ARM810: Dancing to the Beat of a Different Drum

Guy Larri

90 Fulbourn Road, Cherry Hinton, Cambridge, CB1 4JN, England Guy.Larri@arm.com

Commercial Drivers For ARM810

• As always, need more Performance

- Twice the performances of ARM710 on same process

• Embedded, low power, portable applications, requires:

- Inexpensive = small die, small plastic package, limited pin count
- Very Focused on Low Power

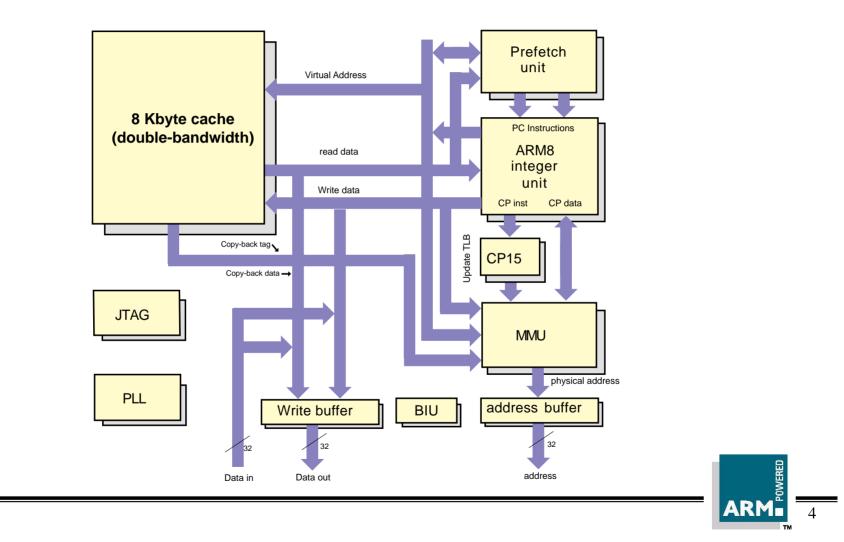
• Licensing Business Model Requires:

- Performance increase on commodity processes
- Low power
- Portable to commodity 0.6µm/0.5µm 3.3V 3-Layer Metal CMOS processes, migration path to 0.35µm
- Modular Design: ARM8 Integer Core is separate product

Cache size variants

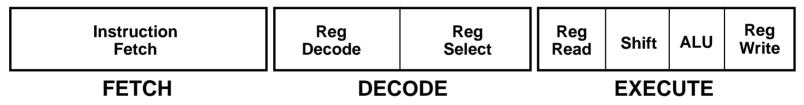
Variant with no MMU

- Use as an embedded macrocell and stand-alone cached processor.



ARM810 ...

Architecture	ARMv4 Processor
CPU	5 stage pipeline + static branch prediction
Cache	8kB Unified Cache Write-Through and Copy-Back
TLB	64 entry TLB, 3 Mapping sizes
Performance	84 Dhrystone MIPs @ 72MHz
Power	0.5W @ 3.3V
Die Size	53.5mm ² (not including pad ring)
First Process	CMOS 3-layer metal, 0.6µm drawn 0.5µm drawn gates
Portable to	Commodity 0.6µm/0.5µm/0.35µm CMOS
Package	144 TQFP
Nice features	Integrated PLL, Lockable Cache/TLB
Markets	PDA, Network Computer



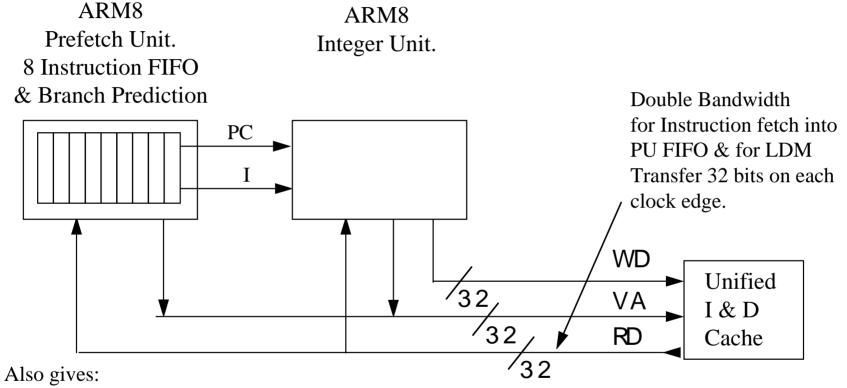
ARM810 Block Diagram

Pipeline changes for ARM8

ARM 7 Pipeline

ARM 8 Pipeline

Instruction Fetch	Reg Decode Reg	Complex Shift	Memory Access	Memory Write
	+ Read Select	Simple Shift + ALU	ALU Write	
FETCH	DECODE	EXECUTE	MEMORY	WRITE


Integer Core CPI Improvement

ARM8 CPI ~ 1.4 ARM7 CPI ~ 1.9 Improvement achieved by

Feature	% Improvement over ARM7
Single Cycle LDR	~ 12 %
Single Cycle STR	~ 4 %
Double bandwidth LDM	~ 6 %
Static Branch Prediction	~ 10 %
Total	~ 35 %

Satisfying Bandwidth Requirement

Single memory port for ROM/SRAM (Cache-less) systems. Small number of Buses

Cycle Count Summary

Branch	min 0			
	max 3	Incorrectly or Not Predicted		
Branch and Link	min 1	Correctly Predicted		
	max 3	Not Predicted		
Multiply and	min 3	$32 \ge 8 \rightarrow 32$		
Accumulate	max 7	$32 \ge 32 + 64 \rightarrow 64$		
	Normal case	Complex	3rd read	Write
		Operand	operand	to PC
		Shift *		
Logical	1		+1	+2
Add, Subtract	1	+1	+1	+2
Load Word, Half, Byte	1	+1		+4
Store Word, Half, Byte	1		+1	
Load Multiple Words	$\lceil n/2 \rceil + 1$ where $n = \#$ registers			+4
Store Multiple Wordsnwhere n = #registers				

* = Shift other than LSR by 0, 1, 2 or 3 bits

Cache Features

- 8kB Unified Instruction and Data Cache
- 4 Words per Cache Line, 64-way associative
- Random Replacement Algorithm
- Cache supports Copy-Back and Write-Through operation
 - Selectable per-page in page-table entry
 - Copy-Back reduces write traffic to main memory
 - \rightarrow more main memory bandwidth available for DMA
 - \rightarrow lower system power
 - Write-Though good for frame buffers and easy upgrade from ARM710
- Flexible Cache & TLB locking for real time applications
 - Cache contents can be locked with granularity of 128 bytes
 - Gives low interrupt latency / guaranteed execution time for real-time applications

Cache Implementation

• Cache is virtually addressed \rightarrow low power

- No address translation required for cache read-hits
- No address translation required for cache write-hits to copy-back regions

• Cache stores only virtual tags

Translate addresses for cache-line cast-outs when they occur
 → Avoids storing 512 lines * 25 bits = 1.6kB of physical tags

• Cache implemented from 1kB CAM-RAM segments

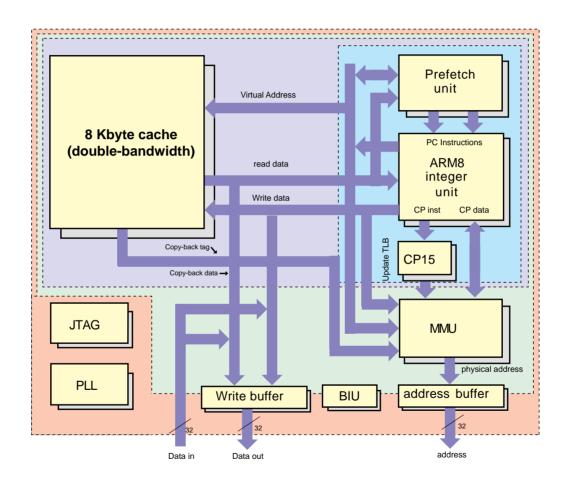
- Only 1 segment active for each access
- Segment selected by 3 bits of Virtual Address
- Easy to build cache size variants

• Double bandwidth read port to ARM8

ARM810 µArchitecture Design Style for Low Power

• Hierarchy of Clocking Domains

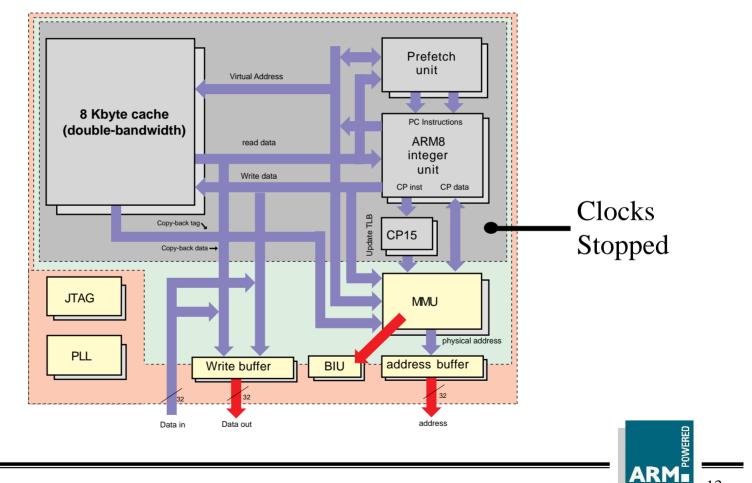
Stop clocks to as much of chip as possible for each stall type or off-chip access.
 e.g. TLB miss stops clocks to Cache and ARM8 until page-table walk completes.
 When TLB requests use of bus, bus controller will stop clock to TLB until write buffer empties, making the bus available to the TLB.

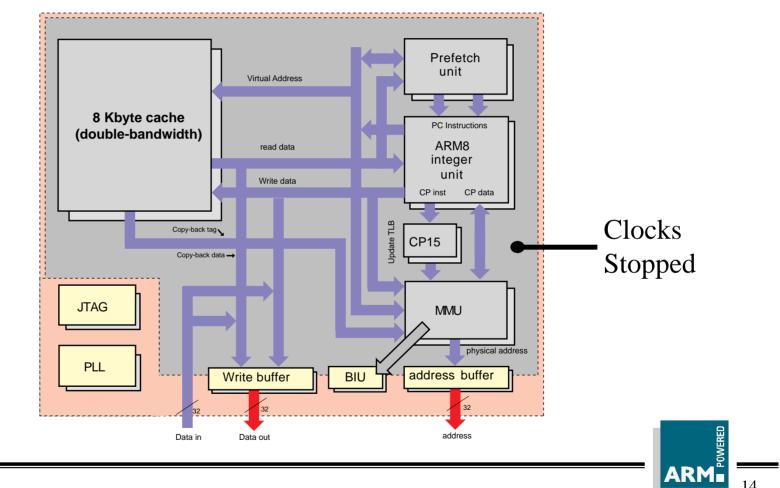

• Separate controllers for each clocking domain.

Yields modular control logic
e.g. No change to cache control or to ARM8 if MMU is removed.

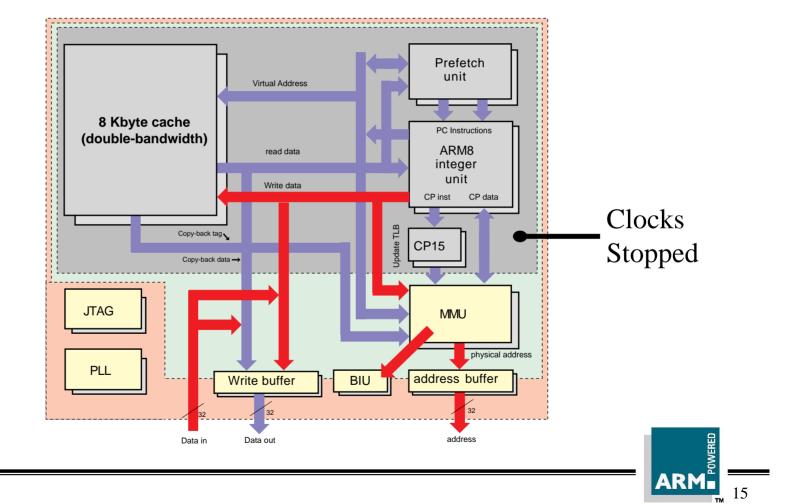
• Pipelined Cache and Bus Controller

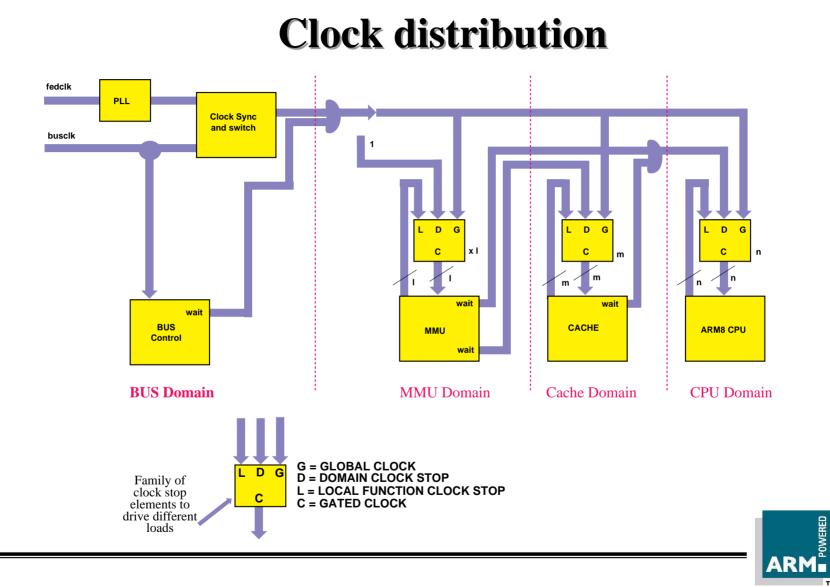
- Maintain 1 write per cycle into cache and write-buffer while giving multiple cycles to resolve all controller scenarios.
- Yields low power via clean synchronous signal transitions on pins.
- Yields optimal use of sequential bursting on external bus.





07/08/96


Example: TLB Miss following buffered writes



Wait for write buffer empty

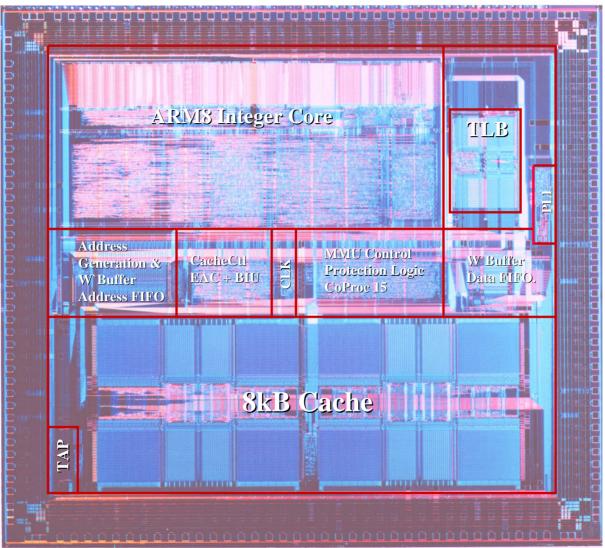
Page table walk completes

16

07/08/96

Design Methodology

- Instruction Trace Analysis for Performance Evaluation
- Modelling and high level design validation in VHDL
- Logic Synthesis for complex combinatorial control logic
- Schematics for datapath, latch selection, and clocking
- Extensive static and dynamic timing analysis using EPIC tools on extracted transistor netlist.
- Power consumption sanity check using EPIC dynamic simulation.
- SPICE analysis for CAM-RAMs, datapath, FIFOs.


Implementation Technology

- Full custom layout for Datapath, FIFOs, TLB, Cache CAM-RAMs.
- Standard-Cell for Control Logic.
- Combination of hand-routed and auto-routed layout composition.
- Process portable 0.6µm/0.5µm ruleset with proprietary automated conversion to target process, *except* ...

... Cache CAM-RAM Segments in target process rules.

ARM810

07/08/96

ARM810 Development Team

