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We consider finite graphs with no self-loops and no multiple edges. A graph
is valid if all edges incident on a vertex have different colors. We prove

Vizing’s Theorem. All the edges of a graph of maximum degree less than N
can be colored using N colors so that the graph is valid.

We call a color incident on a vertex if an edge incident on that vertex has that
color; otherwise, the color is free on that vertex. Since there are N available
colors and each vertex degree is less than N , there is a free color on each vertex.

Our proof consists of showing how to color an arbitrary uncolored edge of a
valid graph (which may require changing the colors of already-colored edges to
maintain validity). This procedure can be repeated until all edges are colored.
Henceforth, X Y is the uncolored edge that is to be colored.

The fan

Our proof uses a data structure called a fan. A fan 〈f..l〉 is a sequence of
vertices that satisfy the following (throughout the paper, u ranges over all
elements of the fan except l , and u+ is the successor of u in the fan):

F0 : 〈f..l〉 is a nonempty sequence of distinct neighbors of X;
F1 : edge X f is uncolored; and
F2 : (∀u :: color of edge X u+ is free on u) .

Each edge X v for v ∈ 〈f..l〉 is called a fan edge.

The following (nondeterministic) algorithm constructs a fan F that is max-
imal, in that it cannot be extended:

F := 〈Y 〉; do (∃v :: B) → F := F cat v where v satisfies B od

where B is the predicate

B : X v is an edge ∧ v /∈ F ∧
1This work was done while the second author was on sabbatic from Cornell at Austin.
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color of X v is free on the last vertex of F .

The algorithm

Our algorithm for coloring edge X Y is given below. Subsequently, we investi-
gate the steps of the algorithm.

Let 〈f..l〉 be a maximal fan;
Let c be a color that is free on X and d a color that is free on l;
Invert the cd-path;
{d free on X ∧ the graph is valid ∧

(∃w :: w ∈ 〈f..l〉 ∧ 〈f..w〉 is a fan ∧ d free on w)}
Let w satisfy: w ∈ 〈f..l〉, 〈f..w〉 is a fan, and d free on w;
Rotate fan 〈f..w〉 and give edge X w the color d

Inverting the cd-path

A cd-path is a path that includes vertex X , has edges colored only c or d , and
is maximal —it cannot be extended with a c- or d-colored edge. Since the graph
is finite and valid, since c is free on X , and since the cd-path is maximal, we
conclude that colors c and d alternate along successive edges of a cd-path, that
the cd-path is simple and unique, and that X is an endpoint of it. Further,
if the cd-path contains an edge, it has two endpoints and the edge of it that is
incident on X has color d .

Operation Invert the cd-path is:

Switch the colors of the edges on the cd-path: c to d and d to c.

Inversion is performed to make d free on X , so that some edge incident on
X can be given the color d . Since c is free on X prior to the inversion, either
d is free on X initially and remains free or the color of an edge incident on X
is changed from c to d , thus freeing d on X .

Inversion maintains the validity of the graph because: the bag of incident
colors on each vertex outside the cd-path is unchanged; the bag of incident colors
on each internal vertex of the cd-path is unchanged (since each has incident on
it one c-edge and one d-edge); and the new color (either c or d) of the edge of
the cd-path incident on each endpoint was previously free on that endpoint.
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We show that inversion guarantees the existence of a vertex w in 〈f..l〉 such
that 〈f..w〉 is a fan and d is free on w . We consider two cases, prior to the
inversion.

Case 0: No fan edge has color d . Since fan 〈f..l〉 is maximal and d is free on
l , no edge with color d is incident on X . Hence, d is free on X . Hence, the
cd-path is empty and the inversion has no effect on the graph or fan. Choose
w = l .

Case 1: A fan edge has color d . Since X f is uncolored, this fan edge differs
from X f ; call it X v+ . By F2 , d is free on vertex v . Note that v differs
from l because l is the last vertex in the fan and v+ is in the fan. We now
show that after the inversion

F3 : (∀u : u 6= v : color of X u+ free on u) .

holds. Prior to the inversion, the color of X u+ for u 6= v is neither c (since c
is free on X ) nor d (since X v+ has color d and the graph is valid). Inversion
changes only edges colored c and d . Therefore, the color of X u+ and the
freeness of the color of X u+ on u remains unchanged, so F3 holds after the
inversion.

Either v is in the cd-path or not. If not, the inversion does not affect the
bag of colors free on v , and d remains free on v . Since a prefix of a fan is a
fan, 〈f..v〉 is a fan, and we can choose w = v .

Suppose v is in the cd-path. We show that 〈f..l〉 remains a fan and that
d remains free on l , so we can choose w = l . Since d is free on v before the
inversion, v is an endpoint of a cd-path. Inversion changes the color of X v+

from d to c and makes c free on v ; together with F3 , this implies that F2
holds after the inversion. Thus, 〈f..l〉 remains a fan. Color d remains free on
l because l is not on the cd-path (since d is free on l , l would have to be an
endpoint of the cd-path, but its endpoints are X and v , which are different
from l ).

Rotating fan 〈f..w〉
Operation Rotate fan 〈f..w〉 is as follows (in it, u ranges over all the elements
of 〈f..w〉 except w ):

In parallel, give each edge X u the color of X u+ and uncolor X w .

This operation leaves the graph valid because: the bag of colors incident on a
vertex outside 〈f..w〉 (including X ) is unchanged; the bag of colors incident
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on w is reduced (since X w is uncolored); and, by F2 , each edge Xu has a
new incident color that was free on u prior to the rotation.

Rotation leaves d free on w , since the only edge incident on w that has its
color changed by the rotation is X w and this edge is uncolored by the rotation.
Since d is also free on X , and since the rotation uncolors X w , giving X w
the color d increases the number of colored edges and leaves the graph valid.

1 Discussion

The study of Vizing’s theorem was begun by E.W. Dijkstra and the ATAC
(Austin Tuesday Afternoon Club) at the request of Bob Tarjan, who had found
the existing proofs of the theorem too confusing and complex. A constructive
proof, as explained by J.R. Rao to the ATAC in February 1990, contained
the essential ingredients —the fan, inversion, and rotation— but without the
nomenclature. Further, it was more complicated. Rao and Dijkstra then derived
a quite different algorithm, which has the nice property that its derivation can
be explained [2]. The simple view of the algorithm presented here, which at
its top level contains no branches, is due to many attempts at simplification,
mostly by Misra.

The algorithm in in [1, p. 94], which we looked at after completing our
proof, is similar to ours but more complicated. In his algorithm the inversion
and rotation occur in a different order. Bollobás’s proof is only one page long,
the shortness being achieved through omission of necessary arguments. For
example, Bollobás neglects even to mention that inversion and rotation leave
the graph valid, and those arguments are not obvious. On the other hand,
we have attempted to include all necessary arguments and to be as clear as
possible. Bollobás’s proof is complicated somewhat by the notation and by the
use of subgraphs formed by edges of two colors instead of simply the cd-paths.
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