α> v);

}

Proposition 4.4 The translation from λoo
ω to FGJ is type-preserving.

Proof (Sketch) The proof is by induction on the structure of types, keeping
track of the interface table generated. 2

We have shown that a sequence of Java interfaces can be seen as types in
System Fω. If interfaces are like types then classes implementing interfaces
should correspond to terms. This is indeed the case: for each constructor consi

there is a class Consi. Similarly, tuples of “visit methods” in Fω correspond
to classes implementing the visitor interface. See Figure 2 for an overview of
this correspondence.

We would also like to be sure that both the interface and class definitions
are well-typed.

Proposition 4.5 (Internal visitors are well-formed)
Assuming a class table CT and an interface table IT with the class and inter-
face definitions shown in Figure 2, for any ∆, for each i ∈ 1..n,

(i) ∆ ` U ok

(ii) ∆;~x : Int,~y : U, this : ConcVis ` ei ∈ V and ` V <: U

the class and interface definitions in Figure 2 are well-formed.

Proof (Sketch) Straightforward type-checking using the type system of FGJ.2

10



Buchlovsky and Thielecke

Internal visitor encoding Internal visitor in FGJ

T =

let γ<β> be
∏

i∈1..n

(Fi[β]→ β) in

let δ be ∀α.γ[α]→ α in δ

interface Visitor<β> {
(β visiti(Int ~x, β ~y);)i∈1..n

}
interface D {
<α> α accept(Visitor<α> v);
}

consi : Fi[T ]→ T

consi = λx:Fi[T ].

Λα.λv :
∏

j∈1..n

(Fj [α]→ α).

vi(Fi[λt:T .t[α]v]x)

class Consi implements D {
Int ~f; D ~g;
Consi(Int ~f, D ~g) {
this.~f = ~f; this.~g = ~g;
}
<α> α accept(Visitor<α> v) {
return v.visiti(this.~f,

this.~g.accept<α>(v));
}
}

s :
∏

i∈1..n

(Fi[U ]→ U)

s = 〈λx:Fi[U ].ei〉i∈1..n

class ConcVis implements Visitor<U> {
(U visiti(Int ~x, U ~y) {return ei;})i∈1..n

}

Fig. 2. Correspondence between type encodings and internal visitors in FGJ.

As a worked example, we consider the type B of binary trees with integers
at the leaves, as given by the least fixed point of F [X] = Z + X ×X. This is
encoded as

B = let γ be Λβ.(Z→ β)× ((β × β)→ β) in let δ be ∀α.γ[α]→ α in δ

which is transformed into

interface Visitor<β> {

β visitLeaf(Int x);

β visitNode(β x, β y);

}

interface BinTree {

<α> α accept(Visitor<α> v);

}

The datatype constructors are

leaf : Z→ B

leaf(n) = Λα.λ〈p, q〉:(Z→ α)× ((α× α)→ α).pn

node : (B× B)→ B

node(l, r) = Λα.λ〈p, q〉:(Z→ α)× ((α× α)→ α).q〈l[α]〈p, q〉, r[α]〈p, q〉〉

11



Buchlovsky and Thielecke

The corresponding FGJ classes Leaf and Node are

class Leaf implements BinTree {

Int n;

Nil(Int n) { this.n = n; }

<α> α accept(Visitor<α> v) {

return v.visitLeaf();

}

}

class Node implements BinTree {

BinTree l; BinTree r;

Cons(BinTree l, BinTree r) { this.l = l; this.r = r; }

<α> α accept(Visitor<α> v) {

return v.visitNode(l.accept<α>(v), r.accept<α>(v));
}

}

The type of a concrete visitor for binary trees is

let γ be (Z→ Z)× ((Z× Z)→ Z) in γ

An operation for summing up the leaves of a tree can defined as follows:

sum : B→ Z

sum = λt:T .t[Z]〈λx:Z.x, λ〈x, y〉:Z× Z.x + y〉

which is equivalent to a call to accept on a BinTree with an instance of the
following concrete visitor

class SumVisitor implements Visitor<Int> {

Int visitLeaf(Int x) {

return x;

}

Int visitNode(Int x, Int y) {

return x + y;

}

}

The generated code is valid, well-typed FGJ with interfaces code. This
means it is also almost correct Generic Java. Indeed, after minor modific-
ations (adding the keyword public to method definitions, discarding type
parameter instantiation on calls to accept and adding a main method), it
compiles correctly using the Sun Java 1.5 compiler.

5 From functional to imperative internal visitors

The visitors in Figure 2 were purely functional and relied on generics. A more
typical rendition of an internal visitor using internal state instead is given in
Figure 3 (it is debatable whether visitNode() should be omitted, since there

12



Buchlovsky and Thielecke

interface Visitor {

void visitLeaf(int n);

void visitNode();

}

interface BinTree {

void accept(Visitor v);

}

class Leaf implements BinTree {

int n;

Leaf(int n) { this.n = n; }

public void accept(Visitor v) {

v.visitLeaf(n);

}

}

class Node implements BinTree {

BinTree left; BinTree right;

Node(BinTree left, BinTree right) {

this.left = left;

this.right = right;

}

public void accept(Visitor v) {

left.accept(v);

right.accept(v);

}

}

class SumVisitor implements Visitor {

int s;

SumVisitor(int s) { this.s = s; }

public void visitLeaf(int n) { s = s + n; }

public void visitNode() { }

}

Fig. 3. An imperative internal visitor in Java (without generics)

is no information at internal nodes).

In this section, we address the equivalence of functional and imperative
visitors, albeit in a very idealized setting. Consider the example of summing
all the leaves of a binary tree. Functional visitors would do this by performing
additions at all the internal nodes. On the other hand, a more typical imper-
ative use of the Visitor pattern would use a field in the visitor to accumulate
the sum. The field is initialized to 0, and at each leaf, its value is added to the
field; at an internal node, the left and right subtrees are simply traversed one
after the other. After the traversal, the field holds the result. Since such an
imperative visitor uses state rather than a result value, its return type is void.

13



Buchlovsky and Thielecke

We will model a visitor that updates a piece of state S by a function S→S,
as one does in the semantics of imperative languages, or the monadic view of
computation approach. Given (the functional internal visitor encoding of) a
binary tree t, we define its imperative counterpart t̂ as follows:

t̂ = Λα.λc:Z→ α→ α.t[α→ α]〈c, ◦α〉
where ◦ abbreviates function composition,

◦α = λ〈f, g〉:(α→ α)× (α→ α).λx:α.g(fx)

Compared to t, t̂ is more specialized: it only allows one to specify an operation
at the leaves, which needs to transform a state of type α, while the only
operation at internal nodes is to compose the state transformers of the left
and right subtrees; this composition of state transformations corresponds to
calling two void-returning methods in succession.

To relate the state-transforming and the functional visitors, we want to
show that the state-transforming visitor (with initial state 0) yields the same
result as the functional one:

t̂ [Z] (λn:Z.λs:Z.s + n) 0 = t[Z]〈idZ, +〉
We sketch a proof using relational parametricity [13], specifically the reas-

oning developed by Wadler as “theorems for free” [16]; see the latter paper
for an introduction and the relevant definitions.

Let t be a binary tree for internal visitors, that is

t : ∀α.((Z→ α)× ((α× α)→ α))→ α

Now t̂ [Z] (λn:Z.λs:Z.s + n) = t[Z → Z] 〈(λn:Z.λs:Z.s + n), ◦Z〉. Hence we
want to show

t[Z]〈idZ, +〉 = t[Z→ Z]〈addZ, ◦Z〉 0
where

idZ = λn:Z.n : Z→ Z

addZ = λn:Z.λs:Z.s + n : Z→ Z→ Z

Assuming parametricity [16], we have that for all relations R,

〈t, t〉 ∈ ((Z→R)× ((R×R)→R))→R

We define a relation R : Z ↔ (Z→Z) by 〈n, f〉 ∈ R iff f(x) = n + x for all x.
Then we have:

〈idZ, addZ〉 ∈ Z→R

〈+, ◦Z〉 ∈ (R×R)→R

The latter of these holds because if 〈〈x, y〉, 〈f, g〉〉 ∈ R×R, then 〈x+y, f◦g〉∈R.

Since t maps related arguments to related results, we have

〈t[Z]〈idZ, +〉, t[Z→ Z]〈addZ, ◦Z〉〉 ∈ R

Hence, by the definition of R, t[Z→Z]〈addZ, ◦Z〉 0 = t[Z]〈idZ, +〉, as required.

14



Buchlovsky and Thielecke

Note that the proof made use of 0 being the neutral element of addition,
and of the associativity of addition in establishing the relation R between f ◦g
and x + y:

(f ◦ g)(z) = f(g(z)) = f(z + y) = (z + y) + x = z + (x + y)

The above argument of relating a functional and an imperative visitor
by associativity is applicable to more substantial cases as well. Consider the
standard example of abstract syntax trees, and suppose we need to traverse the
tree to add information into a symbol table. The most evident specification in
terms of a synthesized attribute would be essentially functional, merging the
symbol table of the subtrees at the inner nodes. An imperative visitor could
instead start off with an empty symbol table and add entries by updating
a mutable symbol table during traversal. Showing the equivalence of the
functional and the imperative version should be analogous to the parametricity
argument above, with the empty symbol table being the neutral element, and
merging of symbol tables as the associative operation.

6 Conclusions

We have reconstructed the internal Visitor pattern and a restricted form of
the external variant within an idealized type-theoretic setting. To do so, we
had to make simplifying assumptions, and the fit is not perfect; this may be
inevitable, since Java was not designed on top of a lambda calculus, unlike
functional languages. But if one grants these idealizations, it is possible to
glean essential features of visitors more easily than from lengthy Java code or
class diagrams. We summarize our abstract reconstruction of visitors with the
following mapping from the terminology used in the patterns literature [6].

Patterns literature Idealized view

Visitor interface Type (determines a functor F )

Concrete visitor Object of visitor type (∼= F -algebra)

Visit method Component of the structure map of a visitor

Data (or “Element”) Weakly initial visitor

Accept method Witnesses initiality

Concrete data Given by consi

There is a large literature on the Visitor pattern, most of it concerned
with overcoming some of its inflexibility. This line of work goes back to Reyn-
olds [12]. In the context of the present paper, the most relevant previous work
is Felleisen and Friedman’s textbook [4], in which variations on the Visitor
pattern are developed, implicitly based on program transformations known
from functional programming. Setzer [15] also observes a connection between

15



Buchlovsky and Thielecke

visitors and functional programming.

As sketched in Section 5, for functional (particularly internal) visitors, the
polymorphic typing immediately gives one reasoning principles, or “theorems
for free”. It should be possible to transfer the structure of such arguments to
more realistic imperative visitors, where logical relations on parts of the heap
would be used in place of the return type parametricity of the functional vis-
itors. Instead of the result types of visitors, the relations could be built on an
effect system [10] (adapted from functional to object-oriented languages [1]).
In particular, the effect annotations tells us that the data structure to be tra-
versed unleashes the effects of the visitor, but causes none itself. Apart from
effect systems, Hoare logic may also be applicable to visitors. Specifically, it
would be interesting to see whether abstract predicates [11] for visitors can be
handled analogously to the quantified result type.

The visitor-style encoding in System F does not extend to datatypes that
use subclassing. It may be worthwhile to consider similar encodings in F<:

ω to
see whether it fits such Visitor pattern variants more closely.

Acknowledgement

We thank Alan Mycroft and the anonymous referees for their comments.

References

[1] Gavin Bierman, Matthew Parkinson, and Andrew Pitts. MJ: an imperative
core calculus for Java and Java with effects. Technical Report 563, University
of Cambridge Computer Laboratory, 2003.

[2] C. Böhm and C. Berarducci. Automatic synthesis of typed lambda-programs
on term algebras. Theoretical Computer Science, 39(2/3):135–154, 1985.

[3] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
Making the future safe for the past: Adding genericity to the Java
programming language. In Proceedings of the 13th ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA’98),
Vancouver, British Columbia, 18–22 October 1998, pages 183–200. ACM Press,
New York, 1998.

[4] Matthias Felleisen and Daniel P. Friedman. A Little Java, A Few Patterns.
MIT Press, Cambridge, Massachusetts, 1998.

[5] Etienne M. Gagnon and Laurie J. Hendren. SableCC, an object-oriented
compiler framework. In Proceedings of the Conference on Technology of Object-
Oriented Languages and Systems, Santa Barbara, California, 3–7 August 1998,
pages 140–154. IEEE Computer Society, Washington DC, 1998.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Boston, Massachusetts, 1995.

16



Buchlovsky and Thielecke

[7] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris 7, 1972.

[8] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge
University Press, Cambridge, 1989.

[9] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. In Proceedings of the 14th
ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’99), Denver, Colorado, 1–5 November 1999, pages 132–
146. ACM Press, New York, 1999.

[10] John M. Lucassen and David K. Gifford. Polymorphic effect systems. In
Proceedings of the 15th ACM Symposium on Principles of Programming
Languages (POPL’88), San Diego, California, 13–15 January 1988, pages 47–
57. ACM Press, New York, 1988.

[11] Matthew Parkinson and Gavin Bierman. Separation logic and abstraction.
In Proceedings of the 31st ACM Symposium on Principles of Programming
Languages (POPL’05), Long Beach, California, 12–14 January 2005, pages
247–258. ACM Press, New York, 2005.

[12] John C. Reynolds. User-defined types and procedural data structures as
complementary approaches to data abstraction. In S. A. Schuman, editor, New
Directions in Algorithmic Languages 1975, pages 157–168. IRIA, Rocquencourt,
France, 1976.

[13] John C. Reynolds. Types, abstraction and parametric polymorphism. In
R. E. A. Mason, editor, Information Processing 83, pages 513–523. Elsevier
Science Publishers B. V. (North-Holland), Amsterdam, 1983.

[14] John C. Reynolds and Gordon D. Plotkin. On functors expressible in the
polymorphic typed lambda calculus. Information and Computation, 105:1–29,
1993.

[15] Anton Setzer. Java as a functional programming language. In H. Geuvers and
F. Wiedijk, editors, Types for Proofs and Programs: International Workshop,
TYPES 2002, Berg en Dal, The Netherlands, 24–28 April 2002, number 2646
in Lecture Notes in Computer Science, pages 279–298. Springer, Berlin, 2003.

[16] Philip Wadler. Theorems for free! In Proceedings of
the 4th International Conference on Functional Programming and Computer
Architecture (FPCA’89), London, 11–13 September 1989, pages 347–359. ACM
Press, New York, 1989.

A Featherweight Generic Java

Featherweight Generic Java [9] is a minimal Java-like calculus. It includes
type parameterized classes and methods and its syntax is (almost) a subset
of Java, so all FGJ programs are also valid Java programs. (To convert an

17



Buchlovsky and Thielecke

FGJ program into a Generic Java program it is necessary to add the keyword
public before method implementations and to elide type instantiations on
method calls.)

Our description of FGJ includes interfaces which were not present in the
original definition. The extension is limited since it only permits single inher-
itance in interface hierarchies and a class is permitted to implement at most
one interface. There are also some restrictions on type parameter bounds.
Since we are not interested in casting we will omit that from our account.

The syntax and typing of FGJ with interfaces are shown in Figures A.1
and A.2. The computation rules are shown in Figure A.3. We omit some
auxiliary rules due to lack of space. We abbreviate the keywords extends as
/, implements as � and return as ↑. The metavariables α, β, γ range over
type variables; T, U, V range over types; N and O range over class types; and Q

ranges over interface types.

Some abbreviations are also necessary for various sequences:

~f = f0, . . . ,fn (similarly for ~C, ~x, ~e, ~α, ~N, ~Q etc.)

~M = M0 . . . Mn (similarly for ~H)

~C ~f = C1 f1, . . . , Cn fn

~C ~f; = C1 f1; . . . ; Cn fn;

this.~f=~f; = this.f1=f1; . . . ; this.fn=fn;

The empty sequence is written as • and concatenation is denoted with a
comma.

Unparameterized classes C<> and methods m<> can be abbreviated to C and
m. As in Java, unbounded parameters are assumed to have a bound of Object.
We also abbreviate C / Object to C. A class does not have to implement an
interface, in which case we can omit � Q from its definition. Unlike the class
hierarchy, the interface hierarchy has no root so we also allow / Q to be omitted
from interface definitions. We will omit empty calls to super() and empty
constructors.

The class table CT is a mapping from class names to class declarations.
The extended calculus also has an interface table IT which plays a similar role
with respect to interfaces. The authors of FGJ define some “sanity conditions”
on class tables and we assume that both CT and IT obey them. We assume
the existence of the special variable this, which may not be used as the name
of a field or method parameter. A program in FGJ with interfaces is a triple
(CT, IT, e) of a class table, an interface table and an expression.

18



Buchlovsky and Thielecke

Syntax

CL ::= class C<~α /~N> / N � Q {~T ~f; K ~M}

IN ::= interface I<~α /~N> / Q {~H}

K ::= C(~T ~f) {super(~f); this.~f = ~f;}

H ::= <~α /~N> T m (~T ~x);

M ::= <~α /~N> T m (~T ~x) { ↑ e;}

e ::= x | e.f | e.m<~T>(~e) | new N(~e)

T ::= α | τ | N | Q

N ::= C<~T>

Q ::= I<~T>

Subtyping
S-Refl

∆ ` T <: T
S-Poly

∆ ` α <: ∆(α)

∆ ` S <: T ∆ ` T <: U
S-Trans

∆ ` S <: U
IT (I) = interface I<~α /~N> / Q {...}

S-Sub
∆ ` I<~T> <: [~α 7→ ~T] Q

CT (C) = class C<~α /~N> / N � Q {...}
S-Extend

∆ ` C<~T> <: [~α 7→ ~T] N

CT (C) = class C<~α /~N> / N � Q {...}
S-Impl

∆ ` C<~T> <: [~α 7→ ~T] Q
Well-formed types

WF-Obj
∆ ` Object ok

WF-Empty
∆ ` ε ok

WF-Int
∆ ` Int ok

α ∈ dom(∆)
WF-Poly

∆ ` α ok

IT (I) = interface I<~α /~N> / Q {...}

∆ ` ~T ok ∆ ` ~T <: [~α 7→ ~T]~N
WF-Interface

∆ ` I<~T> ok

CT (C) = class C<~α /~N> / N � Q {...}

∆ ` ~T ok ∆ ` ~T <: [~α 7→ ~T]~N
WF-Class

∆ ` C<~T> ok
Expression typing

T-Var
∆; Γ ` x ∈ Γ(x)

∆; Γ ` e0 ∈ T0 fields(bound∆(T0)) = ~T ~f
T-Field

∆; Γ ` e0.fi ∈ Ti

∆; Γ ` e0 ∈ T0

mtype(m, bound∆(T0)) = <~β /~O>~U→ U

∆ ` ~V ok ∆ ` ~V <: [~β 7→ ~V]~O

∆; Γ ` ~e ∈ ~S ∆ ` ~S <: [~β 7→ ~V]~U
T-Invk

∆; Γ ` e0.m<~V>(~e) ∈ [~β 7→ ~V] U

∆ ` N ok fields(N) = ~T ~f

∆; Γ ` ~e ∈ ~S ∆ ` ~S <: ~T
T-New

∆; Γ ` new N(~e) ∈ N

Fig. A.1. FGJ sans casting extended with interfaces: Main definitions

19



Buchlovsky and Thielecke

Method typing

∆ = ~α <:~N, ~β <:~O

∆ ` ~T ok ∆ ` T ok ∆ ` ~O ok

∆;~x : ~T, this : C<~α> ` e0 ∈ S ∆ ` S <: T

CT (C) = class C<~α /~N> / N � Q {...}

override(m, N, <~γ /~P>~U→ U)
T-Method

<~β /~O> T m (~T ~x) { ↑ e0;} OK IN C<~α /~N>

Method header typing

∆ = ~α <:~N, ~β <:~O

∆ ` ~T ok ∆ ` T ok ∆ ` ~O ok

IT (I) = interface I<~α /~N> / Q {...}

override(m, Q, <~γ /~P>~U→ U)
T-Mhead

<~β /~O> T m (~T ~x); OK IN I<~α /~N>

Class typing

~α <:~N ` ~N ok ~α <:~N ` N ok ~α <:~N ` Q ok

~α <:~N ` ~T ok implement((~M0,~M1),~H)

methods(N) = ~M1 mheaders(Q) = ~H

fields(N) = ~U ~g ~M0,~M1 OK IN C<~α /~N>

K = C(~U ~g, ~T ~f) {super(~g); this.~f = ~f;}
T-Class

class C<~α /~N> / N � Q {~T ~f; K ~M0} OK

Interface typing

~α <:~N ` ~N ok ~α <:~N ` Q ok

~H OK IN I<~α /~N>
T-Interface

interface I<~α /~N> / Q {~H} OK

Fig. A.2. FGJ sans casting extended with interfaces: Main definitions continued

Computation

fields(N) = ~T ~f
Comp-Field

(new N(~e)).fi ; ei

mbody(m<~V>, N) = (~x, e0)
Comp-Invk

(new N(~e)).m<~V>(~d) ; [~x 7→ ~d, this 7→ new N(~e)] e0

Fig. A.3. FGJ sans casting extended with interfaces: Computation rules

20


	Introduction
	Background
	Visitors and algebraic type encodings
	Internal visitors
	External visitors

	Factorizing the encoding
	From functional to imperative internal visitors
	Conclusions
	Acknowledgement 
	References
	Featherweight Generic Java

