
Updates on SHAvite-3

Eli Biham1 and Orr Dunkelman2

1 Computer Science Department, Technion.
Haifa 32000, Israel

biham@cs.technion.ac.il
2 Faculty of Mathematics and Computer Science

Weizmann Institute of Science
P.O. Box 26, Rehovot 76100, Israel
orr.dunkelman@weizmann.ac.il

Abstract. In this paper we present the current state of the SHA-3 submission SHAvite-3.
We address the performance of SHAvite-3, and gather some implementation data, avail-
able at the moment. We then discuss some of the issues and results concerning the security
of SHAvite-3. While we prove that the SHAvite-3 family offers secure hash functions, we
also suggest a slightly tweaked version of SHAvite-3512 to offer a larger security margins.

1 Introduction

SHAvite-3 is hash function proposal in the SHA-3 competition [4,5]. It is based on combining
the components of the AES as well as the HAIFA [3] framework to offer a secure and efficient
hash function. The SHAvite-3 hash function is composed of two hash functions: SHAvite-3256

for digests of up to 256 bits, and SHAvite-3512 for digests of lengths between 257 and 512 bits.
Each of these two functions uses a different compression function, but both of them share many
similarities.

Both compression functions are a Davies-Meyer transformation of a block cipher (E256

and E512, respectively). The first compression function, C256, used in SHAvite-3256 accepts a
chaining value of 256 bits, a salt of 256 bits, a bit counter of 64 bits, and a message block of
512 bits. The second compression, C512, while accepts a chaining value of 512 bits, a salt of 512
bits, a bit counter of 128 bits, and a message block of 1024 bits.

The use of the AES round function as a base for computation allows reaching speeds of about
5.5 cycles per byte [2], which was measured for the original version of SHAvite-3. Following
some minor security issues in the compression functions of SHAvite-3 in [15,16], SHAvite-3 was
tweaked to offer a more resilient compression function [5].

In this note we discuss the current status of the SHAvite-3, and address its performance and
security. We start by addressing a small mistake in the implementation of AES’ round function.
Fixing this mistake is expected to improve the performance of SHAvite-3 on platforms which
contain support for AES’ round function, e.g., machines with the AES-NI instruction set.

We continue the discussion with security analysis. We gather the recent results on SHAvite-3 [6,9,14]
and discuss their implications on the security of the SHAvite-3 hash function.

This note is organized as follows: Section 2 discusses the performance issues. Section 3
addresses the security analysis. We conclude this note with Section 4.

SHAvite-3 Updated Version August 23rd, 2010

2 The Performance of SHAvite-3

In this section we discuss the competitive performance of SHAvite-3 on various platforms. We
start our discussion with a discussion about a mistake in the implementation of SHAvite-3,
and its effects on the performance of SHAvite-3. We follow with a discussion on the software
performance of SHAvite-3, and the effects of the new AES-NI instruction set on it. We conclude
with the hardware performance of SHAvite-3.

2.1 Mistake in the Implementation of the AES Round Function

Our implementations of SHAvite-3 (including the reference code) relies on implementing the
AES round function using the common approach of accessing tables which combine the Mix-
Columns operation into the SubBytes operation. This allows an efficient implementation of
SHAvite-3 on 32-bit platforms.

However, all these round functions contain a mistake, where the state is accidently transposed

during the call for the tables. Namely, the current version of the relevant code is:

output[0] = Table0[input[0] >> 24] ^ Table1[(input[1] >> 16) & 0xff] ^ \

Table2[(input[2] >> 8) & 0xff] ^ Table3[input[3] & 0xff];

output[1] = Table0[input[1] >> 24] ^ Table1[(input[2] >> 16) & 0xff] ^ \

Table2[(input[3] >> 8) & 0xff] ^ Table3[input[0] & 0xff];

output[2] = Table0[input[2] >> 24] ^ Table1[(input[3] >> 16) & 0xff] ^ \

Table2[(input[0] >> 8) & 0xff] ^ Table3[input[1] & 0xff];

output[3] = Table0[input[3] >> 24] ^ Table1[(input[0] >> 16) & 0xff] ^ \

Table2[(input[1] >> 8) & 0xff] ^ Table3[input[2] & 0xff];

while is pointed out by Olivier Billet and Thomas Pornin, the correct round function should
be:

output[0] = Table0[input[0] & 0xff] ^ Table1[(input[1] >> 8) & 0xff] ^ \

Table2[(input[2] >> 16) & 0xff] ^ Table3[(input[3] >>24)];

output[1] = Table0[input[1] & 0xff] ^ Table1[(input[2] >> 8) & 0xff] ^ \

Table2[(input[3] >> 16) & 0xff] ^ Table3[(input[0] >>24)];

output[2] = Table0[input[2] & 0xff] ^ Table1[(input[3] >> 8) & 0xff] ^ \

Table2[(input[0] >> 16) & 0xff] ^ Table3[(input[1] >>24)];

output[3] = Table0[input[3] & 0xff] ^ Table1[(input[0] >> 8) & 0xff] ^ \

Table2[(input[1] >> 16) & 0xff] ^ Table3[(input[2] >>24)];

We note that this issue is not expected to affect the speed performance of any implementa-
tion which is based on tables. However, code which is based on the AES-NI instruction set like
the one used in [2], is expected to enjoy a speedup, as there will be no need to transpose the
state each call for the AES round function. Hence, the number of instructions needed for the
implementation of SHAvite-3 is expected to decrease, which is expected to improve the speed
of such implementations.

2.2 Software Performance

Table 1 taken from [5] offers the speed figures obtained in software for SHAvite-3 by our
measurements and ones made by eBASH [8] and by Benadjila et al. [2].

2

SHAvite-3 Updated Version August 23rd, 2010

Hash Function 32-Bit Platform 64-Bit Platform

MD5 5.67 6.96
SHA-1 9.38 7.34
SHA-256 27.29 19.08
SHA-512 78.38 14.71

SHAvite-3256 (measured) 32.83 25.13
SHAvite-3256 (eBASH, Intel/AMD) 28.73–84.42 22.79–61.24
SHAvite-3256 (eBASH, PowerPC) 20.62–43.99 24.71–39.64
SHAvite-3256 (conjectured) 26.6 18.6
SHAvite-3256 (with AES inst.⋆) 5.6 [2]

SHAvite-3256 (with AES inst.†) 4.8 [1]
SHAvite-3256 (with AES inst.) 7.7 [7]
SHAvite-3512 (measured) 55.90 35.86
SHAvite-3512 (eBASH, Intel/AMD) 55.30–242.09 40.28–255.10
SHAvite-3512 (eBASH, PowerPC) 32.00–184.78 38.41–64.39
SHAvite-3512 (conjectured) 35.3 28.4
SHAvite-3512 (with AES inst.⋆) 5.5 [2]

SHAvite-3512 (with AES inst.†) 4.3 [1]
SHAvite-3512 (with AES inst.) 8.7 [7]
SHAvite-3512 (with AES inst.) 5
⋆ — the figures presented in [2] are estimates for untweaked SHAvite-3.
† — these figures are measured values for the tweaked SHAvite-3.

Table 1. Speed Comparison of Hash Functions (in cycles/byte)

We note that the results of [2] were estimated as the actual chip was not available at the
time. We supplied Benadjila a tweaked version of the original code for measurements, and he
provided us with the results of [1]. We note that recently, a new set of results is reported in [7].

At the same time, we supplied an implementation using AES-NI to the eBASH project. At
the moment, the reported speeds are of 8 cycles/byte for SHAvite-3256 and of 8.9 cycles/byte
for SHAvite-3512, but with very high variability.

Our own measurements on an i5 machine show 5 cycles per byte, after the first few hundred
calls to the compression function. The first (slower) calls as well as the discrepancy between
our results and other measurements, seems to be related to the Intel’s architecture, and we are
in the process of finding a way to ensure the faster speed for all compression function calls.

Despite these issues, it is evident that the performance of SHAvite-3 are comparable with
the speeds of MD5 and SHA1, and outperform the SHA2 family by far.

2.3 Hardware Performance

In [17] a comparative implementation of all second round SHA-3 candidates in 0.18µ ASIC-
technology is given (even though mainly the 256-bit digest sizes were compared). Four versions
of SHAvite-3256 were implemented (each with a different number of instances of the AES round
function). The fastest result obtained used an area of 58,826 GE, with a clock frequency of 88.57
MHz, and latency of 19 cycles. This results in a throughput of 2.387 Gbit/sec.

FPGA implementations of 256-bit variants of the SHA-3 candidates were compared in [12]
on Virtex-5 (XC5VLX30-3FF324). At a maximal clocking frequency of 251 MHz, and a core
that takes 38 cycles. The throughput for long messages was 959 Mbps, which was the the third
(after Luffa with 1,172 Mbps, and Keccak with 967 Mbps). The latency measured for short

3

SHAvite-3 Updated Version August 23rd, 2010

SHAvite-3256 SHA-256
Throughput Area Clock Freq. Throughput Area Clock Freq.

Platform (Mbps) (CLBs/ALUTs) (MHz) (Mbps) (CLBs/ALUTs) (MHz)

Xilinx Spartan 3 1173.52 4114 84.60 715.56 838 90.84
Xilinx Virtex 4 2104.74 4114 152.23 1441.60 838 183.02
Xilinx Virtex 5 2885.89 1130 208.55 1630.49 433 207.00
Altera Cyclone II 1320.72 9400 95.40 874.65 1655 111.04
Altera Cyclone III 1420.85 9323 114.40 899.27 1653 126.86
Altera Stratix II 2353.39 2501 170.00 1245.18 973 158.08
Altera Stratix III 3528.65 2497 255.00 1676.29 963 212.81

SHAvite-3512 SHA-512
Throughput Area Clock Freq. Throughput Area Clock Freq.

Platform (Mbps) (CLBs/ALUTs) (MHz) (Mbps) (CLBs/ALUTs) (MHz)

Xilinx Spartan 3 1354.83 7997 75.31 1138.51 1367 90.06
Xilinx Virtex 4 2901.30 8544 161.97 2133.31 1403 168.75
Xilinx Virtex 5 3847.44 1951 213.45 2728.68 646 215.84
Altera Cyclone II 1560.94 20441 86.71 1182.53 2916 93.54
Altera Cyclone III 1859.57 20434 103.73 1430.44 2915 113.15
Altera Stratix II 2533.38 5507 140.53 2241.93 1639 177.34
Altera Stratix III 3858.84 5605 215.38 2968.34 1620 234.80

Table 2. Various SHAvite-3 FPGA Implementations

messages (of 1024 bits) was the fifth at 0.454 µs (to be compared with Luffa’s 0.207 µs). The
power consumption was 0.24 Watt, to be compared with the best result of 0.23 Watt (obtained
for three SHA-3 candidates).

Another FPGA analysis of the SHA-3 candidates was performed in [10]. In this report,
the implementations of SHAvite-3 on various FPGAs were considered. It was found that a
throughput of 2,886 Mbps was achievable using 1,130 CLBs at 208 MHz for SHAvite-3256, and
3,835 Mbps could be reached using 1,954 CLBs at 213 MHz. These results were obtained on
the Xilinx Virtex 5 family of FPGAs. Using the Altera Stratix III, throughputs of 3,529 and
3,869 Mbps could be reached for SHAvite-3256 and SHAvite-3512, respectively. We outline in
Table 2 a summary of all implementations of SHAvite-3 reported in [10].

Two comments: We note that all reported implementations have implemented the AES round
function from scratch. In the case the platform already supports AES, it seems that some of
the AES implementation will be deemed redundant, and thus it is expected that SHAvite-3’s
implementation would actually need to introduce a much smaller circuit.

Moreover, it seems that some implementations took into consideration the salt. We note that
when the salt is fixed, one could reduce the required resources for implementing SHAvite-3.

3 The Security of SHAvite-3

3.1 The Security of SHAvite-3256

In [14] several attacks on reduced-round SHAvite-3256 are described. A 6-round free-start colli-
sion with time complexity 2120 time and 256 memory is reported, along with its extension to a

4

SHAvite-3 Updated Version August 23rd, 2010

Rounds Attack Time Memory Adversary’s control

6 free-start collision 2120 256 chaining value, message

7 comp. func. distinguisher 2120 256 chaining value, message

7 free-start near-collision 225 214 chaining value, message, salt

8 comp. func. distinguisher 225 214 chaining value, message, salt

Table 3. Summary of Attacks on SHAvite-3256

distinguisher on 7 rounds of the compression function. We note that the 6-round attack relies
on removing the swap operation of the sixth round.

An additional attack reported in [14] is a 7-round free-start near-collision attack where the
adversary controls the salt values. This attack has time complexity of 225 compression function
calls, and memory requirements of 214. The attack can be extended by one more round for a
distinguishing attack on 8-round SHAvite-3256, if the adversary controls the salt as well. We
summarize the results of [14] in Table 3.

As can be clearly seen from the above results, SHAvite-3256 is a secure hash function which
offers a large security margins.

3.2 The Security of SHAvite-3512

In [6] the security of SHAvite-3512 is studied using the cancellation property. The result allows
to attack 9-round of the compression function C512, by finding (for a given salt and bit counter)
an input chaining value and a message whose output has 128-bit value chosen by the adversary
in an amortized time complexity of one compression function evaluation. This allows a 9-round
collision attack on the compression function with complexity 2192 (rather than 2256) and a
9-round pseudo-preimage attack on the compression function in time 2384. The latter can be
extended to attack the 9-round variant of the hash function in time of about 2448 compression
function calls (and 264 memory).

In [9] this attack is extended by one more round, and allows finding pseudo-preimages in
10-round reduced variant of C512 in time 2384 and memory of 2128. These pseudo-preimage
attacks translate to second-preimage attacks on 10-round SHAvite-3512 in time complexity 2448

and memory of 2128.

Along these results, a chosen-salt, chosen-counter attacks on the full compression C512 are
suggested in [9]. These attacks include a collision attack on C512 with time 2192 and 2128

memory, as well as a pseudo-preimage attacks with time 2384 and 2128 memory (or 2448 time).
As mentioned before, these attacks assume that the adversary can obtain a full control over all
the inputs of C512, and can be used to distinguish C512 from a random function from 2176 bits
to 512 bits.

3.3 The Effects of the Full Compression-Function Distinguisher

We note that the attack suggested by [9] shows that in the chosen-salt settings, the compression
function of SHAvite-3512, C512 is not ideal. However, while this may imply that SHAvite-3512

is an insecure hash function, following the results of [13,11], one can see that the SHAvite-3512

is a secure hash.

5

SHAvite-3 Updated Version August 23rd, 2010

Rounds Attack Time Memory Adversary’s control

9 Second Preimage (comp. func.) [6] 2384 — message block

Second Preimage (hash. func.) [6] 2448 264 message block

10 Second Preimage (comp. func.) [9] 2480 — message block

Second Preimage (comp. func.) [9]1 2448 — message block

Second Preimage (comp. func.) [9]1 2416 264 message block

Second Preimage (comp. func.) [9]1 2384 2128 message block

Second Preimage (hash. func.) [9] 2496 216 message block

Second Preimage (hash. func.) [9]1 2480 232 message block

Second Preimage (hash. func.) [9]1 2464 264 message block

Second Preimage (hash. func.) [9]1 2448 2128 message block

14 Collision (comp. func.) [9] 2192 2128 message block, counter, salt, chaining value

Preimage (comp. func.) [9] 2384 2128 message block, counter, salt, chaining value

Preimage (comp. func.) [9] 2448 — message block, counter, salt, chaining value

1 — using the improved algorithm of [6].

Table 4. Summary of the Attacks on SHAvite-3512

We first note that according to [11], one can prove that despite the collision attack on
the compression function, it is not possible to leverage it to a collision attack on the hash
function. This is due to the fact that the adversary needs to be able to handle two consecutive
compression function calls in order to find a collision in the actual hash function. As the attack
on the compression function requires a specific counter value, and cannot be applied for any
other counter value, one can conclude that this is indeed the case, and SHAvite-3512 itself is
still a collision resistant, even against a chosen-salt adversary.

Moreover, the problem of indifferentiability in the presence of compression functions impu-
rities was discussed in [13], and it was proven there that given the set of weak “states” (i.e.,
inputs), or pairs of weak “states”, the loss in indifferentiability is linear with the size of the set
of weak states and quadratic with the number of queries. Specifically, if the number of weak
inputs to the compression function is |W| (in the case of the attack of [9], there are no issues
with pairs of values), then the indifferentiability of the hash function is

16 ·
q2

2n
+ 4|W| ·

q

2n

rather than

8 ·
q2

2n

for an n-bit state and q queries.
As |W| = 2128 for the attack of [9], then the indifferentiability of SHAvite-3512 is 16q2/2512+

4q/2384 (to be compared with 8q2/2512. While the increase might seem high, it means that up to
q = 2128 queries to the compression function, the indifferentiability is roughly 4q/2384 < 2−254,
and starting from q = 2128, is about 16q2/2512 which means that SHAvite-3512 is still secure
until the birthday bound.

6

SHAvite-3 Updated Version August 23rd, 2010

Conclusion about the Security of SHAvite-3512 Given the analysis presented before, we
have a complete and utter confidence in the security of SHAvite-3512. As can be seen from the
theoretical results of [13,11], the effects of results which require one specific counter value are
very limited.

Moreover, we note that the results on the full compression function use chosen salts. The
set of possible weak salts, contains 2288 salts, which do not contain the default salt 0, used in
applications where no salt is used.

3.4 The Tweak

Despite our confidence in the security of SHAvite-3512, we decided to suggest a tweaked version
of SHAvite-3512, which is expected to offer larger security margins.

The main changes can be summarized as adding two more rounds to SHAvite-3512 (in-
creasing the number of rounds from 14 to 16), and adding the counter in four more locations
(in all eight nonlinear update steps, rather than only every second one). The counters added
are the negation of the counter words added in the previous nonlinear update step. This also
make SHAvite-3512’s nonlinear update step more consistent with SHAvite-3256’s one, as now
the counter is used in every nonlinear update step.

Namely, the new message expansion algorithm in the tweaked SHAvite-3512 is as follows
(where the tweak changes are emphasized):

– For i = 0, . . . , 31 set rk[i]← msg[i].
– Set i← 32
– Repeat seven times:

1. Nonlinear Expansion Step: Repeat twice:
(a) Let

t[0..3] = AESRound0128

(

(rk[i−31]||rk[i−30]||rk[i−29]||rk[i−32])⊕(salt[0]||salt[1]||salt[2]||salt[3])
)

.

(b) For j = 0, . . . , 3: rk[i + j]← t[j]⊕ rk[i− 4 + j].
(c) If i = 32 then rk[32]⊕ = cnt[0], rk[33]⊕ = cnt[1], rk[34]⊕ = cnt[2], and rk[35]⊕ =

cnt[3].
(d) If i = 112 then rk[112]⊕ = cnt[0], rk[113]⊕ = cnt[1], rk[114]⊕ = cnt[2], and

rk[115]⊕ = cnt[3].
(e) i← i + 4.
(f) Let

t[0..3] = AESRound0128

(

(rk[i−31]||rk[i−30]||rk[i−29]||rk[i−32])⊕(salt[4]||salt[5]||salt[6]||salt[7])
)

.

(g) For j = 0, . . . , 3: rk[i + j]← t[j]⊕ rk[i− 4 + j].
(h) If i = 164 then rk[164]⊕ = cnt[3], rk[165]⊕ = cnt[2], rk[166]⊕ = cnt[1], and

rk[167]⊕ = cnt[0].
(i) If i = 244 then rk[244]⊕ = cnt[3], rk[245]⊕ = cnt[2], rk[246]⊕ = cnt[1], and

rk[247]⊕ = cnt[0].
(j) i← i + 4.
(k) Let

t[0..3] = AESRound0128

(

(rk[i−31]||rk[i−30]||rk[i−29]||rk[i−32])⊕(salt[8]||salt[9]||salt[10]||salt[11])
)

.

7

SHAvite-3 Updated Version August 23rd, 2010

(l) For j = 0, . . . , 3: rk[i + j]← t[j]⊕ rk[i− 4 + j].
(m) If i = 440 then rk[440]⊕ = cnt[1], rk[441]⊕ = cnt[0], rk[442]⊕ = cnt[3], and

rk[443]⊕ = cnt[2].
(n) i← i + 4.
(o) Let

t[0..3] = AESRound0128

(

(rk[i−31]||rk[i−30]||rk[i−29]||rk[i−32])⊕(salt[12]||salt[13]||salt[14]||salt[15])
)

.

(p) For j = 0, . . . , 3: rk[i + j]← t[j]⊕ rk[i− 4 + j].
(q) If i = 316 then rk[316]⊕ = cnt[2], rk[317]⊕ = cnt[3], rk[318]⊕ = cnt[0], and

rk[319]⊕ = cnt[1].
(r) If i = 348 then rk[348]⊕ = cnt[2], rk[349]⊕ = cnt[3], rk[350]⊕ = cnt[0], and

rk[351]⊕ = cnt[1].
(s) i← i + 4.

2. Linear Expansion Step: Repeat 32 times:
(a) rk[i]← rk[i− 32]⊕ rk[i− 7].
(b) i← i + 1.

– Repeat the Nonlinear Expansion Step an additional time with the additional if con-

dition: if i = 504 then rk[504]⊕ = cnt[1], rk[505]⊕ = cnt[0], rk[506]⊕ = cnt[3], and

rk[507]⊕ = cnt[2].

We note that the new counter additions are done with the negated value of the previous
nonlinear step. Moreover, if we consider the 32 new words generated in each nonlinear update
step as two 16 words parts, then the location of the newly introduced counter words is similar
to the previous nonlinear update step locations, up to swapping the half. This ensures a much
faster diffusion of the counter values into the expanded message.

3.4.1 Effects on Security While it is obvious that the additional rounds offer a larger
security margin, and thus add to the security of SHAvite-3512, we continue to analyze the
inherent problem that is the underlying cause for the results of [9]. That is, the ability to
generate many expanded message words which satisfy equalities.

Consider the example given in [9] of a counter set to (0, FFFF FFFFx, 0, 0) and a salt
which is set to be 52x in all bytes. By picking the state of the message expansion to be all zeros
in round 5, i.e., rk[160, . . . , 191] = 0. Such a choice results in many of the rk[·] values being set
to 0, and most importantly rk[160, . . . , 440] are all zero, as shown in Figure 5.

We analyzed the tweaked SHAvite-3512, and the largest number of consecutive rounds with
0 subkey was found to be 4, i.e., the adversary can maintain up to 4 consecutive pairs of subkeys
(RK0,i, RK1,i), for which all subkeys are 0. Moreover, we analyzed all the possible combination,
and we found out that the maximal number of words that can be fixed to 0 is 254 out of the
512 expanded message words, and that in that case 13 additional words have a “structured”
difference (namely, FFFF FFFFx). We outline the best possible expansion in Table 6.

We note that similar analysis confirms that it is impossible to achieve 2-round cyclic subkeys
for more than 4 rounds (due to the different counter values). Hence, the attacks of [9] can no
longer be applied (we note that the updated message expansion is also likely to affect some of
the results presented in [6]).

3.4.2 Effects on Performance These tweaks to the message expansion are expected to have
a negligible effect on the performance. Hence, we expect that the only performance overhead

8

SHAvite-3 Updated Version August 23rd, 2010

Round RK0,i RK1,i

i k
0

0,i k
1

0,i k
2

0,i k
3

0,i k
0

1,i k
1

1,i k
2

1,i k
3

1,i

0 ? ? ? ? ? ? ? ?
1 ?⋆ ? ? ? ? ? ? 0
2 0 ? ? ? ? 0 0 0
3 0 ? ? ? 0 0 0 0
4 0 ? 0 0 0 0 0 0
5 0 0⋆ 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0⋆

10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 ?⋆ ?

0 stands for a zero value, ? for an unknown value,
⋆ marks where the counter is mixed.

Table 5. The Message Expansion of SHAvite-3512 for rk[160, . . . , 191] = 0, salt = 52x . . . 52x

and counter = (0, FFFF FFFFx, 0, 0)

offered by the tweak is expected to be a reduction of 16/14 in the speed, i.e., it would take
about 15% to hash the same amount of data.

Given SHAvite-3512’s competitive performance, we feel that this performance overhead is
well worth the increased security and confidence in SHAvite-3512’s.

4 Summary and Conclusions

In this update, we have discussed the security and performance of SHAvite-3. We summarized
some performance figures concerning SHAvite-3, and showed that SHAvite-3 offers a competi-
tive performance with the SHA-2 family. Moreover, we addressed the recent security concerns
regarding SHAvite-3, proving that SHAvite-3 is a secure hash function (despite some results
on the full C512). Finally, we offered a tweak to SHAvite-3512 which will improve its security
margins significantly, without affecting the performance too much.

Hence, we conclude that either SHAvite-3, as submitted to the second round, or the tweaked
version described in this update, are secure and efficient hash functions, which can be imple-
mented on various platforms with various constraints. Hence, we strongly believe that the
tweaked SHAvite-3 is suitable to be selected as SHA-3.

We will soon release the fully updated code of the tweaked and fixed SHAvite-3 hash function
family (the code of SHAvite-3256 would contain a fix of the round function transposition, and
the one of SHAvite-3512 would incorporate this fix with the tweak).

Acknowledgments

We would like to thank Olivier Billet and Thomas Pornin for detecting the mistake in the
implementation of SHAvite-3. We would also like to thank them along with Ryad Benadjila
and Dan J. Bernstein for discussions concerning the implementation of SHAvite-3.

9

SHAvite-3 Updated Version August 23rd, 2010

Round RK0,i RK1,i

i k
0

0,i k
1

0,i k
2

0,i k
3

0,i k
0

1,i k
1

1,i k
2

1,i k
3

1,i

0 ? ? ? ? ? ? ? ?

1 ?†⋆ ? ? ? ? ? ?† 0
2 0 ? ? ? ? 0 0 0

3 0 ? ?† ?† 0⋆ 0 0 0
4 0 ? 0 0 0 0 0 0
5 0 0⋆ 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0⋆ 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 ?† 0⋆

10 ?† ?† ?† 0 ?† 0 ?† ?†

11 ? ? ? ?⋆ ? ? ? ?
12 ? ? ? ? ? ? ? ?
13 ? ? ? ? ? ? ?⋆ ?
14 ? ? ? ? ? ? ? ?
15 ? ? ?⋆ ? ? ? ? ?

0 stands for a zero value, ? for an unknown value,
⋆ marks where the counter is mixed,
† marks that the difference in some subwords is 0 or
FFFF FFFFx.

Table 6. The New Message Expansion of SHAvite-3512 for rk[160, . . . , 191] = 0, salt =
52x . . . 52x and counter = (FFFF FFFFx, 0, FFFF FFFFx, FFFF FFFFx)

We would like to express our gratitude to Charles Bouillaguet, Pierre-Alain Fouque, Gaëtan
Leurent, Praveen Gauravaram, Florian Mendel, Maŕıa Naya-Plasencia, Thomas Peyrin, Chris-
tian Rechberger, Martin Schläffer, and Marina Minier for taking the effort and analyzing the
strength of SHAvite-3.

References

1. Benadjila, R.: Measurements of shavite-3. private communications (July 2010)

2. Benadjila, R., Billet, O., Gueron, S., Robshaw, M.J.B.: The intel aes instructions set and the sha-3
candidates. In Matsui, M., ed.: ASIACRYPT. Volume 5912 of Lecture Notes in Computer Science.,
Springer (2009) 162–178

3. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions — HAIFA. Presented at
the second NIST hash workshop (August 24–25 2006)

4. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function. Submission to NIST (2008)

5. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function (Tweaked Version). Submission to
NIST (2009)

6. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.A.: Attacks on Hash Functions based on
Generalized Feistel - Application to Reduced-Round Lesamnta and SHAvite-3512. Accepted to SAC
2010, full version at IACR ePrint Archive, Report 2009/634 (2009) http://eprint.iacr.org/.

7. ECHO Team: ECHO hash function – Intel’s AES-NI Instructions Set (August 2010)
http://crypto.rd.francetelecom.com/ECHO/sha3/AES/.

8. ECRYPT: Ecrypt benchmarking of all submitted hashes (2010)

10

http://eprint.iacr.org/
http://crypto.rd.francetelecom.com/ECHO/sha3/AES/

SHAvite-3 Updated Version August 23rd, 2010

9. Gauravaram, P., Leurent, G., Mendel, F., Naya-Plasencia, M., Peyrin, T., Rechberger, C., Schläffer,
M.: Cryptanalysis of the 10-Round Hash and Full Compression Function of SHAvite-3-512. In
Bernstein, D.J., Lange, T., eds.: AFRICACRYPT. Volume 6055 of Lecture Notes in Computer
Science., Springer (2010) 419–436

10. Homsirikamol, E., Rogawski, M., Gaj, K.: Comparing Hardware Performance of Fourteen Round
Two SHA-3 Candidates Using FPGAs. Cryptology ePrint Archive, Report 2010/445 (2010)
http://eprint.iacr.org/.

11. Indesteege, S.: Analysis and Design of Cryptographic Hash Functions. PhD thesis, Katholieke
Universiteit Leuven (2010)

12. Kobayashi, K., Ikegami, J., Knežević, M., Guo, E.X., Matsuo, S., Huang, S., Nazhandali,
L., Ünal Kocabas, Fan, J., Satoh, A., Verbauwhede, I., Sakiyama, ., Ohta, K.: Proto-
typing Platform for Performance Evaluation of SHA-3 Candidates. 3rd IEEE International
Workshop on Hardware-Oriented Security and Trust (HOST 2010) (2010) Available online at
https://www.cosic.esat.kuleuven.be/publications/article-1455.pdf.

13. Leurent, C.B.G., Fouque, P.A.: Security Analysis of SIMD. Accepted to SAC 2010, full version at
IACR ePrint Archive, Report 2010/323 (2010) http://eprint.iacr.org/.

14. Minier, M., Naya-Plasencia, M., Peyrin, T.: Distinguishers on the Reduced-round SHAvite-3-256
Compression Function. private communications (May 2010)

15. Nandi, M., Paul, S.: OFFICIAL COMMENT: SHAvite-3. Available online (2009)
16. Peyrin, T.: Chosen-salt, chosen-counter, pseudo-collision on SHAvite-3 compression function.

Available online (2009)
17. Tillich, S., Feldhofer, M., Kirschbaum, M., Plos, T., Schmidt, J.M., Szekely, A.: High-Speed Hard-

ware Implementations of BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi,
JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein. IACR ePrint Report 2009/510 (2009)

11

http://eprint.iacr.org/
https://www.cosic.esat.kuleuven.be/publications/article-1455.pdf
http://eprint.iacr.org/

	Updates on SHAvite-3

